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Machine vision methods for analyzing social interactions
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ABSTRACT
Recent developments in machine vision methods for automatic,
quantitative analysis of social behavior have immensely improved
both the scale and level of resolution with which we can dissect
interactions between members of the same species. In this paper, we
review these methods, with a particular focus on how biologists can
apply them to their own work. We discuss several components
of machine vision-based analyses: methods to record high-quality
video for automated analyses, video-based tracking algorithms for
estimating the positions of interacting animals, and machine learning
methods for recognizing patterns of interactions. These methods are
extremely general in their applicability, and we review a subset of
successful applications of them to biological questions in several
model systems with very different types of social behaviors.
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Introduction
Interactions between conspecifics are some of the most critical in an
individual’s life: behaviors such as mating, parental care and territorial
defense all have fitness consequences (Clutton-Brock, 2007; Darwin,
1888; Hamilton, 1964). However, the complexity of social behavior,
which usually involves multiple animals, makes quantitative study of
these interactions difficult. Because of this, research on social behavior
has benefited enormously from advances in automated measurement
and quantification of social interactions. These benefits include: (1)
increased throughput, allowing the collection and analysis of vast
numbers of interactions, (2) standardization of measures across labs,
(3) reduction in human bias and (4) the ability to observe patterns that
may be too subtle for a human observer, including changes at very
short and very long time scales.
Social behaviors occur over multiple spatial and temporal scales,

and vary in complexity, plasticity and stereotypy. Definitions of
social behavior also vary, from all behaviors that occur when more
than one animal is present (Altmann, 1974), to only behaviors in
which one conspecific influences the behavior of another
(Sokolowski, 2010). Regardless of the definition used or the
specific social behavior of interest, automated analyses of social
behaviors share common features – the need to record the behavior,
to track the positions (and often body parts) of the participants, to
recognize individuals across time and space, and to recognize and
quantify patterns of interactions.
In this review, we discuss each of these common components of

automated social behavior analysis. We focus primarily on two
genetic model organisms, fruit flies and mice, and on the video-

based tools and techniques that have been developed to describe
social behaviors in these species. We begin by discussing the
technical issues to consider when recording video of social
behavior to simplify all other components of automated analysis
(see ‘How do you record social behavior?’). Next, we discuss
computer vision algorithms for tracking the positions of
interacting animals throughout a video (see ‘Tracking’). We then
survey automated behavior classification methods, which assign
categorical labels to patterns of interactions (see ‘Behavior
classification’), and discuss what kinds of analyses have been
performed on both raw position information and behavioral labels
(see ‘Making sense of automated measures of behavior’). We
finish by highlighting open questions and challenges in automated
behavior analysis and some promising future directions (see
‘Conclusions and future directions’).

How do you record social behavior?
It can be challenging to create a laboratory environment that allows
animals to readily perform naturalistic social behaviors, while
simultaneously permitting the collection of high-quality video for
computer vision analysis. Fortunately, genetic model organisms like
mice and fruit flies readily perform at least the minimal social
behaviors required for reproduction in captivity. As a result, it can be
tempting to record animals behaving in readily available laboratory
equipment such as food vials, Petri dishes or home cages. However,
an initial investment in optimizing video quality can both make
automated analysis possible and improve the quality of that analysis.
Important characteristics of high-quality video for computer vision
analysis include uniform and sufficient lighting (Fig. 1A), high
contrast in color or intensity between animals and background
(Fig. 1B), lack of occlusions and reflections (Fig. 1C,D), continuously
visible animals (Fig. 1E) and constant conditions within trials, across
trials and across days. In this section, we discuss how to optimize a
video-recording rig’s lighting, layout and camera(s) to achieve these
properties. We also discuss methods for marking animals to maintain
individual identities over time.

Lighting
Collecting video with uniform and sufficient lighting can minimize
the complexity required of tracking algorithms, as discussed in
‘Tracking’, below. Using multiple light sources and diffusers to
avoid hotspots can greatly improve illumination uniformity across
the entire field, and this uniformity can be checked for by examining
a camera image in pseudocolor (Fig. 1A). Uniform illumination
facilitates collecting video in which animal pixels can easily be
separated from background pixels (Fig. 1B). Light levels should
also be controlled across time. Powering light sources using
alternating current can result in light-level oscillations, which can
be avoided by using direct current. In cases in which high frame
rates or high-intensity illumination is required, light pulses
synchronized with the camera shutter can be used to generate
more light without overheating. Recording video in non-visible
wavelengths allows, for example, day/night cycling for the animals
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while providing constant illumination to the camera. Near-infrared
(IR) LEDs are often used for video illumination, because they are
inexpensive, imperceptible to flies and mice and generate less heat.
Visible wavelength cameras often have detection efficiency in the
near-IR, and IR-pass filters that remove shorter wavelengths from
the video are readily available.
Reflections are challenging for automated tracking programs to

differentiate from actual animal images (Fig. 1C). Preventing
reflections in the recording chamber is often much easier and can
avoid the need to discard data near the reflective surface. Backlighting
and imaging transmitted light can completely prevent reflections, but
this also reduces animal detail as it results in imaging a shadow of the
animal. Attention to light placement, and use of less-reflective
materials in chamber construction, diffusers and indirect front
lighting can all reduce reflections in front-lighting designs.

Avoiding occlusions
Accurately determining animal positions and identities requires the
animals to be continuously visible to the camera, as occlusions by
chamber elements or other animals can negatively impact tracking
accuracy (Fig. 1D). To avoid occlusion from environmental
elements such as mouse shelters, these objects can be constructed
using IR-transparent material, providing a visually opaque object
through which the animal is still visible to the camera, as illustrated
in Fig. 1E (Ohayon et al., 2013). To prevent animal–animal
occlusions, animals can be restricted to a planar environment by
using walls and/or lids they cannot climb (Mersch et al., 2013;
Neunuebel et al., 2015; Simon and Dickinson, 2010), thereby

removing occlusions due to visually overlapping positions on
different surfaces (e.g. one animal on the ceiling and one under it on
the floor). When using lids, care must be taken to provide enough
headroom for behaviors with vertical components like rearing,
mounting and wing extensions. However, social interactions such as
tussling or mounting may cause animal–animal occlusions that
cannot be avoided. In such cases, the ambiguity caused by the
occlusions can be resolved with tracking software that uses innate or
artificial identifiers to maintain identity at least before and after such
events (see ‘Marking individuals’ and ‘Tracking’ sections below).
Three-dimensional (3D) tracking can also disambiguate occlusions
by providing multiple views (Ardekani et al., 2013; Hong et al.,
2015), but is a more technically challenging solution requiring
additional equipment, synchronization and registration of cameras,
and 3D tracking software.

Optimizing for high-quality behavior
Eliciting naturalistic social interactions can require, or be facilitated
by, particular environmental conditions, such as the presence of
a food resource in the case of fly aggression. With creative
engineering, these environmental factors can be added to recording
chambers without degrading video quality, for example by using a
translucent food substrate to enable uniform backlighting in
aggression chambers (Hoopfer et al., 2015).

To better understand social interactions, it can also be important
to capture non-visible social behaviors, such as acoustic signals.
Optimizing chambers for behavior production, automated video
analysis and acoustic recording presents additional challenges and

Infrared light

Chamber Animal

Background

Grayscale Pseudocolor Grayscale Pseudocolor

Reflection

Visible lightForeground

A

B

C

D

E

0 50 100 150 200 2500 50 100 150 200 250
Pixel intensity

Fr
ac

tio
n 

of
 p

ix
el

s

0

0.2

0.4

0

0.2

0.4

Fig. 1. Illustration of chamber design considerations. (A) Uniform lighting of video recording chambers simplifies the tracking task by making it easier to
separate foreground and background pixels throughout the chamber. Visualization of lighting illumination can be done by examining the chamber using a color
map that emphasizes differences in pixel intensity. Grayscale versus pseudocolor visualizations of an evenly (left) and unevenly (right) illuminated chamber.
(B) Distinguishing animal pixels (foreground) from chamber pixels (background) is an important step in tracking algorithms, and good separation between the
intensity or color of these pixels improves the quality of tracking. Top left, an example of a chamber with easily tracked flies that has well-separated foreground and
background pixel intensity, as seen in the normalized histogram of pixel intensity (bottom left). Top right, an example of a chamber with mice that are difficult to
track by automated algorithms, where there is overlap between the intensity of foreground and background pixels, as seen in the normalized histogram (bottom
right). (C) Reflections (blue ellipse) can be removed by specifying a region of interest (ROI; dashed red line); however, if animals can cross the ROI boundary,
errors in tracking (light blue ellipses) such as truncation can occur. (D) Occlusions caused by chamber elements (left) or animal superposition (right) can also
cause errors in tracking and identification of errors or swaps. (E) Careful consideration of chamber design can prevent tracking errors and facilitate naturalistic
animal behavior. Providing shelters to mice that are opaque in visible light (left) and transparent in infrared light (right) enables continuous animal tracking while
allowing mice to exhibit species-typical hiding behavior.
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can require trade-offs. Consideration should be given to microphone
placement, which is particularly challenging in the case of recording
fruit fly courtship song because it is a near-field sound. Successful
analysis of synchronized video and audio recordings has been
achieved by using the microphone surface as the chamber floor and
illuminating with front lighting (Coen et al., 2014). As with lighting,
avoiding reflections of the audio signal is good practice, which can
be achieved by careful choice of chamber material (e.g. Neunuebel
et al., 2015).

Camera choice
An important consideration in a recording apparatus is camera
choice. Sufficient spatial and temporal resolutions are essential for
tracking animals and capturing behaviors that include rapid
movements. The Nyquist–Shannon sampling theorem from digital
signal processing produces a useful rule of thumb for the minimum
sampling rate required: double the rate of the maximum frequency
of a signal (Shannon, 1949). Consider lunging behavior in the fly, in
which the complete sequence of rearing, snapping and grabbing the
opponent takes ∼100 ms (Hoyer et al., 2008). To sample at least
once during a lunge event, one would need to sample at one frame
every 50 ms. However, to accurately determine the timing of the
start or end, or to detect the ‘snapping’, which can take <10 ms,
much higher frame rates are required. The revolution in low-cost,
high-quality image sensors, driven by demand for better smart
phone cameras, has benefited research equipment and provided a
huge range of cameras to choose from. Currently, cameras fall into
three general categories: streaming cameras with standard interfaces
such as FireWire, USB3 or GigE, streaming cameras with
specialized interfaces such as Camera Link, and cameras with
onboard storage for high-speed applications. If we consider a
1 megapixel image, the recording rates of these cameras translate to
frame rates ranging from ∼25 to ∼7000 frames s−1, with equipment
costs ranging from hundreds to tens of thousands of dollars
(Table 1). Thus, an important factor in choosing a frame rate and
resolution is the size of the generated files: the cost of storing video
data can now quickly dwarf the initial cost of equipment. Therefore,
there is a balance between collecting data at sufficiently high spatial
and temporal rates and not collecting, storing and analyzing
unnecessarily large data sets. Compression and dimensionality
reduction of video data by both general-purpose video-compression
algorithms and specialized methods such as tracking can help
reduce storage demands. Important trade-offs to consider when
selecting a video compression method are the loss of video quality
and the effects of this loss on downstream computer vision-based
analyses, the decrease in file size, the speed of compression and
decompression, and the compatibility of the video codec with other
parts of the analysis pipeline.

Marking individuals
For automated behavior analyses in which individual identity is
important, a method to reliably identify individuals throughout
experiments is required to assign behaviors to the correct individual.
With video-based analysis, the most straightforward strategy is to
distinguish individuals visually. Naturally occurring differences
such as sexual dimorphisms (Branson et al., 2009; Dankert et al.,
2009), coat color (Hong et al., 2015) or unique natural markings
(Perez-Escudero et al., 2014) can be leveraged as indicators of
identity. In cases in which a naturally occurring feature cannot be
used, artificial identifiers can be used instead. An ideal identifier
would be continuously visible to the camera, but have no effect on
the behavior of the animals because of either pre-recording handling
or the manipulation itself. Reciprocal experimental design can help
to rule out such effects if the manipulation is only made to one
animal in a given experiment. Current methods for visually marking
animals include applying identifying marks or fiducial markers with
barcode-based identifiers (Certel and Kravitz, 2012; Dow and von
Schilcher, 1975; Mersch et al., 2013), genetically encoding
fluorescence (Ramdya et al., 2012), and dyeing fur with
individual patterns (Ohayon et al., 2013) or fluorescent colors
(Shemesh et al., 2013). Unfortunately, these methods are all limited
in the number of unique markings available relative to realistic
experimental animal numbers, with the exception of fiducial
markers. However, such barcoded tags, while excellent identifiers,
are of limited usefulness for flies because of size limitations
imposed by current printer resolutions (i.e. they are too big for a fruit
fly), and for mice because they cannot be securely attached to fur.
An alternative to visible markers are radio-frequency identification
(RFID) tags, which also have large numbers of unique identifiers.
The spatial resolution of RFID tag data is determined by the antenna
array design, and is lower than that of video. Nevertheless, RFID
tags have been used to reliably identify individuals in combination
with video data (Weissbrod et al., 2013). Additionally, while RFID
alone does not provide sufficient spatial resolution to identify social
behaviors, it does provide a method to collect long-term information
(with much lower storage costs than video) about animal position
(Freund et al., 2013, 2015; Perony et al., 2012). However, the
smallest RFID tags currently available, 1 mm×8 mm and 30 mg, are
still very large relative to insect model systems.

The optimal rig design for any given situation is dependent upon
the scientific question of interest; here, we cite a few examples of
well-designed rigs that facilitate tracking and subsequent behavioral
analysis. For fly experiments, a backlight arena offers excellent
contrast and uniform illumination as seen in Simon and Dickinson
(2010). For long-termmouse experiments, the combination of video
and RFID provides accurate long-term individual identity tracking,
as well as behavioral analysis (Weissbrod et al., 2013).

Table 1. A range of currently available commercial monochromatic cameras

Camera make and model Interface
Resolution
(pixels)

Frame rate
(frames s−1)

Uncompressed data
size for 5 min video (GB)

Point Grey Firefly USB 752×480 60 6
Basler Scout scA1300-32fm FireWire-b 1296×966 32 11
Point Grey Flea3 FL3-U3-13Y3M-C USB3 1280×1024 150 55
Teledyne Dalsa Falcon2 Camera Link 2432×1728 168 296
Photron> FASTCAM SA5 Onboard storage* 1024×1024 7000 2051*

For each camera we list: (1) the make and model, (2) the type of interface for data transfer in the case of streaming cameras, (3) the resolution of the camera,
(4) the maximum frame rate of the camera at the resolution listed, and (5) the calculated size for an uncompressed 5 min movie at the listed resolution and
frame rate.
*The Photron camera uses onboard storage and the video size is only hypothetical as the onboard storage is limited to 64 GB.
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Tracking
Once video is collected, each animal’s position or pose can be
estimated, or tracked, in every video frame. Almost all animal-
tracking systems estimate the (x,y) coordinate corresponding to each
animal’s centroid, and the majority also return some information
about the pose of each animal, such as the head direction or
locations of body parts (e.g. wings, tail, legs).

Segmenting animals from background
In the laboratory setting, the animals’ environment can be controlled
to make automatic tracking as easy and error-free as possible,
as discussed in ‘How do you record social behavior?’, above. A
primary goal is to make it easy to distinguish pixels belonging to the
animals (foreground) from pixels belonging to the background.
Often, background subtraction is used for this classification: one
estimates the appearance of the arena if no animals were present,
subtracts this from the current frame, and thresholds the difference
(Piccardi, 2004). This method relies on the rig being constructed so
that the color or intensity of background pixels is different from that
of animal pixels, so that there is no motion in the background, and so
that the animals are not occluded, as discussed in ‘How do you
record social behavior?’.

Multi-target tracking
If the rig is constructed so that one can distinguish foreground and
background pixels with no occlusions, then estimating the centroid
of a single animal in a given frame is simple: one can compute the
average location of all foreground pixels. This can be repeated in all
frames, and the estimated poses in each frame can be linked
unambiguously into a track. However, tracking multiple interacting
and visually indistinguishable animals is a difficult, unsolved
problem in computer vision, even in controlled laboratory settings.
In this section, we describe the variety of algorithmic approaches
to this problem, and some of the current research directions for
improved algorithms. Multi-target tracking can be broken into two
interdependent subproblems. First, the positions/poses of all
animals (ignoring identity) in each frame must be identified.
Second, the detected positions must be connected across frames into
trajectories for each individual animal.
A common approach to the first subproblem, detecting the

(identity-less) positions of the animals in a given frame, is to first
segment the pixels in the frame into foreground and background,
and then to cluster these pixels into spatially connected groups using
clustering algorithms like Expectation-Maximization for Gaussian
Mixture Models (Branson et al., 2009; Dankert et al., 2009; Ohayon
et al., 2013; Perez-Escudero et al., 2014) or watershed segmentation
(Fiaschi et al., 2014). However, if two animals are touching, or,
worse, if one animal is occluding another, it can be difficult to tell
where one animal ends and another begins based only on the shapes
of blobs of foreground pixels.
One solution to the problem of touching or occluding animals is

to also use the appearance of the foreground pixels. For example,
one might be able to see edges between touching animals that
suggest boundary locations (Branson and Belongie, 2005; de
Chaumont et al., 2012). However, methods for incorporating such
appearance information can be prohibitively slow (particularly for
more than two animals). In addition, how best to use machine
learning to learn what features of appearance to model is an open
area of research (Girshick et al., 2016).
An alternative solution to the problem of touching or occluding

animals is to use the assumption that animals move slowly and
smoothly to guess where the animals are in the current frame based

on their estimated positions in other frames. This temporal context is
particularly informative if, for example, the animals are touching in
the current frame but not in the previous frame. Or, if the animals are
touching in the current frame but not the next frame, it may be useful
to use temporal context from the future. Ideally, one would use
temporal context from both the past and the future, and estimate the
animals’ positions in all frames simultaneously as part of a single,
large optimization problem, consisting of thousands to millions of
unknowns (the positions of each animal in each frame) (Fiaschi
et al., 2014). However, as optimization cost grows super-linearly in
the number of unknowns, solving such a large problem can be too
computationally expensive. Many approaches have been developed
for improving the efficiency of these algorithms, including making
greedy decisions to reduce the problem size and developing more
efficient and/or approximate solvers (Lenz et al., 2015).

Given the detected, identity-less animal positions in each frame,
one simple approach to the second subproblem, to assign identities,
is to begin by initializing identities (arbitrarily) in the first video
frame. Then, one can match identity-less detections in the second
frame to positions in the first frame based on models of animal
motion, such as assumptions that animals move short distances or
at constant velocities between frames. One can continue in this
iterative fashion until the last frame (Branson et al., 2009; de
Chaumont et al., 2012; Gershow et al., 2012; Swierczek et al.,
2011). This is a greedy, sequential solution, as it uses only
information from the past to match identities, but, as discussed
above, information from future frames may also be informative.
Depending on one’s assumptions, it can be computationally feasible
to instead find the globally optimal identity assignments in all
frames simultaneously, using dynamic programming or Integer
Linear Programming (Berclaz et al., 2011; Pirsiavash et al., 2011;
Schiegg et al., 2013).

Even the most cutting-edge tracking algorithm will make
mistakes and swap identities. If only assumptions about the
animals’ motion are used to maintain identity assignments, then
these identity swaps will propagate to all subsequent frames. In
some applications this can be acceptable, such as when analyzing
social behavior at a population level. For example, identity-swap
errors will not affect an estimate of the average inter-animal distance
across the population. Suppose one maintains animal identities for
short time periods by using tracking to create short ‘tracklets’, in
which it is certain that identity is preserved (and thus locomotion
statistics are accurate), that last for tens to thousands of frames, but
not the entire video (Gershow et al., 2012; Swierczek et al., 2011).
From these tracklets, one can compute behavioral statistics that
require temporal context, but there is no need to solve the difficult
problem of maintaining individual identities over the entire video.
However, care must be taken when using such techniques, as
removing frames with questionable identity assignments from
analysis (e.g. frames in which animals are touching) could bias
derived statistics.

Incorporating individuals’ appearances into tracking
Some experimental questions do require accurate knowledge of
animal identity throughout the entire video. One solution to this
problem is to mark the animals so that they are uniquely
distinguishable (Ohayon et al., 2013; Shemesh et al., 2013), as
discussed in ‘How do you record social behavior?’, above.
Alternatively, in some situations, one can use computer vision to
exploit subtle visual differences between individuals (Perez-
Escudero et al., 2014). These computer vision approaches learn
models of each animal’s appearance from frames in which the
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animals are not interacting. These learned models can then be used
to predict the identity of each detected animal in every frame, often
with some measure of prediction confidence. These predictions can
then be combined with the identity predictions based on the animal
motion models described above to obtain accurate tracking.

Behavior classification
The trajectories (position of each animal as a function of time) that
result from tracking (discussed in ‘Tracking’, above) provide
information about how animals spend time at different locations in
an environment. From trajectory data, it can be determined when the
animals were near one another (Fig. 2A,B), which is used for
position-based analysis of interactions (discussed in ‘Making sense
of automated measures of behavior’, below). However, it is often of
more interest to know what animals were doing at a particular time
or place (Fig. 2C), and in the context of social behavior, how they
were physically interacting with a social partner. This leads to the
task of behavior annotation (also called behavior classification),
which is the labeling, or assignment, of an animal’s behavior at a
particular time. For example, a fly or mouse could be labeled as
‘walking’ when it is moving slowly (Robie et al., 2010; Weissbrod
et al., 2013), or a fly could be labeled as ‘courting’ when it is
producing courtship song (Dankert et al., 2009). While behavior
annotation was originally performed manually (Altmann, 1974),
powerful methods of automatic behavior annotation have been
developed. One common way to do this is by creating a classifier, as
discussed below.

Training a behavior classifier
A classifier is a function that predicts a class, which in behavioral
classification is the behavioral label. Binary classifiers predict
which of two classes the animal’s behavior is in (i.e. the animal is or

is not performing the behavior of interest), while multi-class
classifiers can classify an animal’s behavior as one of several
mutually exclusive classes. Annotating the data with a single
classifier results in each frame having only one behavioral
annotation. If multiple non-mutually exclusive behaviors are
being annotated, then several binary classifiers can be applied to
the same data. This can result in frames that have several behavior
annotations.

The relationship between the data being studied (e.g. the raw
pixels or animal’s trajectory) and the predicted behavioral label is
quantified in terms of features – measurable properties, or
descriptors, of the data (Bishop, 2006). Examples of features that
can be calculated from animal trajectories include the speed or
velocity of the animal’s centroid, or the length or width of the
animal when the trajectories include pose information (such as an
ellipse-fit of the animal’s body) (Kabra et al., 2013). From
trajectories, it is also possible to calculate features based on the
animal’s position relative to other environment elements, such as the
distance from the animal to the arena wall or nearest social partner
(e.g. Coen et al., 2014). Features can also be derived directly from
the raw video, such as how pixel intensities change over the image
(e.g. Histogram of Oriented Gradient; Dalal and Triggs, 2005).
Additional features can be constructed by summarizing features
calculated from single frames over a window of frames (e.g. Kabra
et al., 2013).

There are several ways to create a classifier based on features. If
the features necessary for accurate classification of the behavior of
interest are known, then they can be used to specify the classifier
directly. For example, a ‘walk’ classifier might only use the speed of
the animal (i.e. if the animal’s speed is within a specified range, then
the animal is classified as walking; Weissbrod et al., 2013).
Alternatively, if the relevant features for accurately classifying a
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Fig. 2. Making sense of automated measures of behavior. (A) Simple thresholding of position as a function of time reveals differential use of space by mice in
an enriched environment. Adapted with permission from Shemesh et al. (2013). (B) Analysis of pair-wise interactions between Camponotus fellah individuals
outlines the colony social network and reveals three groups with distinct behavioral repertoires. Edge line width is proportional to the number of interactions
between pairs of nodes. The darkness of edges is proportional to the average duration of interactions. Adapted with permission from Mersch et al. (2013).
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flies engage in both aggressive and courtship behaviors. Transition probabilities between behaviors can be computed for these behaviors and are represented
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et al. (2009).
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behavior are not known a priori, or if it is thought that the behavior
predictions might be improved with information from a large
combination of features, then a classifier can be learned (or
optimized) based on examples of the behavior of interest.
In learning a classifier, a machine learning algorithm is

essentially inferring the feature-rules that predict the behavior of
interest from correctly labeled examples. There are three critical
components to creating a classifier: (1) the labeling of training data,
(2) the choice of feature representation and (3) the types of classifier
functions considered.
To specify the first component, the labeled training data set, one

must label some frames in the data set for which the correct behavior
can be confidently assigned. From this labeled data set, the learning
algorithm will infer rules that can reproduce these labels from the
feature representation of the video. It is important that the labeled
examples come from a variety of experiments/individuals and from
varied instances of the behavior so that the learned model will
generalize well, i.e. will be accurate when applied to videos that it
was not trained on.
The second crucial component of learning a classifier is choosing

an appropriate feature representation of the video (Bishop, 2006).
With so many feature types to choose from, it may not be intuitive
which ones will be useful for classifying the behaviors of interest.
Thus, it is common to include a large number of features, some of
which may be irrelevant or redundant. Supervised learning
algorithms can learn to ignore such irrelevant features. The main
downsides of this strategy are that computing these features and
learning the classifier can be slow, and the amount of training data
necessary to learn a classifier that generalizes well can be large.
Machine learning algorithms search a pre-specified (possibly

infinite) set of classifier functions to find the function that can best
reproduce the manually specified behavior labels. Thus, the third
component of a learning algorithm is the types of classifier
functions considered and the mathematical definition of which
function is best (Bishop, 2006). For example, the classifier family
could be all linear combinations of the features, all quadratic
functions of the features, or any threshold on any feature. Machine
learning algorithms differ in how complex and large this set of
classifier functions is. Searching large classifier families can result
in a more powerful classifier, but requires more training data to
select a classifier that generalizes well and can take longer to train.
Successful, general-purpose machine learning algorithms include
Support Vector Machines, Random Forests, boosting and deep
neural networks (Bishop, 2006). However, different learning
algorithms will work better on different configurations of data and
task; thus, it is necessary to carefully select the learning algorithm
appropriate for the task at hand. Choosing the best learning
algorithm for a given problem is not easy, and requires both trial-
and-error (in conjunction with validation techniques, discussed
next) and consideration of many factors, including the properties
and dimensionality of the data set, the mathematical criterion
optimized by the learning algorithm, the family of classifier
functions searched, and the optimality and efficiency of the learning
optimization algorithm.

Testing classifier accuracy
Regardless of how a classifier is created, it is important to
measure its generalization error. In this process, the classifier is
run on data that have been labeled by a researcher (groundtruthed)
but were not included in the training data set, and the classifier’s
predictions are compared with these human-generated labels. This
measures how well the classifier will perform on new data.

Ideally, the training and groundtruth datasets will be large and
independent from one another, but this isn’t always practical.
Instead, in a process called cross-validation (Bishop, 2006), a
labeled dataset is partitioned multiple times into different training
and test sets, and the accuracy over the classifiers created from
these divisions is averaged.

There are several reasons a classifier might not reach predefined
accuracy standards. Poor classifier performance may be due to
overfitting, meaning the training data set was too small and/or the
training examples did not cover enough of the behavioral variability.
In these cases, more data must be labeled. Poor performance may
also be the result of inconsistent labeling (perhaps due to a vague
definition of the behavior of interest). Alternatively, it may be due to
an insufficiently expressive feature representation. Finally, it may
occur if the learning algorithm is not well suited to the task at hand.
Each of these issues can be addressed by revisiting the
corresponding part of the learning process. Thus, generation of a
behavior classifier is often an iterative process. This iteration
requires either interactive machine learning software (Kabra et al.,
2015, 2013) or close interaction between biologists and computer
scientists.

Using a behavior classifier
Once an automatic behavior classifier is sufficiently accurate, it can
be used to automatically annotate behavior in new data sets
collected under similar conditions (e.g. same rig, arena, animal
type). This makes the generation of an automatic behavior classifier
more time efficient than manual annotation, particularly when
thousands or millions of video frames have been recorded, such as
in large genetic screens (Hoopfer et al., 2015). Automatic behavior
annotation is also subject to fewer biases, as a classifier cannot
change its definition of a behavior over time, unlike human
annotators. This makes the results of automatic annotation
repeatable over time and across researchers.

Supervised, semi-supervised, unsupervised and interactive methods
The automatic behavior annotation methods described above
are known as supervised methods, because they require manually
labeled examples to train the classifier. There are other machine
learning methods for automatic annotation that require fewer
(semi-supervised) or no (unsupervised) manually labeled
examples (Bishop, 2006). When using supervised methods, the
researcher has a clear idea beforehand of the behavior(s) they
want annotated. In contrast, unsupervised methods attempt to
group (or cluster) data based on the similarity between data
points, without inferring grouping rules from labeled examples
(Berman et al., 2014; Vogelstein et al., 2014). Once processed,
the researcher must examine these clusters to determine whether
different behaviors have been well separated. Unsupervised
methods rely on a carefully chosen feature representation of the
data, as distance in this high-dimensional feature space defines
what it means for two behaviors to be similar. Semi-supervised
methods learn from both unlabeled and labeled data. To our
knowledge, such algorithms have not been used in animal
behavior classification, but have the potential of combining the
best of both types of algorithms.

A relatively new subfield of machine learning is interactive
machine learning, in which human annotators and learning
algorithms work together to solve a problem, for example, to
learn a behavior classifier. JAABA (Kabra et al., 2013) is an
interactive machine learning system for training behavior classifiers
that allows the researcher to iteratively annotate behavior in a few
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frames, train a classifier, browse the results, then annotate more
frames. Besides allowing classifiers to be trained from fewer labels,
this interactive process allows the annotator to adapt their
preconceived behavior definitions to the data.

Making sense of automated measures of behavior
Automated measures of behavior allow scientists to explore social
behavior in unprecedented detail. In previous sections, we described
two types of automated behavior measures: (1) animal position as a
function of time (‘Tracking’) and (2) classification of animal
behavior as a function of time (‘Behavior classification’). Next, we
discuss how these measures can provide insight into social behavior,
and also touch on methods to test specific hypotheses. In social
behavior analysis, automated methods have been primarily used to
reduce user effort and bias. This has allowed the analysis of orders
of magnitude more data (for example, Hoopfer et al., 2015,
analyzed over 2 billion frames of videos of ∼85,000 flies). This
increase in data set size alone may constitute a qualitative change in
behavior description (Anderson, 1972). We are also optimistic that,
in the near future, automated analyses will enable identification of
new patterns of social behavior, as has been the case with
locomotion behaviors in single animals (e.g. Tchernichovski and
Golani, 1995). We stress that such automated behavior analyses do
not replace the need for biologists to interact with and scrutinize
their data, but instead shift the focus.

Extracting social networks from position
Much information about an animal’s social life can be learned from
observing who it interacts with (Brent et al., 2013). Social
interactions can be extracted from trajectories by either identifying
regions of interest (ROIs) within an arena and defining an
interaction as two animals simultaneously in the same ROI
(Shemesh et al., 2013), or by using thresholds on proximity,
heading direction and behavior duration (Schneider et al., 2012).
These extracted social interactions can be used to construct social
networks, which can then be compared with model predictions. For
example, Schneider and colleagues (2012) found that Drosophila
melanogaster form interaction networks that are distinct from
random networks, while Perony and colleagues (2012) found that

mouse social interactions in a naturalistic enclosure were consistent
with random interactions between social partners. Association
patterns can also reveal behavioral subgroups, like the three distinct,
spatially restricted behavioral repertoires of the ant Camponotus
fellah (Mersch et al., 2013).

Summarizing behavioral labels
In contrast to trajectory data (animal position over time), the output
of behavioral classifiers is a sequence of behavioral labels over time
(Fig. 2A). There are many ways this information can be summarized
to quantitatively describe behavior. Two common summary
methods are time budgets (the fraction of time spent on each
behavior, also called ‘activity budgets’ or ‘ethograms’; Fig. 2B)
(Branson et al., 2009; Jhuang et al., 2010) and the transition
probabilities between behaviors (also called ‘kinematic diagrams’
or ‘ethograms’; Fig. 2C) (Adamo and Hoy, 1995; Dankert et al.,
2009; Seeds et al., 2014; York et al., 2015). Both time budgets and
transition probabilities can be compared across species (Petru et al.,
2009), strains (de Chaumont et al., 2012; Kabra et al., 2013) or
experimental conditions (Branson et al., 2009; Saka et al., 2004).
More detailed analyses of labeled behavior can also be performed;
for example, where or when a particular behavior occurs.
Conversely, behavior labels can be used to analyze the sub-
structure of how animals perform a behavior; for example,
examining speed during all labeled bouts of walking.

Testing whether a behavior is truly social
A major advantage of automated behavior analyses is that large data
sets provide sufficient statistical power to test whether a particular
aspect of behavior is indeed social; that is, whether the behavior of
multiple animals recorded together is different from that expected
from single animals. For example, if time spent in proximity to
another animal (‘near’ events) is being used as a proxy for social
interactions, one can combine the trajectories of two animals
behaving separately into a virtual social recording, and calculate the
number and duration of the near events in the virtual recording (as in
Schneider et al., 2012). By repeatedly creating these virtual social
recordings, one can estimate the distribution of the number of near
events in the absence of explicit social behavior. The number of near

Table 2. Multi-animal tracking software packages

Name Animal type
No. of
animals

Tracking
during
interactions

Identity
maintained Availability Website

Ctrax Flies 1–50 Yes Minutes Free and open-source http://ctrax.sourceforge.net/
EthoVision Mice, flies, fish 1–16 Yes Minutes, with

markers
Commercial http://www.noldus.com/

idTracker Fish, flies, mice,
ants

1–20 Yes Days Free but closed-source http://www.idtracker.es/

MAGAT-Analyzer Fly larvae 1–20 No Seconds Free and open-source https://github.com/samuellab/MAGATAnalyzer
MiceProfiler Mice 2 Yes Minutes Free and open-source http://icy.bioimageanalysis.org/plugin/Mice_

Profiler_Tracker
MOTR Mice 1–6 Yes Days, with markers Free and open-source http://motr.janelia.org/
Multi-Worm
Tracker

Worms, fly larvae 1–120 No Seconds Free and open-source https://sourceforge.net/projects/mwt/

Qtrak
(CADABRA)

Flies 2 Yes Minutes, with
markers

Free but closed-source http://vision.caltech.edu/cadabra/

Multi-animal tracking software packages are listed that are available to biologists and have either been used by multiple labs or include documentation for new
users: Ctrax (Branson et al., 2009), EthoVision (Noldus et al., 2001), idTracker (Perez-Escudero et al., 2014), MAGAT-Analyzer (Gershow et al., 2012),
MiceProfiler (de Chaumont et al., 2012), MOTR (Ohayon et al., 2013), Multi-Worm Tracker (Swierczek et al., 2011) and Qtrak (CADABRA) (Dankert et al., 2009).
For each package, we also describe the following: (1) the types of animals they were intended to be used for, (2) the number of animals in groups that they have
previously tracked, (3) whether they can track animals while the animals are touching, (4) for how long they have been reported to maintain individual identities,
(5) whether they are free and open-source, and (6) where they can be obtained.
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events observed in a true social recording can be compared with this
distribution to test for significant increases (seeking out) or decreases
(avoiding) in the number of events. Another method of measuring the
expected multiple-trajectory statistics resulting from non-social
factors is to temporally shift trajectories from the same video
relative to each other, using shift times longer than the length of the
behavior of interest (Branson et al., 2009). This method is particularly
useful when it is impractical, or impossible, to obtain data where only
one individual is present in the experimental arena at a time.

Manipulating sensory experience to probe social behavior
hypotheses
Hypotheses about social behavior can also be tested by
experimental manipulation. Because social interactions depend
on communication between animals, and therefore information
transmission through sensory channels, a fruitful method for testing
these hypotheses is to modify communication signals. One way to
do this is to alter an animal’s sensory abilities. For example, after
observing that variability in male Drosophila courtship song was
correlated with female motion, Coen et al. (2014) used blind flies to
show that male flies use visual cues to detect the female and target
their song to her. Another method for altering communication
signals, particularly acoustic signals, is to record and manipulate
them, play them back to subjects, and measure the effect of different
manipulations on the subject’s behavior. For example, playback
experiments in birds (Stoddard et al., 1991; Templeton et al., 2005),
crickets (Libersat et al., 1994), primates (Cheney and Seyfarth,
1999) and frogs (Narins et al., 2005) have identified features of
acoustic signals that carry information about male quality and
predator type.
In many cases, however, multimodal communicative signals are

important for a social interaction. Insight into how integration of
sensory cues across modalities controls social behavior can be
gained by testing the effect of individual cues or combinations of
cues on the behavior of interest. For example, Seagraves et al. (2016)
showed that, in mice, male vocal behavior elicited by female odor is
potentiated by the presence of a male audience, but that single
sensory cues indicating an audience (vocalizations, odors) do not
elicit potentiation. In cases where it is necessary for a stimulus
animal to be present, researchers can use a robotic replacement,
which allows control over the stimulus animal’s features. In one
example of this, Michelsen et al. (1989) used a robotic bee to
discover that near-field acoustic signals are a crucial aspect of the
bee’s waggle dance, which communicates the location of a food
source to other bees. More recently, Agrawal and colleagues (2014)
used a robotic fly to determine the relative contributions of visual
and chemosensory cues to mate recognition behavior in male fruit
flies. Using the robot, they were able to show that visual cues are
important for approach decisions, while chemosensory cues govern
how long a potential mate is pursued.

Neurobiology of social behavior
High-throughput, automated analyses have also accelerated studies of
how the nervous system generates social behavior by enabling large-
scale screens of the behavioral effects of neurochemical or neuronal
activity manipulations, and by facilitating analysis of concurrently
recorded behavior and neural activity. Courtship and aggression
studies in mice and flies, aided by their distinct behavioral stages and
the availability of genetic tools in these model organisms, have been
particularly amenable to these approaches (Insel, 2010; Kravitz and
Fernandez, 2015; Pavlou and Goodwin, 2013; Yamamoto and
Koganezawa, 2013). In one example, Hoopfer et al. (2015) used a

large-scale thermogenetic neural activation screen, which required
scoring over 2 billion video frames from 3000 genotypes, to identify a
small cluster of cells that promotes both aggression and courtship
behaviors in fruit flies. Such a large-scale effort would not have been
possiblewithout automated tracking and behavioral analysis (Dankert
et al., 2009; Kabra et al., 2013).

Conclusions and future directions
Advances in hardware, software and algorithms have made
automated analyses of social interactions increasingly powerful
and available. These automated methods allow the collection and
analysis of large numbers of interactions, promote standardization
of measures across labs, reduce observer bias and have the potential
to reveal patterns in social behavior that may not be evident with
manual methods. Using these methods requires making trade-offs
between the quality of social interactions and the quality of the
automated analysis. As we discussed, careful attention to rig design
and the environmental demands of the behavior of interest can
produce both high-quality behavior and high-quality recordings.
Nevertheless, there are still several unsolved problems that will
require improved automatic methods, and we will finish by
highlighting a few of them.

Tracking animals when they are far apart and show high contrast
is relatively straightforward and many freely available software
packages have been developed to do so for various animals (see
Table 2). However, several aspects of tracking can be improved.
First, tracking when animals are close together or in more
naturalistic environments is an area of active investigation; the use
of supervisedmachine learning to determine appearance andmotion
models has the potential to improve tracking in these challenging
contexts. Second, many social behaviors depend on subtle
movements of body parts (e.g. eyebrows, ears or tail) and
improvements to body-part tracking methods are needed to
accurately measure and quantify the contribution of these
movements to social interactions. Finally, in many species, the
details of social interactions are strongly dependent on the identity
of the animal (because of differences due to sex, dominance status,
age or experience), but maintaining individual identity, particularly
in larger groups or during close interactions, is still largely unsolved,
although there is promising work involving the use of differences in
individuals’ appearances or multiple cameras.

An additional important open question is how to mine large
annotated behavior data sets for biological insights. Automated
behavior classifiers can now be used to label millions of frames of
video, but it remains challenging to manually sift through the
resulting complex patterns of behavior. Finally, several methods have
been developed that allow recording frommany, if not all, neurons in
the brain, but in general these methods either require some kind of
animal restraint (e.g. Ahrens et al., 2013) or have low temporal
resolution (e.g. Kim et al., 2015). Advances that allow large-scale
neuronal recordings while animals are performing unconstrained
social behaviors will provide a more finely grained and mechanistic
understanding of the neural circuits underlying social behavior.
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