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Mechanisms underlying the control of responses to predator
odours in aquatic prey
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ABSTRACT
In aquatic systems, chemical cues are a major source of information
through which animals are able to assess the current state of their
environment to gain information about local predation risk. Prey use
chemicals released by predators (including cues from a predator’s
diet) and other prey (such as alarm cues and disturbance cues) to
mediate a range of behavioural, morphological and life-history
antipredator defences. Despite the wealth of knowledge on the
ecology of antipredator defences, we know surprisingly little about the
physiological mechanisms that control the expression of these
defensive traits. Here, we summarise the current literature on the
mechanisms known to specifically mediate responses to predator
odours, including dietary cues. Interestingly, these studies suggest
that independent pathways may control predator-specific responses,
highlighting the need for greater focus on predator-derived cues when
looking at the mechanistic control of responses. Thus, we urge
researchers to tease apart the effects of predator-specific cues (i.e.
chemicals representing a predator’s identity) from those of diet-
mediated cues (i.e. chemicals released from a predator’s diet), which
are known to mediate different ecological endpoints. Finally, we
suggest some key areas of research that would greatly benefit from a
more mechanistic approach.
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Introduction
Almost all animals are exposed to predators that come and go over
time scales ranging from minutes to months, or predators that are
present for only certain life-history stages. The risk of being eaten is
therefore anything but static, and understanding how prey deal with
the variation in predation risk is a long-standing theme of ecological
research (Lima and Bednekoff, 1999; Lima and Dill, 1990; Sih
et al., 2000). Although not always the case, investing in defensive
traits can reduce overall fitness in variable environments if the costs
associated with developing and maintaining defensive traits exceed
their benefits during periods of low risk (Auld et al., 2010; DeWitt,
1998; Lima, 1998). Consequently, many prey species have evolved
plastic defences that can be turned on or off in response to
environmental fluctuations (Relyea, 2002; Tollrian and Harvell,
1999; Weiss et al., 2012a). Some of these responses stem from an
innate recognition of the cue (this is the case for chemical alarm
cues, diet cues and some predator-specific odours; Box 1), whereas
others require experience and learning for the response to be

triggered (as for most predator-specific odours; Box 1). Some
defensive traits, such as behavioural responses, are quickly
expressed and highly plastic, allowing prey to respond to short-
and long-term changes in predation risk. Others, such as
morphology and life-history traits, generally take more time and
energy to express and are not easily reversed. The benefits of such
traits are thus dependent on the speed at which they can be expressed
relative to both the onset and duration of risk (Steiner and Pfeiffer,
2007). Their expression is therefore limited by their underlying
control mechanisms.

In aquatic systems, chemical cues are one of the primary means
by which prey detect predators and assess predation risk (Bronmark
and Hansson, 2012; Ferrari et al., 2010). Chemical cues can provide
temporal and spatial information about predation risk, allowing prey
to regulate the expression of inducible defences. These cues fall into
two categories: those derived from predators (predator odours and
dietary cues; Box 1) and those from conspecifics or prey guild
members (chemical alarm cues and disturbance cues; Box 1). While
this overview is limited to cues derived from predators, and will not
cover specifically those derived from injured prey (but see Døving
and Lastein, 2009, for a recent review in fishes), the distinction
between the two is not always clear cut, as smells from predators
may contain chemicals derived from ingested conspecific prey – in
other words, digested alarm cues (often referred to as diet cues)
(Chivers and Mirza, 2001; Ferrari et al., 2010). Predator-specific
cues allow prey to recognise and respond using defences that are
adaptive against that predator, while diet cues may provide a general
indication of risk (Ferrari et al., 2010). However, with a few
exceptions, we know very little about the underlying mechanisms
that control phenotypically plastic responses to predator odours and
dietary cues. Part of the issue is that the chemical identity or
composition of these cues, be it predator odour, alarm cues or diet
cues, is still unknown. In this Review, we briefly summarise how
predator odours and diet cues change prey phenotypes and highlight
what is currently known about the mechanisms that control
responses to the different odours released by predators. We
suggest that a mechanistic approach can bridge gaps between
physiological and ecological research.

Effects of predator odours and diet cues on prey ecology
Prey display a range of responses to predator odours and diet cues,
which include alterations in behaviour, morphology, physiology
and life histories (Bronmark and Miner, 1992; Chivers and Mirza,
2001; Dawidowicz and Loose, 1992; Fonner and Woodley, 2015;
Gazzola et al., 2015; Hazlett, 1999). The expression of these various
responses is sensitive to the time scales over which they might be
beneficial in relation to the costs of induction and maintenance
(Ferrari et al., 2009; Relyea, 2002; Steiner and Van Buskirk, 2009).
Acute exposure to predator odours results in prey displaying a range
of short-term antipredator behaviours, such as reduced activity
(Gazzola et al., 2015), reduced feeding rate (Foam et al., 2005),

1Department of Biomedical Sciences, WCVM, University of Saskatchewan,
Saskatoon, SK, Canada S7N 5B4. 2Department of Biology, University of
Saskatchewan, Saskatoon, SK, Canada S7N 5B4.

*Author for correspondence (maud.ferrari@usask.ca)

M.C.O.F, 0000-0002-3127-9804

1937

© 2017. Published by The Company of Biologists Ltd | Journal of Experimental Biology (2017) 220, 1937-1946 doi:10.1242/jeb.135137

Jo
u
rn
al

o
f
Ex

p
er
im

en
ta
lB

io
lo
g
y

mailto:maud.ferrari@usask.ca
http://orcid.org/0000-0002-3127-9804


increased hiding (Briones-Fourzán et al., 2008) and altered habitat
use (Dawidowicz and Loose, 1992). The magnitude and duration of
these behavioural defences reflect a trade-off against other fitness-
enhancing activities, such as feeding, mating or guarding territories
(Lima and Dill, 1990). Consequently, many prey display threat-
sensitive responses to predator odours; that is, the intensity of the
response correlates positively with the perceived level of risk based
on the information contained in the chemical cues, such as the
identity (Hawkins et al., 2007; Relyea, 2003a; Smith et al., 2008),
size (Kusch et al., 2004) or – in some cases – density of predators
(Ferrari et al., 2006; Relyea, 2003a). Furthermore, the concentration
of predator odours indicates the spatial and/or temporal proximity of
predators, allowing prey to further fine-tune their responses (Ferrari
et al., 2006; Kats and Dill, 1998; van Buskirk and Arioli, 2002).
Upon prolonged exposure to predator odour, some species initiate

a range of responses beyond behavioural changes. For instance,
larval crabs exposed to predatory fish odours display increased
visual sensitivity, thus enhancing their ability to detect predators
(Charpentier and Cohen, 2015). Possibly the most striking
responses to predator odours and diet cues are changes in
morphology. Exposure to these odours can induce protective

armaments, such as defensive spines, increased shell thickness or
increased body depth, all of which reduce the chance of being
attacked, caught or eaten by predators (Domenici et al., 2008; Engel
et al., 2014; Laforsch et al., 2004; Middlemis Maher et al., 2013).
Beyond morphological changes, exposure to predator odour can
also alter the timing of major life-history transitions, such as egg
hatching, ontogenetic switches and investment in reproduction
(Ferrari et al., 2010; Lass and Spaak, 2003). Such responses can be
specific to different predators and differ between populations
(Templeton and Shriner, 2004; Wilson et al., 2005; Lakowitz et al.,
2008; Orr et al., 2009). Because of the cost/benefit trade-off of
developing, maintaining and using these traits, their onset may be
limited to certain life-history periods and can be permanent or
plastic in response to variation in predation levels (DeWitt, 1998).
Additionally, individuals may demonstrate trait compensation,
reducing other defences (such as behavioural responses to
predators) following the development of morphological traits
(Bourdeau et al., 2015). Below, we describe two systems that
highlight the effects of predator odours on the biology of their prey.

Case study: frog larvae
Frog larvae, particularly wood frog tadpoles Lithobates sylvaticus,
have become one of the main models for understanding the
behavioural, cognitive, morphological and life-history responses to
predator odours and diet cues. Like many prey, predator-naive larval
amphibians do not innately respond to predator odours, and thus need
to learn to recognise the odours of their predators in order to respond
to them (Chivers et al., 2015; Gonzalo et al., 2009). As a result,
behavioural and physiological responses to predators are often, but
not always (see DeSantis et al., 2013; Orr et al., 2009), mediated by
an individual’s experience with that predator. Yet, predator-naive
tadpoles can instantly recognise novel predators if these predators are
releasing diet cues containing consumed conspecifics (van Buskirk
andArioli, 2002). In fact, some studies have shown that both predator
odours and diet cues may be required to elicit full antipredator
responses (Schoeppner and Relyea, 2005, 2009).

Chronic exposure to predators (3–18 days) results in tadpoles
developing morphologies that are adapted to different predator
groups, namely ambush invertebrate predators, such as larval
dragonflies and beetles, or active pursuit predators, such as fish
(Relyea, 2003b) (Fig. 1). Exposure to invertebrate predators results
in tadpoles delaying hatching from eggs (Ireland et al., 2007),
reducing growth rates and developing deeper, shorter tails for
increased escape speeds (Middlemis Maher et al., 2013; Relyea,
2001b; Wilson and Lefort, 1993). Tadpoles exposed to fish
predators develop similar morphological changes, but also
develop larger tail muscles (Relyea, 2001a; Teplitsky et al.,
2005). A consequence of these adaptive changes in morphology
is a longer developmental time and delayed metamorphosis (Relyea,
2001b; Relyea and Auld, 2004). Some of these morphological
responses may be reversible; in the absence of odours from
predators, some tadpoles lose their adapted morphological
phenotypes (Relyea, 2003b). Highlighting the complexity of cue-
mediated effects, Van Buskirk and Arioli (2002) reported that
behavioural responses of tadpoles were sensitive to the amount of
conspecifics consumed by predators, whereas the expression of
morphological traits was determined by the number of predators
detected, regardless of the amount of prey eaten by these predators.

Case study: Daphnia
Possibly the most well-studied prey system for responses to predator
odour are water fleas (Daphnia spp.), for which the responses to fish

Box 1. Terminology: a need for better integration across
fields
In reviewing the literature for this paper, it became apparent that some
terms are used interchangeably to describe a range of different cues.
Yet, these cues induce distinct behavioural and physiological responses
in prey; thus, there is a need for clear definitions of specific cues. Below,
we define the main cue types available for risk perception.
Predator kairomone
Kairomones are infochemicals released by an organism, which, when
detected by another organism, provide an adaptive benefit for the
receiver but not the sender. Predators release at least two types of
kairomones: predator odour and diet cues. Because of this ambiguity, we
advise against the use of the term ‘kairomone’ unless it is clearly defined
in the study.
Predator odour
The cues released by a predator that are unique to the species and do
not include cues released as a result of prey digestion. This is a crucial
component of the definition, because we know that diet cues (see below)
can mediate a wide array of antipredator responses, from behaviour to
life history. Hence, the term ‘predator odour’ should only be used when
the diet component is carefully removed or controlled for.
Diet cue
Any odours that are released as a by-product of the digestive process.
Diet cues can have a range of effects on prey antipredator responses
depending on their composition. In this manuscript, we specifically refer
to diet cues as those that provide direct information about predation risk
and that elicit antipredator responses when encountered, e.g. those
released following the consumption of prey conspecifics. Conclusions
based on different types of predators may be confounded by differences
in diets between predator types: is it the nature of the predator driving the
response, or is it a difference in predator diets?
Chemical alarm cue (originally ‘Schreckstoff’)
Chemicals released by prey as a by-product of mechanical damage to
their body, eliciting overt antipredator responses in other prey individuals
(e.g. conspecifics, closely related species and heterospecific prey guild
members).
Disturbance cues
Chemicals that are actively released by disturbed prey and not as a by-
product of mechanical damage. These cues elicit antipredator
responses when detected by conspecifics but, on their own and
without additional cues from conspecifics or predators, do not appear
to mediate as wide a range of antipredator responses as do chemical
alarm cues.
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and invertebrate predators have been investigated. Exposure to the
odours of predators fed Daphnia (the presence of diet cues derived
from digested Daphnia seems to be crucial for recognition, e.g.
Stabell et al., 2003) results in predator-specific polyphenism for
behavioural, life-history and morphological responses. For instance,
in order to avoid predation, Daphnia undergo a diel vertical
migration in response to fish and diel horizontal migrations in
response to phantom midge larvae (Chaoborus spp.) (Dawidowicz
and Loose, 1992; Loose et al., 1993; Tollrian and Harvell, 1999;
Wojtal-Frankiewicz et al., 2010). In addition, Daphnia exposed to

predatory fish cues undergo a life-history shift, reallocating energy
from somatic growth to reproduction. These changes mean that
Daphnia reproduce at a smaller size and produce greater numbers of
smaller eggs, thus reducing the effects of predators that select for
larger prey (Lass and Spaak, 2003; Tollrian and Harvell, 1999). In
contrast, Daphnia exposed to phantom midge larvae odours
reallocate resources from reproduction to somatic growth and
induce morphological defences including neck teeth, helmets and
strengthened carapaces in order to escape these gape-limited
predators (Laforsch et al., 2004; Tollrian and Harvell, 1999).

Time

Tadpole + diet cues
predator odour

Embryonic
development

Hatching Metamorphosis

Early hatchingEgg predator
odour + diet cues

Normal development

Delayed hatching
and increased size

Predator odours
induce morphology
changes 

Slower
development

Fish predator odour

Invertebrate
predator odour

Fig. 1. The effects of exposure to predator
odours and diet cues on the timing of life-
history transitions and morphology of
juvenile anurans. The top panel shows that
juveniles exposed to predator odours as
embryos alter the timing of hatching and their
size at hatching; egg predators induce early
hatching while tadpole predators induce
delayed hatching (Chivers et al., 2001;
Ireland et al., 2007). Furthermore, exposure
to odours from predators fed conspecifics
increases developmental time as a result of
investment in morphological defences and
reduced gut length (Relyea and Auld, 2004).
The bottom panel shows the changes in
morphology that result from exposure to
predators as tadpoles. Invertebrate
predators (e.g. Anax spp.) induce smaller
bodies with relatively larger and deeper tails
that increase escape speeds (Middlemis
Maher et al., 2013; Relyea, 2001a), while
fish predators induce deeper tail muscles as
well as smaller bodies and larger tails
(Relyea, 2001a; Teplitsky et al., 2005).
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Understanding how predator odours and diet cues can mediate such
a wide array of responses is a challenge that few researchers have
tackled. In particular, a clear mechanistic understanding of prey
responses to predator odours and diet cues is lacking. Below, we
discuss the mechanisms of detection and neurosignalling,
neuroplasticity and cognition, endocrine responses and genetic
responses involved in prey responses to the different cues released
by predators.

Mechanisms underlying prey responses to predator odours
and diet cues
The physiological processes that control responses to general
olfactory cues have been well studied across multiple systems and
taxa (Bell, 2009; Dennis et al., 2014; Døving and Lastein, 2009;
Firestein, 2001; Hegab and Wei, 2014). However, for responses to
cues related to predation, much of the work is limited to a few
terrestrial organisms, such as the responses of rats to predatory cat
urine (Hegab and Wei, 2014). The response cascade initiated by
exposure to predator odours and diet cues generally involves the
detection of cues, which initiates neuronal and endocrine signalling,
changes in gene expression and synaptic sensitisation, and,
ultimately, changes in phenotypes associated with antipredator
defences (Fig. 2). Below, we summarise what is currently known
about the mechanisms that control the responses of aquatic prey to
predator odours and diet cues.

Odour detection and neurosignalling pathways
There is a distinct paucity of information regarding the sensory and
neurological pathways through which prey detect and process
predator odours and diet cues, particularly when compared with
studies on sex pheromone and feeding cue reception. This is partly a
reflection of the fact that the chemical composition of predator odours
and alarm cues is currently unknown. The main sensory pathways for
the detection of chemicals present in the aqueous medium are
olfaction and gustation, although chemicals that are indicative of risk

appear to be mostly processed though olfactory pathways (Atema,
1977; Døving and Lastein, 2009; Shabani et al., 2006).

In vertebrates, the basic organisation of the olfactory system is
conserved (Derby and Sorensen, 2008; Firestein, 2001; Moreno
et al., 2008). In fish, there are three types of olfactory receptor
neurones (ORNs) – ciliated, microvillar and crypt cells – which are
clustered into rosettes in the olfactory epithelium. These different
ORNs project to glomeruli located in specific regions within the
olfactory bulb, resulting in glomeruli with similar chemosensitivity
being located near each other (Derby and Sorensen, 2008; Døving
and Lastein, 2009). Chemical information is then passed from the
olfactory bulb via mitral cells to the forebrain, where higher-order
processing of the olfactory information occurs. The role of the
olfactory pathway in processing predator odours is further supported
by the fact that prolonged exposure to predator odours alters the
activity of mitral cells and their sensitivity to predator odours in
Rana dalmatina tadpoles (Gazzola et al., 2015). The different types
of ORNs are sensitive to different odour classes, meaning food
odours, pheromones and alarm cues are processed along
predominantly separate pathways (Derby and Sorensen, 2008;
Døving and Lastein, 2009; Hamdani and Døving, 2003). The alarm
cue pathway consists of ciliated cells which project into the
dorsomedial region of the olfactory bulb and activate mitral cells
that have axons within the medial region of the olfactory tract. Diet
cues are thought to be digested derivatives of chemical alarm cues
(Ferrari et al., 2007a) and thus may be processed via alarm cue-
sensitive ORNs, while predator odours are likely to involve food
odour-sensitive ORNs (Derby and Sorensen, 2008). However, the
high interconnectivity between glomeruli should allow integration
of complex information from predator odours and diet cues prior to
processing in higher regions of the brain (Derby and Sorensen,
2008).

Unlike those of vertebrates, chemosensory systems are diverse
across aquatic invertebrates. In crustaceans, the antennular
chemosensory pathway, consisting of the aesthetasc sensilla and

Internal environment

Receptor site

Chemosensory
system

Cue-specific
transmission pathways

HPA/I axis

HPT axis

Epigenetic control

Genes expressed

Timing of expression

Integration of info.
from different cues and
sensory systems

Role of higher brain
centres

Control of response
intensity

Site location &
specificity

Dose-
dependent
response

Central nervous system Endocrine system

Genetic control

Antipredator
defence

Cognition &
behaviour

Morphology

Physiology
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Environmental
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Chemical
composition
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endocrine
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Fig. 2. Conceptual overview of the physiological pathways and systems involved in controlling prey responses to predator odours and diet cues.Within
each box are general topics that should prove fruitful in furthering our understanding of the proximate mechanisms controlling antipredator responses in aquatic
prey. These topics are based on the findings discussed in the main text and also on papers looking at mechanistic responses to different predation cues,
developmental pathways and neurobiology (Denver, 2009; Derby and Sorensen, 2008; Firestein, 2001; Hamdani and Døving, 2003; Hegab and Wei, 2014; Li,
2014). HPA/I axis, hypothalamic-pituitary–adrenal/interrenal axis; HPT axis, hypothalamic-pituitary–thyroid axis.
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olfactory lobe, functions as the olfactory pathway (Derby and
Sorensen, 2008) and processes information from predator odours in
spiny lobsters, Panulirus argus (Shabani et al., 2006). In Daphnia
longicephala, predator odours are detected by sensory systems
located on the first antennae (Weiss et al., 2015a), which connect to
the deutocerebrum in the central nervous system, where olfactory
cues are processed (Weiss et al., 2012c). Similarly, predator odours
are detected by receptors located on the rhinophores of the
nudibranch Tritonia diomedea (Wyeth, 2006), which form part of
the system analogous to olfaction (Di Cosmo andWinlow, 2014). In
the snail Lymnaea stagnalis, predator odours are detected by the
osphradium, an externally located chemosensory organ, which is
innervated by the osphradial nerve, a small nerve branching off the
internal pallial nerve (Bullock and Horridge, 1965; Il-Han et al.,
2010; Karnik et al., 2012). This pathway allows for information
about predators to be transferred to the central nervous system and
affects long-term memory (LTM) and behaviour.

Neuroplasticity and cognition
Exposure to predator odours has been shown to alter various
cognitive traits relating to behaviour. For example, exposure to
predator odour can enhance learning and the formation of LTM or
can result in individuals becoming neophobic (Brown et al., 2013;
Mitchell et al., 2016a; Orr et al., 2007). However, while exposure to
predation risk can enhance cognitive traits relating to predator
recognition, it may impair other cognitive functions such as spatial
learning (Brown and Braithwaite, 2005), suggesting that there is a
trade-off which might result from changes to the structure and
functioning of the brain. A few studies described below have
examined how exposure to predator odours and diet cues affect
neurological structures, but generally did not demonstrate how these
changes relate to cognitive function.
Woodley et al. (2015) demonstrated that anuran larvae show

significant changes in brain structure following exposure to
predators and their diet cues. Leopard frog tadpoles, Lithobates
pipiens, exposed to predator odours and diet cues, developed brains
that were narrower and shorter in several dimensions compared with
those of non-predator controls. However, these changes did not
persist beyond metamorphosis (Woodley et al., 2015). Similarly,
nine-spined stickleback, Pungitius pungitius, developed larger
bulbus olfactorius (chemosensory centre) regions in the brain
when exposed to the odours of predatory perch (Gonda et al., 2012).
Unfortunately, neither study explored whether these changes
directly modified cognition or behaviour. Gazzola et al. (2015),
working on R. dalmatina tadpoles, found that baseline activity of
mitral neurons and their sensitivity to predator odours increased
following prenatal exposure to predator odours. In addition to these
changes in neuronal activity, tadpoles changed their baseline
activity and overall activity levels following exposure to predator
odours. However, the differences in neuronal activity persisted for
longer than the behavioural changes, suggesting that more work is
needed to understand the relationship between neuronal activity and
behaviour.
A direct link between neurological function and changes in

cognitive traits resulting from exposure to predator odours has been
demonstrated in L. stagnalis snails. In juvenile snails, exposure to
crayfish odour enhances their ability to form LTM following operant
conditioning of aerial respiration. Exactly how LTM acts as an
antipredator defence is unclear (Forest et al., 2016; Lukowiak et al.,
2014; Orr et al., 2010). RPeD1 is a key neuron that controls
rhythmic neuronal activity within the central pattern generator
(region controlling aerial respiration), and a decrease in its

excitability is required for the formation of LTM. RPeD1 is more
excitable in juveniles than in adults, and adults are able to regulate
RPeD1 excitability and the central pattern generator via synaptic
connections with the peripheral pneumostoma area; these
connections do not have the same suppressive input in juveniles.
Exposure to predator odours changes the excitability of RPeD1,
allowing the formation of LTM more easily than in the absence of
predator odours (Karnik et al., 2012; Orr et al., 2010).

Endocrine responses
Hormones play a central role in mediating predation risk effects on
organisms, and they influence the behaviour and physiology of prey
(Denver, 2009). In both vertebrates and invertebrates, hormones that
control growth and metamorphosis mediate many responses to
predator odours and diet cues (Dennis et al., 2014; Denver, 2009).
For instance, ecdysteroids (insect moulting and sex hormones) and
juvenile hormones are highly conserved in arthropods, and together
control the timing of moulting and sexual development (Dennis
et al., 2014).

Both predator odours and diet cues induce stress in prey animals;
hence, work has generally focused on hormones that mediate stress
responses. For vertebrates, these are hormones such as
glucocorticoids, which are primarily associated with the
sympathetic nervous system and the hypothalamic-pituitary–
adrenal (HPA) axis [or the hypothalamic-pituitary–interrenal
(HPI) axis for fishes] (Barton, 2002; Denver, 2009; Rehnberg and
Schreck, 1987; Ricciardella et al., 2010). The few studies examining
vertebrate prey responses to predator odours and diet cues have
focused on the HPA axis and associated glucocorticoids (Denver,
2009; Fonner and Woodley, 2015; Middlemis Maher et al., 2013;
Sunardi et al., 2007). Exposure to predator odours normally results
in the release of glucocorticoids and an increased metabolic rate that
readies prey for the fight-or-flight response. However, this is not
always the case, as predator odours do not always activate the HPA
axis (Fonner and Woodley, 2015). Time-sensitive activation of the
HPA axis controls antipredator responses in L. sylvaticus tadpoles.
Upon initial exposure to predator odours, tadpoles suppress HPA
axis activity, which reduces corticosterone levels. The lower
corticosterone levels reduce tadpole activity and, hence, the
chances of detection by predators (Fraker et al., 2009; Middlemis
Maher et al., 2013). Yet, extended periods of exposure to predator
odours lead to an increase in corticosterone levels and activation of
the HPA axis, which interacts with the development of antipredator
morphological phenotypes in response to predators (Denver, 2009;
Middlemis Maher et al., 2013). Furthermore, tadpoles exposed to
corticosterone in the absence of predator odours developed the tail
morphology of predator-exposed tadpoles, while tadpoles exposed
to predator odours but treated with a corticosteroid biosynthesis
inhibitor failed to develop the antipredator morphology (Middlemis
Maher et al., 2013). Although not directly tested in the context of
responses to predator odours or diet cues, the hypothalamic-
pituitary–thyroid axis has been shown to work alongside the HPA
axis to regulate metamorphosis, and thus may influence the timing
of prey life-history transitions in response to predator odours
(Denver, 2009).

For invertebrates such as pond snails, crayfish and the sea hare,
serotonin appears to play a key role in the stress response and
anxiety-like behaviour. For L. stagnalis, predator odours detected in
the osphradium are transferred to the central pattern generator via
serotonergic pathways. When serotonin reception is blocked,
individuals fail to respond to predator odours (Il-Han et al.,
2010). Similarly, increased serotonin in crayfish (Procambarus
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clarkii) and sea hares (Aplysia californica) has been found to lead to
increased responses and sensitivity to acute stressors such as an
electrical shock (Fossat et al., 2015; Marinesco and Carew, 2002).

Genetic responses
Identifying the genes that control phenotypic plasticity – along with
the control mechanisms (e.g. changes in gene expression versus
genetic polymorphism) – is crucial to understanding the genetic
basis of plasticity (Auld et al., 2010; DeWitt, 1998). Despite the
difficulties associated with identifying the genes involved in
plasticity (Bell, 2009; Edmunds et al., 2016), some progress has
been made in identifying specific genes that control the expression
of antipredator traits. Again, much work on identifying genes that
control predator odour-induced plasticity has involved Daphnia
pulex, in which the eco-responsive genome has been sequenced
(Colbourne et al., 2011). In the related species Daphnia magna,
exposure to fish predator odour results in the upregulation of
cyclophilin (Dappu-92663), a gene involved in protein folding,
while exposure to an invertebrate predator leads to downregulation
of the same gene (Schwarzenberger et al., 2009). While this
differential expression may reflect different life-history responses to
different predators, it is unclear how cyclophilin mediates the
expression of these different traits.
Hokkaido salamander larvae (Hynobius retardatus) express five

times the number of genes when inducing a defensive (antipredator)
morphology following exposure to odours and diet cues from a
predator (Aeshna nigroflava) than when inducing a predatory
(foraging) morphology following exposure to food cues from the
prey, Rana pirica; the difference in gene expression probably
reflects the heavier investment required to express the defensive
compared with the predatory morphotype (Matsunami et al., 2015).
In both cases, genes related to responses to reactive oxygen species
were upregulated to account for the increased metabolic demand of
morphogenesis. Clearly, numerous genes are involved in
controlling antipredator responses and there is a long way to go
before we really understand the genetic basis of antipredator
defences.

Understanding the mechanisms of predator-specific prey responses:
insights from Daphnia
Daphnia have long been a model system for understanding the
indirect ecological effects of predators on prey, and are known to
display distinct morphological, behavioural and life-history
responses to invertebrate versus fish predators. To complement
this, there is now a growing body of work examining the
mechanisms controlling these predator-specific responses (Fig. 3).
Following detection, predator-specific signals are transferred via
independent neurosignalling pathways. Responses of D. pulex to
fish predators are mediated via the suppression of the inhibitory
GABAergic pathways, resulting in the release of ecdysteroids
(Dennis et al., 2014; Weiss et al., 2012b, 2015b). Ecdysteroids
promote the reallocation of energy from somatic growth to
reproduction, which results in the life-history changes described
above. Responses to invertebrate predators are controlled by
cholinergic pathways (Barry, 2002; Miyakawa et al., 2013; Weiss
et al., 2012b). Blocking these pathways using physostigmine (an
acetylcholine inhibitor) prevents the expression of defensive traits,
but appropriate stimulation of these pathways alone does not induce
the relevant defences, suggesting there are additional intermediate
steps involved in the expression pathway (Weiss et al., 2012b). One
potential candidate is ionotropic glutamate receptors (which are
involved in neurotransmission), as exposure to Chaoborus odours

results in the upregulation of genes coding for the production of
these receptors (Miyakawa et al., 2015).

The cholinergic system controls the release of dopamine and
juvenile hormones, which themselves control the expression of
inducible defences in response to invertebrate predators (Dennis
et al., 2014; Miyakawa et al., 2013; Weiss et al., 2015b). Dopamine
is stored and released from polyploid cells surrounding the regions
where inducible defence structures develop. Exposure to
Chaoborus odours results in the upregulation of the genes
encoding the dopamine-synthesising enzyme dopamine
decarboxylase and the juvenile hormone pathway-related genes
JHAMT andMet (Miyakawa et al., 2010; Weiss et al., 2015b). The
release of dopamine causes increased sclerotisation that
strengthens the carapace (Laforsch et al., 2004). Additionally,
dopamine also acts as a proliferation agent either alone or in
conjunction with juvenile hormones to stimulate the development
of neck teeth (Dennis et al., 2014; Miyakawa et al., 2013; Weiss
et al., 2015b). Mirroring these morphological changes is a
significant up-regulation of genes coding for cuticle-associated
proteins required to produce neck teeth and the strengthening of the
carapace, along with an up-regulation of the genes involved in
chromatin restructuring and cell cyclin – genes likely to be
involved in cell proliferation at the site where neck teeth form
(Rozenberg et al., 2015). Finally, the interactive effect of
dopamine and juvenile hormones increases overall body size and
delays reproduction (Weiss et al., 2015b). Interestingly, increasing
concentrations of Chaoborus odour result in a dose-dependent
expression of genes involved in the juvenoid hormone pathway,
which in turn mediates the threat-sensitive expression of
morphological defences and, thus, predator-induced plasticity in
prey (Dennis et al., 2014).

Which cues are responsible?
There is a need to clearly define which cues are being investigated
when it comes to understanding the mechanisms that control
antipredator responses. Many of the studies reviewed here exposed
prey to predator odours and diet cues simultaneously, and yet
antipredator responses of prey to predator odours can differ when
diet cues are present or absent (Mitchell et al., 2015, 2016b;
Schoeppner and Relyea, 2005, 2009; Stabell et al., 2003). While
there are a growing number of studies showing innate predator
recognition (Dalesman et al., 2006; DeSantis et al., 2013;
Langerhans and DeWitt, 2002; Vilhunen and Hirvonen, 2003),
many studies have shown that, when diet cues are controlled for,
predator-naive prey do not display antipredator responses to
predator odours. Rather, prey must learn to recognise predator
odours in order for an antipredator response, be it behavioural or
physiological, to be observable (Chivers and Mirza, 2001; Ferrari
et al., 2010; Kelley and Magurran, 2003; Stabell et al., 2003). This
would suggest that chemical alarm cues and their diet cue
derivatives might, in many cases, be the primary cues responsible
for inducing defences in prey.

Investigating the pathways through which these predator odours
and diet cues are processed and how they interact to control the
expression of antipredator traits is further complicated by the fact
that we currently have little knowledge about the chemical
composition of these different cues. While the analytical tools to
isolate and identify these chemicals are available, the cues rapidly
degrade and are generally found at low concentrations. Thus,
isolating these chemicals from their chemical milieu is problematic
(Pohnert, 2012). Furthermore, the cues used by different prey to
assess risk are likely to be species specific, dependent on the
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species’ historical interactions with predators, and can differ from
one prey species to the next, or even between populations (Ferrari
et al., 2007b; Orr et al., 2009). For instance, conspecific alarm cues,
i.e. the cues released from injured conspecifics, elicit an innate
antipredator response in all aquatic species tested to date, from
corals to amphibians. Some phylogenetic relationship exists, with
closely related congeneric species responding to each other’s alarm
cues, albeit with a lower intensity of response (Dalesman et al.,
2007; Mirza and Chivers, 2001; Mitchell et al., 2012). Yet, distantly
related species do not respond to each other’s alarm cues, indicating
that the chemical mixture that elicits the optimal response is unique
for each species.
Controlling for diet cues represents a useful first step to

understanding how predator odours and diet cues control
antipredator responses. To distinguish between the effects of
predator odour and diet cues, predator odour collections require a
diet-control step that ensures that chemicals that might elicit an
innate response, such as digested alarm cues, are removed. This
involves the predator being fed distantly related and sometimes
sympatric heterospecific prey, whose alarm cues do not elicit an
antipredator response from the test subject (Ferrari et al., 2010), for a
few days prior to odour collection. This step is sometimes followed
by a non-feeding period to allow for complete gut evacuation.
However, it should also be noted that in natural environments, diet
cues cannot be isolated from predator odours and, thus,
experimenters must carefully control for predator diet when the
experiment directly examines the effects of predator odour. While
the combination of both predator odour and diet cues may allow for
a maximal response from an ecological viewpoint, the distinction
between the two may highlight different pathways and modes of
action of predator odour and diet cues, the latter often eliciting an
innate response, while the former needs to be learned prior to
observing a response for those species lacking innate responses.
Hence, caution should be taken when designing experiments, and

the inclusion of either or both cues should depend on the objectives
of the study.

Conclusions and future directions
Over the last few decades, we have developed a detailed
understanding of how chemical cues relating to predation induce
antipredator responses, mediate both consumptive and non-
consumptive effects of predation and ultimately shape
communities. Yet, the field is only just starting to investigate the
mechanisms underlying responses to olfactory cues from predators.
As discussed, surprisingly little is known about the physiological
pathways through which prey develop antipredator responses to
predator odours and their associated diet cues, with the majority of
work so far focusing on anurans and crustaceans. What is clear is
that predator odours and diet cues have a significant effect on all
physiological stages relating to the detection, processing and
expression of antipredator defences. This raises interesting
questions about how adaptation at different physiological
locations might limit the plasticity of antipredator responses, how
prey respond to fluctuations in risk and the evolutionary origins of
plastic antipredator responses. Such questions might be addressed
through comparative studies using one of the many systems where
populations have developed different antipredator responses to their
local predator community.

While this overview is limited to work focusing on predator
odours and diet cues specifically, several studies have investigated
the mechanisms responsible for antipredator responses induced by
alarm cues from conspecifics or visual cues of predators. While the
early sensory-detection sequences might differ, there is likely to be
much overlap in the downstream mechanisms of antipredator
responses. Teasing apart the relative contributions of different
predator-derived odours and more general alarm cues to prey
response mechanisms may be an important area of future research.
Knowledge of how different cues contribute to the expression of
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Fig. 3. Conceptual model of physiological mechanisms that control the expression of defensive traits in Daphnia. Based on the model of Weiss et al.
(2015b). The network includes chemical perception of predator odours and diet cues, changes in neural signalling within the central nervous system and
neurochemical changes. Two predator-specific pathways are illustrated: grey arrows indicate the pathway activated in response to predatory fish odours that result
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antipredator traits would also be of use when investigating innate
versus learned responses and their ecological origins.
Another fruitful avenue of investigation will be to understand the

mechanisms that control threat-sensitive responses in prey and how
long-term exposure to risk might change feedback systems that alter
sensitivity to predation cues. Taking a mechanistic approach might
provide researchers with a way to quantitatively compare the effects
of all predation cues across different sensory systems (visual versus
chemical versus mechanical) and, more importantly, could
demonstrate how prey integrate the different sensory inputs. A
recent study demonstrated that, in zebrafish, axons originating from
the olfactory bulb innervate the retina and increase luminance
sensitivity, suggesting that the interaction between these two
sensory systems might influence reproductive behaviour by
increasing sensitivity to visual courtship coloration in potential
mates (Dowling, 2013; Esposti et al., 2013). It is not hard to imagine
that such interactions between sensory systems would be adaptive
upon the detection by prey of visual and chemical cues from
predators. Indeed, prey are known to integrate information from
different sensory systems when assessing risk (Mikheev et al., 2006;
Ward and Mehner, 2010) and to compensate for the loss of
information from one sensory system with another when assessing
risk (Leahy et al., 2011).
A mechanistic understanding of prey responses to predators

should also enhance our capacity to predict how animals will
respond to human-altered environments, such as those resulting
from ocean acidification and pollutants. Knowledge of the
physiological processes involved in antipredator defences will
allow researchers to assess how different stressors or contaminants
interfere with trait expression and determine how different species
will be affected. For example, the predicted increase in ocean
acidification has been shown to interfere with olfaction in coral reef
fishes and prevents fish from detecting predator odours (Ferrari
et al., 2011; Munday et al., 2009). This inhibition of olfaction is
attributed to the alteration of the neurotransmitter function of
GABAA receptors in the brain (Nilsson et al., 2012). Given the
conserved nature of the olfactory system, plasticity occurring at the
same locations across animals may result in many vertebrate species
in marine systems suffering a similar fate. However, there is a
surprisingly high variation in the effect of ocean acidification
among closely related species (Ferrari et al., 2011), indicating that
recognising the GABAA involvement is only the first step towards
understanding the complex effect of such stressors on prey risk
assessment. There is an abundance of information on the structure
and function of the olfactory system (Derby and Sorensen, 2008;
Dowling, 2013; Firestein, 2001; Hamdani and Døving, 2003; Li,
2014) and the neuroendocrine system of aquatic organisms (Dennis
et al., 2014; Døving and Lastein, 2009; Dufty et al., 2002). In
addition, much is known about the way predator odours are
processed in terrestrial animals (Hegab and Wei, 2014; Li, 2014).
Consequently, a thorough understanding of how predator odours
and diet cues are detected and processed by aquatic species could be
readily obtained in the near future.
In summary, while there has been some impressive progress

made for a few species, we still have a long way to go before
there is a comprehensive understanding of the mechanisms that
control antipredator responses. Yet, this represents an exciting
opportunity to increase our understanding of how antipredator
traits develop. Through greater integration of ecological studies
with the fields of physiology, neurobiology and genetics, we will
not only be able to identify the mechanisms underlying the
expression of antipredator traits but also be able to answer key

questions about their evolution and the trade-offs associated with
phenotypic plasticity.
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Lonnstedt, Ö. and Chivers, D. P. (2011). Putting prey and predator into the CO2
equation - qualitative and quantitative effects of ocean acidification on predator-prey
interactions: CO2-induced change in consumptive effects. Ecol. Lett. 14,
1143-1148.

Firestein, S. (2001). How the olfactory system makes sense of scents. Nature 413,
211-218.

Foam, P. E., Harvey, M. C., Mirza, R. S. and Brown, G. E. (2005). Heads up:
juvenile convict cichlids switch to threat-sensitive foraging tactics based on
chemosensory information. Anim. Behav. 70, 601-607.

Fonner, C. W. and Woodley, S. K. (2015). Testing the predation stress hypothesis:
behavioural and hormonal responses to predator cues in Allegheny Mountain
dusky salamanders. Behaviour 152, 797-819.

Forest, J., Sunada, H., Dodd, S. and Lukowiak, K. (2016). Training Lymnaea in the
presence of a predator scent results in a long-lasting ability to form enhanced long-
term memory. J. Comp. Physiol. A 202, 399-409.

Fossat, P., Bacque-Cazenave, J., De Deurwaerdere, P., Cattaert, D. and
Delbecque, J.-P. (2015). Serotonin, but not dopamine, controls the stress
response and anxiety-like behavior in the crayfish Procambarus clarkii. J. Exp.
Biol. 218, 2745-2752.

Fraker, M. E., Hu, F., Cuddapah, V., McCollum, S. A., Relyea, R. A., Hempel, J.
and Denver, R. J. (2009). Characterization of an alarm pheromone secreted by
amphibian tadpoles that induces behavioral inhibition and suppression of the
neuroendocrine stress axis. Horm. Behav. 55, 520-529.

Gazzola, A., Brandalise, F., Rubolini, D., Rossi, P. andGaleotti, P. (2015). Fear is
the mother of invention: anuran embryos exposed to predator cues alter life-
history traits, post-hatching behaviour and neuronal activity patterns. J. Exp. Biol.
218, 3919-3930.

Gonda, A., Valimaki, K., Herczeg, G. and Merila, J. (2012). Brain development
and predation: plastic responses depend on evolutionary history. Biol. Lett. 8,
249-252.
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