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ABSTRACT
Biologists often copewith variation in physiological, environmental and
ecological processes by measuring how living systems perform under
average conditions. However, performance at average conditions is
seldom equal to average performance across a range of conditions.
This basic property of nonlinear averaging – known as ‘Jensen’s
inequality’ or ‘the fallacyof the average’ – has important implications for
all of biology. For instance, a burgeoning awareness of Jensen’s
inequality has improved our ability to predict how plants and animals
will respond to awarmer andmore variable future climate. But for many
biologists, the fallacy of the average is still a novel concept. Here, I
highlight the importance of Jensen’s inequality, provide a simple
graphical approach to understanding its effects, and explore its
consequences at atomic, molecular, organismal and ecological levels.

KEY WORDS: Nonlinear averaging, Global change, Thermal
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Introduction
Nature is variable. The position and orientation of atoms and
molecules change as they are jostled by thermal agitation. Air
temperature and sunlight fluctuate with the seasons and the weather.
Physiological capacity varies from one individual to another, and
ecological interactions shift from place to place and time to time. In
large part, it is the combined effect of these and similar variations
that makes biology such a complex and challenging field.
Often, biologists cope with variation by taking an average. For

example, if substrate concentration varies through time in a cell, a
biochemist might use the average concentration to calculate the
average rate at which product is made. If prey density varies from
place to place in the ocean, a marine ecologist might use mean
density when calculating a predator’s average foraging rate. A
biomechanic might use the average velocity in a turbulent stream to
calculate average drag on benthic algae. But therein lies a problem.
Except under rare circumstances, the response of a system to average
conditions is different from the system’s average response to
variable conditions, a conundrum known as ‘Jensen’s inequality’,
named for Danish mathematician Johan Jensen (Jensen, 1906). Also
referred to as ‘the fallacy of the average’, Jensen’s inequality is a
basic tenet of nonlinear averaging. Put formally, it states that if f (x)
is a nonlinear function of x, the average of f, that is f ðxÞ, is not equal
to the function of average x, f ð�xÞ:

f ðxÞ = f ð�xÞ: ð1Þ

Given that very few of nature’s response functions are strictly linear,
Jensen’s inequality has near universal application in biology.

Some fields are well aware of Jensen’s inequality and its
consequences. For example, ecological physiologists and
evolutionary biologists have innovatively incorporated the effects
of Jensen’s inequality into their efforts to model how plants and
animals will respond to future changes in Earth’s climate (e.g. Ruel
and Ayres, 1999; Martin and Huey, 2008; Dillon et al., 2010;
Williams et al., 2012; Vasseur et al., 2014; Colinet et al., 2015;
Kingsolver et al., 2015; Dowd et al., 2015; Dillon andWoods, 2016;
Koussoropolis et al., 2017). By contrast, biologists in other fields
are often unaware of the quirks of nonlinear averaging. In an
informal survey of colleagues and students over the years, I have
found that fewer than half are aware of Jensen’s inequality. Others
remember encountering the concept in a statistics class, but have
never found occasion to use it. The continued novelty of nonlinear
averaging for many biologists is the impetus for this Commentary.
My goals here are to explain the importance of Jensen’s inequality,
provide a simple graphical approach to understanding its
consequences, and highlight its effects at atomic, molecular,
organismal and ecological levels.

Basic concepts behind Jensen’s inequality
The consequences of Jensen’s inequality are best understood
through examples. First, let us explore the simple case of a linear
function. Oceanic phytoplankton are a major sink for the carbon
dioxide that human activity is spilling into the atmosphere, and the
rate at which these unicellular organisms absorb CO2 from seawater
is directly proportional to each cell’s diameter, d (Fig. 1A) (Berg,
1983; Denny and Gaines, 2000). In a hypothetical population, half
the cells are small (d=10 µm) and half are large (d=20 µm). As
shown by the graph, each of the small cells absorbs CO2 at a rate of
400 fmol s−1, and each of the large cells at a rate of 800 fmol s−1.
Thus, the average rate of absorption is 600 fmol s−1 per cell. But
let’s look at the question a different way. Average cell diameter in
the population is 15 µm, and the function of absorption versus
diameter tells us that a cell this size absorbs CO2 at…600 fmol s−1.
In other words, for this linear function the average rate of absorption
across cell sizes is equal to the rate of absorption by a cell of average
size. Thus, one could use average cell size to accurately calculate the
population’s capacity to absorb society’s waste CO2.

However, using the average in this fashion is problematic if the
function in question is nonlinear. Consider, for instance, how
metabolic rate changes with body temperature in ectotherms
(Fig. 1B). In this hypothetical example, metabolic rate at any
given temperature is three times that at a temperature 10°C lower
(i.e.Q10=3). Let’s suppose that body temperature is constant at 20°C
during the 12 h of daylight, and constant at 10°C at night, such that
the average temperature is 15°C.What is the average metabolic rate?
To find out, we graphically take the average of day and night rates
by drawing a line between the two rates and locating its midpoint.
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(We use the midpoint because equal time is spent at the two
temperatures. If more time were spent at one or the other, we would
find the average by sliding the point proportionally along the red
line.) But notice that the average metabolic rate is greater than the

metabolic rate at average temperature. That is, animals with variable
body temperature use more energy per time than do animals with a
constant body temperature, even when both have the same average
temperature, a disparity that could have consequences for growth
rate, reproductive output and foraging requirements.

Now consider a different example. The rate at which a leaf
exchanges heat with the surrounding air depends on wind speed:
convective heat loss increases approximately as the square root of
speed (Denny, 2016), a relationship shown in Fig. 1C. The ability
of leaves to stay cool in bright sunlight thus depends on the air
flow around them. Let us suppose that two leaves experience the
same average wind speed (5 m s−1), but for one, speed is constant,
and for the other, it alternates equally between 0 and 10 m s−1, a
rough approximation of turbulent flow. As we did for metabolic
rate, we calculate average heat loss in the variable environment by
drawing a line between values at the two alternating conditions
and finding its midpoint. In this case, the average of the function is
less than the function of the average. Leaves in turbulent flow
might overheat while leaves in constant flow of the same average
speed survive.

From these graphical examples, we can draw two conclusions.
First, we see why Jensen’s inequality is true: only if a function is
linear does the average response equal the response at average
conditions. Second, the disparity between the average of a function
and the function of the average depends on the function’s shape. If
the function is concave upward (e.g. metabolic rate as a function of
temperature), the average of the function is greater than the function
of the average. Conversely, if the function is concave downward
(e.g. heat loss as a function of wind speed), the average of the
function is less than the function of the average.

Quantifying the disparity
If f ðxÞ = f ð�xÞ, then:

f ðxÞ ¼ f ð�xÞ þ something: ð2Þ
What is this ‘something’ and how big is it? To answer this important
question, consider Fig. 2, which shows two examples of thermal
performance curves. To create curves of this sort, an organism’s
performance (e.g. metabolic rate, growth rate, fecundity) is typically
measured at a series of constant temperatures, and a curve is fit to the
data (Angilletta, 2009). At some critical low temperature (CTmin)
performance sinks to zero, as it does at some critical high
temperature (CTmax). In between, there is a temperature (Topt) at
which performance is maximized. First let us explore the curve in
Fig. 2A. This species is a thermal generalist; it performs well over a
broad range of temperature. Given this curve, we can predict
performance at any particular average temperature (e.g. 30°C), and
using our line-drawing method we can graphically calculate the
average performance when temperature varies by ±3°C, alternating
between a constant 33°C in the day and a constant 27°C at night
(the blue solid line). Because for temperatures near 30°C the curve
is concave downward, average performance in this variable
environment is lower by 6% than performance at average
temperature. Note what happens if the variation between day and
night temperatures is increased to ±4°C (34 to 26°C; the red dashed
line). The larger the variation, the greater the effect of Jensen’s
inequality; performance is now decreased by 11% relative to
performance at the average temperature.

We can apply the same procedures to the thermal performance
curve in Fig. 2B. Everything is the same except that this curve is for
a thermal specialist; the animal can perform only over a narrow
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Fig. 1. Examples of response functions. (A) The rate of CO2 absorption is a
linear function of cell diameter. As a consequence, the average rate of
absorption is equal to the rate at average cell size. (B) Metabolic rate is an
accelerating, nonlinear function of temperature. When temperature varies
(alternating between 10 and 20°C, for instance), average metabolic rate is
greater than the rate at average temperature. (C) Convective heat exchange
varies with wind speed as a decelerating, nonlinear function. If wind speed
varies (alternating between zero and 10 m s−1 in this example), average heat
exchange is less than the exchange at average wind speed.
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range of temperatures, and as a result the concavity of the curve is
more pronounced. Because of this change in shape, the effect of
Jensen’s inequality is magnified. For temperatures varying by ±3°C,
average performance relative to performance at average temperature
is reduced by 30% rather than 6%; for a variation of ±4°C,
performance is reduced by 66% rather than 11%.
From these examples we see that the ‘something’ in Eqn 2

depends on both the amount of variation and the shape of the curve.
(This holds true even when x has a distribution of values rather than
just the two in this simple example; for instance, in reality there is a
continuous distribution of air temperatures as the environment
cycles between day and night.) Mathematical analysis helps to
quantify these conclusions. It can be shown (e.g. Chesson et al.,
2005; Denny, 2016) that:

f ðxÞ � f ð�xÞ þ Ss2
x : ð3Þ

In other words, the magnitude of the effect of Jensen’s inequality –
the ‘something’ – is set by S, a descriptor of the shape of the
function, and by s2

x , the variance of the input variable x.

As you might expect from Fig. 2, the shape factor S depends on
the local ‘curvature’ of f :

S ¼ 1

2
f 00ð�xÞ; ð4Þ

where f 00ð�xÞ is the second derivative of f evaluated at mean x.
(Strictly speaking, the second derivative is an accurate measure of
curvature only when the first derivative is zero, but a looser
definition serves our purposes here.) Note that for a curve that is
concave upward, f 00 is positive, while for a curve that is concave
downward, f 00 is negative. Thus, the sign of S accounts for the
qualitative effects we noticed in Fig. 1B,C: if the curve is concave
up, S is positive and f ðxÞ . f ð�xÞ; if the curve is concave down, S is
negative and f ðxÞ , f ð�xÞ. For a straight line, the second derivative
is zero, and f ðxÞ ¼ f ð�xÞ. Eqn 3 also tells us that the effect of
Jensen’s inequality scales in proportion to s2

x . The more variable the
driver of a nonlinear system, the greater the disparity between f ðxÞ
and f ð�xÞ.

It is important to note that, in all but a few situations, Eqn 3 is an
approximation. Only if f is a quadratic equation (fitting the form
y=ax2+bx+c) is Eqn 3 exact. In all other cases, this relationship
provides an estimate of f ðxÞ, but the estimate’s accuracy can be less
than onewould desire, especially if σx, the standard deviation of x, is
a large fraction of the relevant range of x (e.g. the range between
CTmin and CTmax). To calculate f ðxÞ with reliable accuracy, one
needs to substitute the brute force of a computer for the elegance of
Eqn 3. Suppose you want to calculate f ðxÞ for a givenmean value of
x. First you must specify how x varies around that mean. In an ideal
case, you would have a large number of empirical data that define
the distribution of x. Barring that, you might suppose that x is
normally distributed with a mean of �x and a specified σx. In either
case, you would write a program that randomly chooses a value of x
from the x distribution; this x can then be used to calculate f (x) for
this specific case. Iterating this procedure hundreds to thousands of
times provides a large random sample of how performance would
play out given the known (or assumed) variation in x, and one can
then average these individual values to provide a reliable estimate of
f ðxÞ. For example, Benedetti-Cecchi (2005) used this bootstrap
procedure to show that spatial variation in species richness reduces
primary productivity.

In Fig. 3, I have used a bootstrap to estimate how a standard
deviation of 5°C affects average performance given the nominal
curve of Fig. 2A. As we expect, where the nominal performance
curve is concave downward, average performance is lower.
Furthermore, Topt for average performance is lower than that of
the nominal curve. In other words, realized performance in a
variable thermal environment is predicted to be generally lower than
in a constant environment, and is likely to reach its peak at a lower
temperature. This effect has been observed in a variety of organisms
(Martin and Huey, 2008; Dowd et al., 2015), and it affects how one
predicts the consequences of climate change (e.g. Vasseur et al.,
2014). Note, however, that where the nominal curve is concave
upward (near CTmin), average performance is higher than nominal
performance.

The bootstrap procedure outlined above provides a convenient
means to accurately estimate the effect of Jensen’s inequality for any
function. It is crucial to realize, however, that bootstrapping is
accurate only in a mathematical sense. Biology (and, in particular,
physiology) can throw a spanner into the works. Consider, for
instance, the average thermal performance curve of Fig. 3. When
calculating this curve, I implicitly assumed that, for each random
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choice of temperature in the bootstrap, the performance of the
organism is not affected by thermal history. That is, I assumed that
as an organism moves through a particular body temperature, it has
the same performance it would have if it were held at that
temperature for an extended period (i.e. the conditions under which
the nominal curve was measured). In reality, the organism’s past
temperature is likely to affect its current physiology such that its
actual performance is different from that predicted by the nominal
performance curve measured for a fully acclimatized organism. For
example, previous short-term exposure to a high temperature could
lead to ‘stress-hardening’, a physiological adjustment that allows the
organism subsequently to perform better than predicted by the pure
mathematics of nonlinear averaging. Conversely, previous exposure
might incur damage, causing the organism to perform worse than
suggested by Eqn 3. In short, physiology (and other time-sensitive
processes) has the potential to modify the predictions of Jensen’s
inequality. For temperature-dependent performance, this time
sensitivity has the potential to undermine the utility of nominal
performance curves measured under constant conditions
(Kingsolver and Woods, 2016). For many other aspects of
performance, the complex interactions between environmental
variability and physiology have not been characterized.

Jensen’s inequality is important at all levels of organization
Despite the caveats described above, Jensen’s inequality provides
invaluable insight into how nature works. A few pertinent examples
help to illustrate the ubiquity and importance of nonlinear averaging
for atoms, molecules, organisms and ecological communities.

Van der Waals forces
Jensen’s inequality plays a key role in explaining the properties of
matter. For instance, the London dispersion force – a consequence
of nonlinear averaging at the atomic level – is one important
component of the suite of dipole interactions (known as van der
Waals forces) that help hold materials together. Consider, for
instance, water. Although the London dispersion force is weaker
than the hydrogen bonds between water molecules (another sort of

dipole–dipole interaction), they account for a substantial fraction of
the force binding water molecules to each other (Israelachvili,
2011). Without these dispersion forces, water would evaporate more
readily and, as a consequence, terrestrial life could be much
different. Van der Waals attractions are also important in
maintaining the secondary and tertiary structure of proteins
(Creighton, 1984), a critical contributor to the catalytic capability
of enzymes, and some animals (such as geckos and some insects
and spiders) use van der Waals forces to climb vertical walls and
even hang from the ceiling (Autumn, 2006).

How does Jensen’s inequality lead to atomic attraction? Atoms
consist of a positively charged nucleus surrounded by a cloud of
negatively charged electrons; in an electrically neutral atom, the
number of positive charges equals the number of negative charges.
Because opposite charges attract, electrons are attracted to the
nucleus, and it is this attraction that holds the atom together.
Conversely, onewould expect two neutral atoms to repel each other;
brought into close proximity, the symmetrical, negatively charged
electron cloud of one atom should repel the cloud of the other. But,
in reality, neutral atoms are attracted to their neighbors. The details
of the mechanism behind this attraction are complex, but a
simplified explanation provides the information we need (de
Podesta, 2002).

Averaged over time, an atom’s electron cloud is spherically
symmetrical (Fig. 4A). However, on the scale of 10−16 s, quantum
uncertainty allows electrons to bunch together on one side of the
atom, momentarily giving that side a net negative charge and the
opposite side a net positive charge. In other words, for a brief period
the atom is an electrical dipole. As dipoles are wont to do, the
asymmetrically arranged electrons of one atom induce a dipole of
opposite sense in a neighboring atom, such that the local negative
charge of one atom is adjacent to the local positive charge of its
neighbor. For that instant, the atoms attract each other. An instant
later, the electrons rearrange, bunching up in another area, but again
the dipole effect leads to net attraction. In short, although atoms with
an average disposition of electrons would repel each other, because
of quantum variation in electron position there is, on average, a net
attraction.

External fertilization
Many, if not most, benthic marine organisms reproduce sexually by
broadcasting eggs and sperm into the surrounding water. Because
the motility of gametes is limited (Vogel et al., 1982), successful
fertilization often relies on turbulent water motion to bring together
gametes from distant parents (Denny and Shibata, 1989). The
random swirl and mix from turbulent eddies does indeed transport
gametes, but at the same time, like any diffusive process, turbulence
tends to disperse particles, thereby reducing their concentration.
Because the likelihood of an egg meeting a sperm depends on their
co-occurring concentration, the very water motion required for
fertilization can compromise the process by promoting dilution.
This fact led to a long-standing paradox. Calculations based on
time-averaged concentrations of gametes suggested that external
fertilization should be dangerously inefficient (Denny and Shibata,
1989). Nonetheless, external fertilization has been retained by many
species.

The solution to this paradox is provided by an extension of
Eqn 3. Within a turbulent eddy, F, the rate of external fertilization
(no. m−3 s−1) is set by the manner in which swimming sperm find
essentially immobile eggs (Vogel et al., 1982). Imagine that you are
a sperm swimming in a random direction. The more eggs there are in
that direction (that is, the greater the concentration e of eggs,
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no. m−3) and the larger the ‘target’ each egg presents (the projected
area of each egg, A, m2), the more likely you are to contact an egg.
Likewise, the greater your speed (u, m2), the sooner you are likely to
hit your target. This is for one sperm; obviously, the more sperm
there are in a given volume (i.e. the greater the concentration s of
sperm, no. m−3), the more eggs that will be fertilized in a given
period.
The overall rate of fertilization depends on the product of these

four factors (A, u, e and s). Traditionally, A and u are multiplied to
form a single coefficient, k, the encounter rate kernel (m3 s−1;
Kiørboe, 2008), leaving us with the following model for the rate of
external fertilization:

F ¼ kse: ð5Þ
Thus, F is a linear function of the product se, implying that:

FðseÞ ¼ FðseÞ: ð6Þ

However, F can nonetheless be nonlinear, because the product of
s and e depends on how one varies with respect to the other. For
example, if s always equals e, F=ks2, which is clearly nonlinear.
More generally, if, when the concentration of sperm is high, the
concentration of eggs also tends to be high (that is, if s and e
positively co-vary), their average product can be high. Conversely,
if when s is high e tends to be low and vice versa (that is, if they
negatively co-vary), their product is small. As a result, one cannot
reliably use the average concentrations of sperm and eggs to
calculate their average product:

FðseÞ = Fð�s�eÞ: ð7Þ

How, then, can we calculate the average rate of fertilization?
Again mathematical analysis comes to our aid. The average

product of s and e is equal to the product of average s and e plus their
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covariance, Cov(s,e) (Chesson et al., 2005; Denny, 2016):

se ¼ �s �eþ Covðs; eÞ: ð8Þ
Thus:

FðseÞ ¼ FðseÞ ¼ F½ �s �eþ Covðs; eÞ�: ð9Þ
In short, even if the average concentrations of eggs and sperm are

low (such that the product �s �e is small), if the concentrations of eggs
and sperm positively covary, Cov(s, e) can be large, and the average
rate of fertilization can therefore be high.
In an elegant series of experiments, John Crimaldi and his

colleagues have shown that when eggs and sperm are shed into
turbulent flow, the gamete streams are initially stretched into slender
tendrils that can be intertwined by eddies (Fig. 4B) (Crimaldi et al.,
2008). Because of this short-term behavior, even when the average
concentrations of gametes are low, their local concentrations tend to
be high and positively correlated. As a result, actual rates of
fertilization can be two, even three, orders of magnitude higher than
those estimated using average gamete concentrations, helping to
explain why external fertilization is so widely found in nature.

Species diversity
In a seminal paper in 1978, Joe Connell proposed what has become
known as the ‘intermediate disturbance hypothesis’. The logic goes
like this. Through time, species can recruit to an initially barren
habitat. As a result, species diversity initially increases. However, at
some point, species begin to compete for resources, so, as
succession progresses, competitively inferior species lose out to
competitively more dominant species and diversity decreases. But
this temporal pattern can be disrupted by disturbance. If the
community is disturbed often, succession is likely to be halted in its
early stages, and diversity is low. If the interval between disturbance
events is long, competition has time to run its course, and diversity
is similarly low. There is, however, an intermediate disturbance
interval at which diversity is maximal; thus the name of the
hypothesis. The relationship between disturbance interval and
diversity is shown as the dashed line in Fig. 4C.
In this explanation, I have tacitly assumed that each disturbance

event affects the community as a whole. In a more realistic scenario,
individual patches within the community can be disturbed
independently of others. In that case, one might want to predict
the average diversity measured across all the patches that comprise
the community. Suppose that in a given year, each patch has the low
probability p of being disturbed, and that patches are disturbed
independently. Given this more realistic scenario, what is the
average species diversity of the community?
Because the probability of disturbance is low and equal among

patches, the process described here conforms to the Poisson interval
distribution (Berg, 1983; Denny and Gaines, 2000), with two
relevant aspects coming into play. First, for any given patch, the
average time between disturbance events is:

�t ¼ 1

p
; ð10Þ

i.e. the lower the probability of disturbance, the longer the average
time between disturbances. Second, the variance of the interval
between disturbances is equal to the square of the average interval:

s2
t ¼ �t 2: ð11Þ

This is important because we know that the greater the variance of
an input variable (in this case inter-event interval), the larger the

effect of Jensen’s inequality on average performance. One can use
these two relationships to calculate how diversity (an index of
community ‘performance’) varies, not as a function of a given
interval between disturbance events, but rather as a function of the
average interval for the community as a whole (Denny, 2016). This
is the solid red curve in Fig. 4C. Because the nominal curve is
concave downward, the random variation in inter-event interval
decreases average diversity. And, because in this case the variance
in interval length increases as the square of the average interval, the
effect is unusually drastic. In essence, except when the probability
of disturbance is very high (i.e. when average inter-event interval is
short), the negative effects of rare, long intervals more than offset
the positive effects of the relatively common intermediate-length
intervals. As a result, because of Jensen’s inequality, average
diversity measured over a community made up of independently
disturbed patches is predicted to be much lower than one would
expect if single disturbance events were to periodically impact the
entire community.

Predator–prey interactions and enzyme kinetics
In 1959, Buzz Holling explored the theory of how predators interact
with their prey. His basic idea was that predation involves two steps:
searching for prey and handling prey once they have been found.
The more concentrated prey are, the more prey a predator can catch
per unit time, so as prey density increases from zero, the rate of
capture initially increases linearly. However, as a predator catches
prey more often, handling time begins to interfere with its ability to
further increase the rate of capture, and eventually an asymptote is
reached. Based on these ideas, Holling derived an equation (the
Holling type II functional response) describing the rate of prey
capture (C, number per time) as a function of prey density (ρ,
number per area or volume) (Fig. 4D, dashed gray line):

C ¼ ar

1þ ar=Cmax
: ð12Þ

Here, α is a coefficient describing the initial slope of the function
and Cmax is the maximum possible capture rate. Our understanding
of nonlinear averaging immediately allows us to draw an important
conclusion. Because the Holling type II process is concave
downward, Jensen’s inequality tells us that any temporal or
spatial variation in prey density reduces the rate of prey capture
(Fig. 4D, solid red line). The only exception is at very low prey
densities. Because capture rate cannot be negative, when prey
density is near zero, the increase in capture rate accompanying
positive deviations in density is not offset by any decrease in rate
when deviations are negative. As a result, when ρ is small, average
capture rate can exceed nominal capture rate.

Similar kinetics apply at a much smaller scale. The rate at which
an enzyme can convert substrate to product depends on how often
the enzyme encounters a substrate molecule – a rate proportional to
substrate concentration – and how quickly the substrate can be
handled by the enzyme’s active site. Thus, enzyme activity is
directly analogous to predator–prey interactions, and the Michaelis–
Menten equation used by biochemists to model and describe
enzyme kinetics is mathematically identical to Eqn 12. Because of
Jensen’s inequality, any variation in substrate concentration reduces
the average rate of enzyme activity.

Geometric versus arithmetic averaging
There are different ways to calculate an average, and these can affect
the consequences of Jensen’s inequality. In all the examples
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discussed above, the average referred to is the arithmetic average:

�xarith ¼ 1

n

Xn

i¼1
xi; ð13Þ

where xi is an individual measurement of performance and n is the
total number of measurements. The arithmetic average is
appropriate when cumulative performance depends on the sum of
performance across time, e.g. growth. There are processes, however,
for which cumulative performance instead depends on the product
of performance across time, and in this case the geometric average
should be used:

�xgeom ¼ ðPn
i¼1xiÞ1=n: ð14Þ

Consider, for instance, a population of individuals that reproduce
once per year and then die. If each individual produces r young,
population size in year i+1 is r times population size in year i.
Growth of the population through time is thus a multiplicative
process. As a consequence, if reproduction is zero in any year, the
population dies out regardless of what happens in other years, and
this sensitivity to individual years can affect overall performance.
Fig. 5 shows how geometric averaging affects the results of Jensen’s
inequality for the thermal performance curve shown in Fig. 3.
Predicted reproductive performance is lower when using geometric
averaging than when using arithmetic averaging, and the
temperature of maximum performance is shifted to even lower
temperatures. Note also that at low temperatures, the effects of
geometric averaging are opposite to those of arithmetic averaging;
relative to the nominal curve, arithmetically averaged performance
is increased but geometrically averaged performance is decreased.
Note that these specific conclusions apply only to this particular
thermal performance curve. More generally, the effect of using
geometric – rather than arithmetic – averaging will vary depending
on the nature of each specific response function.

Conclusions
Because nature is variable and biological response functions are
typically nonlinear, it is dangerous to assume that average
performance is equal to the performance under average
conditions. Ecological physiologists and evolutionary biologists
have heeded this warning in their attempt to predict the effects of the

looming shifts in Earth’s climate. For example, Vasseur (2014)
found that as Earth warms, the increased variance in temperature is
likely to have greater impact than the increase in average
temperature. But the importance of Jensen’s inequality extends far
beyond the study of thermal biology. Indeed, the consequences of
nonlinear averaging are so pervasive and important that the basic
concepts should be a prominent part of every undergraduate biology
curriculum, although this is seldom the case.

A simple bootstrapping procedure allows one to estimate the
effects of input variation on performance, although these strictly
mathematical predictions must be viewed with caution, especially
when dealing with physiological performance. However, even
without the math, an understanding of the basic concepts of
nonlinear averaging allows one to qualitatively estimate the effects
of Jensen’s inequality for any response function, and I urge all
biologists to exercise this ability when viewing both the literature
and the wider world.
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