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Plasticity in gastrointestinal morphology and enzyme activity in
lactating striped hamsters (Cricetulus barabensis)
Ji-Ying Zhang*, Xiao-Ya Zhao*, Jing Wen, Song Tan and Zhi-Jun Zhao‡

ABSTRACT
In small mammals, marked phenotypic plasticity of digestive
physiology has been shown to make it easier for them to cope with
energetically stressful periods, such as lactation. It has been
proposed that the capacity of the gut to digest and absorb food is
not the limiting factor to sustained energy intake (SusEI) during peak
lactation. In this study, plasticity in energy intake and gastrointestinal
morphology was examined in striped hamsters at different stages of
reproduction and when raising litters of different sizes. Mechanisms
associated with digestive enzymes and neuroendocrine hormones
underpinning the plasticity were also examined. Females significantly
increased energy intake, digestibility, digestive tract mass and the
activity of stomach pepsin and small intestine maltase, sucrase and
aminopeptidase in peak lactation compared with the non-productive
and post-lactating periods. Further, females raising large litters
significantly increased energy intake, digestibility, gastrointestinal
mass and activity of digestive enzymes, and weaned heavier
offspring compared with those nursing small and medium litters,
indicating that the significant plasticity of digestive physiology
increased reproductive performance. Agouti-related protein (AgRP)
mRNAexpression in the hypothalamuswas up-regulated significantly
in females raising large litters relative to those raising small litters.
Serum leptin levels, and mRNA expression of hypothalamus
neuropeptide Y (NPY) and the anorexigenic neuropeptides pro-
opiomelanocortin (POMC) and cocaine- and amphetamine-regulated
transcript (CART) did not differ among females raising small, medium
and large litters. Leptin levels in lactation may only reflect a state of
energy balance rather than being the prime driver of hyperphagia.
Some hypothalamic neuropeptides, such as NPY, POMC and CART,
may be involved in the limits to the SusEI during lactation.
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INTRODUCTION
It has been demonstrated that in small mammals marked phenotypic
plasticity in response to changes in ecological environment or
physiological state can increase biological performance (Bozinovic
et al., 1990; Hammond andWunder, 1991, 1995; Naya et al., 2008a;
Vézina and Williams, 2003). Moreover, these changes in organism
traits due to changes in internal or external environmental
conditions can occur over a short time scale and are reversible
(Hammond et al., 1999, 2001; Karasov and Diamond, 1983;
Karasov and Hume, 1997; Nagy and Negus, 1993; Piersma and

Drent, 2003; Piersma and Lindström, 1997). For example, notable
plasticity in digestive physiology has been shown in rodents in
energetically stressful periods such as lactation, which is generally
believed to determine an individual’s reproductive strategy and thus
influence the probability of reproductive success (del Valle et al.,
2004; Hammond and Kristan, 2000; Koteja, 1996a; Naya et al.,
2008a; Reilly et al., 2006).

Although digestive plasticity is used by females to meet the
energetic demands of lactation, a limit to sustained energy intake
(SusEI) or total energy expenditure exists during peak lactation
(Hammond and Diamond, 1992; Hammond et al., 1994, 1996; Król
and Speakman, 2003; Król et al., 2003; Rogowitz, 1998; Valencak
et al., 2009, 2010; Weiner, 1992). During the search for the
mechanism behind limitations on SusEI, studies focused on several
hypotheses, one of which is the central limitation hypothesis
(Koteja, 1996b; Simons et al., 2011; Speakman and Król, 2005,
2011). This hypothesis proposes that the limit may be imposed by
the capacity of the gut to digest and absorb food (Koteja, 1996a,b).
Previously, some studies have demonstrated that the dam can
elevate her food intake dramatically beyond a previously supposed
centrally imposed limit when exposed to the cold during late
lactation (Hammond and Kristan, 2000; Johnson and Speakman,
2001; Rogowitz, 1998; Speakman and Król, 2005). This would
indicate that the limit on energy intake was not imposed centrally
(Speakman and Król, 2005). The marked plasticity in the size of the
gut and associated organs may be a plausible refutation of this
hypothesis; however, few studies have focused on the mechanisms
associated with the digestive enzymes and neuroendocrine
hormones underpinning this plasticity.

Digestive enzymes located on the apical membrane of
enterocytes are one of the most important components of
digestion in mammals (del Valle et al., 2004; Sabat et al., 1999).
An adaptive regulation of digestive enzyme activity has been shown
to meet the increased food intake in response to high energy demand
conditions, such as cold exposure, low quality food, pregnancy and
lactation (Bozinovic and Nespolo, 1997; Debray et al., 2003;
Nespolo et al., 2002). During such conditions, fat depots are usually
mobilized, resulting in decreased levels of leptin, an important
endocrine factor secreted by adipocytes (Denis et al., 2003a,b).
Leptin interacts in the brain with almost all neuropeptides known to
be involved in the regulation of energy balance and especially food
intake (Kalra et al., 1999; Wauters et al., 2000). It has been reported
that leptin inhibits secretion of the orexigenic neuropeptides
neuropeptide Y (NPY) and agouti-related protein (AgRP), which
are both key downstream effectors of the leptin signal in the
hypothalamus (Stephens et al., 1995; Speakman and Król, 2005).
Decreased leptin levels during peak lactation would impair the
control of NPY and AgRP secretion, and consequently females
would be able to consume more food to meet the energy
requirement of their offspring (Brogan et al., 2000; Denis et al.,
2003a,b). Therefore, leptin and hypothalamic neuropeptidesReceived 29 January 2016; Accepted 19 February 2016
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associated with food intake regulation may be involved in the
digestive plasticity during lactation.
The striped hamster, Cricetulus barabensis (Pallas 1773), is a

major rodent in northern China and is also distributed across
Russia, Mongolia and Korea (Zhang and Wang, 1998; Zhang and
Zhao, 2015). We have previously observed that food intake
increased greatly in hamsters during lactation and when exposed
to cold conditions (Zhao et al., 2010; Zhao, 2011), and that leptin
may be involved in the energy balance regulation (Zhao et al.,
2014a,b). Significant plasticity of gut size and digestive enzymes
indicative of the activities of sucrase, maltase and aminopeptidase
occurs in hamsters acclimated to different temperatures (Zhao et al.,
2014b). Female hamsters reach sexual maturity at 3.0–3.5 months
of age, and body mass of adult females averages 25.5 g; the length
of pregnancy and lactation are 19–21 days and 17–19 days,
respectively; natural litter size ranges from 3 to 8, and the mean
litter size is 5.2. It has previously been demonstrated that
SusEI during peak lactation is limited at 5× basal metabolic rate
(BMR) (Zhao et al., 2010). This suggests that the lactating hamster
is a suitable model for the study of the factors limiting SusEI. We
firstly examined energy intake, morphology and digestive enzyme
activity of the gastrointestinal tracts in non-lactating, peak-lactating
and post-lactating hamsters, and then examined energy intake,
digestive enzyme activity and hypothalamic neuropeptide mRNA
expression in hamsters with a manually manipulated litter size. We
hypothesized that reversible plasticity of the digestive system
occurs over a short time scale in lactating hamsters to cope with
marked variations of food intake, which would be even more
significant under increased energy requirements, such as when
raising large litters. Digestive enzymes and neuroendocrine
mechanisms associated with leptin and hypothalamic peptides are
proposed to be involved in the limits to SusEI during lactation.

MATERIALS AND METHODS
Animals and experiment protocols
Striped hamsters were obtained from a colony that was maintained
in the animal house of Wenzhou University. This colony was begun
with animals that were initially trapped from farmland at the center
of Hebei Province (115°13′E, 38°12′S), North China Plain. The
hamsters were kept on a 12 h light:12 h dark photoperiod (lights on
at 08:00 h) at an ambient temperature of 23+1°C. Food (standard
rodent chow; Beijing KeAo Feed Co., Beijing, China) and water
were provided ad libitum. Adult female hamsters (3.5–4 months old
in the breeding colony), housed individually in clean plastic cages
(29×18×16 cm), were used in this study. All experimental protocols
and procedures were approved by the Animal Care and Use
Committee of Wenzhou University.
Experiment 1 was designed to examine energy intake, morphology

and digestive enzyme activity of the gastrointestinal tract in the non-
lactating, peak- and post-lactating stages. Forty-eight virgin female
hamsters were randomly assigned into one of three groups: non-
lactation group (N=8), peak-lactation group (N=20) and post-lactation
group (N=20). The females in the peak-lactation and post-lactation
groups were paired with male hamsters for a week; if fighting
occurred, the female and male were separated. Nine and 8 females,
respectively, in the peak-lactation and post-lactation groups became
pregnant and gave birth. The offspring were weaned on day 17 of
lactation; the females in the peak-lactation group were killed
following weaning, and those in post-lactation group were separated
from their offspring and were maintained to day 17 after the weaning.
Experiment 2 was designed to examine energy intake, digestive

enzyme activity of the gastrointestinal tract and hypothalamic

neuropeptide mRNA expression in a second group of lactating
hamsters in which the litter size was manipulated during early
lactation to increase (to 8 pups) or reduce (to 1 pup) the number of
pups. Female hamsters were paired with males according to the same
methods as in experiment 1. However, on day 5 of lactation, females
were randomly assigned to one of three groups: LS1 group (N=8), in
which litter size (LS) was set to 1 pup; LS4 group (N=8), in which
litter size was set to 4 pups; and LS8 group (N=9), in which litter size
was set to 8 pups; females had to support this number of pups from
day 5 till day 15 of lactation. Bodymass, litter size, litter mass, energy
intake and digestibility were measured on day 13 and 14 of lactation.
Offspring in all three groups were weaned on day 15 of lactation.

Gross energy intake and digestibility
As described previously, gross energy intake and digestibility
were measured at 2 day intervals. Briefly, food was provided
quantitatively on day 13 of lactation, and uneaten food, food
residues mixed with the bedding and feces were collected 48 h later.
The spillage of food and feces were sorted and separated manually
after they were dried at 60°C for 10 days to constant mass. Thewater
content of the diet (%) was calculated from the decrease in mass of
the diet. Gross energy content of the diet and feces was determined
using a Parr 1281 oxygen bomb calorimeter (Parr Instruments,
Moline, IL, USA). Gross energy intake, digestible energy intake and
digestibility were calculated using the equation: gross energy
intake (kJ day−1)=dry matter intake (g day−1)×energy content of
food (kJ g−1); digestive energy intake (kJ day−1)=gross energy
intake−[dry mass of feces (g day−1)×energy content of feces
(kJ g−1)]; digestibility (%)=digestive energy intake/gross energy
intake×100% (Grodzinski and Wunder, 1975; Zheng et al., 2015).

Tissue sampling
In experiment 1, the lactating females and their non-lactating
counterparts were killed on day 17 of lactation, and those in the post-
lactation group were killed on day 17 after the weaning. All females
in experiment 2 were killed on day 15 of lactation. Trunk blood was
collected for later measurement of leptin levels. The hypothalamus
was removed carefully and quickly, and stored in liquid nitrogen
immediately. The stomach, small and large intestine and cecum
were separated, and the contents were removed. They were weighed
to ±1 mg (Sartorius, Germany) and then immediately preserved in
liquid nitrogen for the enzyme assays.

Sample preparation and protein content
As described previously (Liu and Wang, 2007), the stomach and
different segments of the digestive tract (duodenum, jejunum and
ileum) were homogenized separately in 0.9% NaCl solution (1:10,
w/v) using an electric glass homogenizer, during which temperature
was controlled in an ice-water bath. The activity of several digestive
enzymes was measured in whole-tissue homogenates rather than in
mucosal samples to avoid underestimation of activity as previously
reported (Brze ̨k et al., 2009; Liu and Wang, 2007; Martinez, 1990;
Zhao et al., 2014b). The tissue protein content was determined by
the Folin phenol method with bovine serum albumin as the standard
(Lowry et al., 1951).

Activity of pepsin, maltase and sucrase
As described previously (Zhao et al., 2014b), we measured the
activity of pepsin (EC 3.4.23.1), sucrase (EC 3.2.1.48) and maltase
(EC 3.2.1.20) using commercial kits (Jiancheng Biotech Co. Ltd,
Nanjing, China) according to the manufacturer’s protocols. The
inter- and intra-assay variations were, respectively, 5.6% and 2.5%
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for pepsin, 5.0% and 3.1% for sucrase and 5.1% and 3.1% for
maltase.
Bovine albumin was used as the substrate for pepsin activity

measurement. Briefly, 80 μl of centrifuged gastric juice (3500 g,
10 min) was added to a mixture, including bovine albumin (0.5%w/v
in 0.01 mol l−1 HCl, pH 2). A duplicate background control tube
(gastric juice blank) included 0.01 mol l−1 HCl but excluded bovine
albumin. The mixture was incubated for 20 min at 37°C, and the
reaction was stopped by adding 10% trichloroacetic acid. The
supernatant (3500 g, 10 min) was mixed with 2.5 mol l−1 NaOH
and Folin–Ciocalteu reagent. Absorbance was measured at 700 nm.
Pepsin activity was calculated according to the kit instructions and
expressed as U min−1.
Sugar and maltose were used as the substrate for the sucrase

and maltase measurements, respectively. Briefly, 10 μl of the
homogenate was added to 20 μl of assay mix in each tube at 37°C
for 20 min. The reaction was terminated by using a stop solution,
followed by 1 ml detective reagent solution, and the absorbance was
read at 505 nm. The activity of both enzymes was expressed in
U min−1 (1 U was defined as 1 nmol sucrase or maltase hydrolyzed
at 37°C by 1 mg tissue protein per minute; Zhao et al., 2014b).

Aminopeptidase activity
Aminopeptidase-N activity was measured using methods described
previously (Brze ̨k et al., 2009; Liu and Wang, 2007; Maroux et al.,
1973). Briefly, L-alanine p-nitroanilide was used as a substrate for
the aminopeptidase-N assay. The reaction was started by addition of
10 μl of the homogenate to 1 ml of assay solution (2.04 mmol l−1

L-alanine p-nitroanilide in 0.2 mol l−1 phosphate buffer, NaH2PO4/
Na2HPO4, pH 7.0). The solution was incubated at 37°C for 10 min,
and then the reaction was stopped with 3 ml of ice-cold 2 mol l−1

acetic acid, and absorbance was read at 384 nm. Aminopeptidase
activity was expressed as µmol min−1. The inter- and intra-assay
variations were 7.8% and 5.1%, respectively.

Carcass mass and fat content
After the digestive tract was removed, the liver, heart, lungs, spleen
and kidneys, as well as the reproductive tissues, were separated. The
remaining carcass was weighed (to 1 mg) to determine wet mass,
dried in an oven at 60°C to constant mass, and reweighed (to 1 mg)
to determine dry mass. Total body fat was extracted from the dried
carcass by ether extraction in a Soxhlet apparatus, and percentage
fat content was calculated following the equation: fat content
(%)=mass of extracted fat (g)/mass of dried carcass (g)×100%
(Zhao et al., 2014a).

Serum leptin levels
The serum was obtained from the trunk blood 1.5 h following
blood collection. Serum leptin levels were determined using
radioimmunoassay with a commercial 125I Multispecies Kit (Linco
Research, St Charles, MO, USA), following the standard kit
instructions. The inter- and intra-assay variations were 3.6% and
8.7%, respectively, and the lower and upper limits of the assay kit
were 1 and 50 ng ml−1. This kit was previously shown to be effective
for striped hamsters (Zhao et al., 2014a).

Real-time reverse transcription-quantitative PCR analysis
Relative mRNA expression of several neuropeptides was quantified
using real-time reverse transcription-quantitative PCR (RT-qPCR)
analysis, as described previously (Zhao et al., 2014b). RNA
isolation from the hypothalamus was carried out using a Trizol kit
(Takara Bio, Dalian, China) according to the manufacturer’s

instructions. RNA concentration and purity were determined by
A260 and A280 optical density measurements and A260/A280 ratio was
then calculated. cDNA was produced from 2 mg of total RNA
samples using random primer oligo(dT)18 and avian myeloblastosis
virus (AMV) reverse transcriptase (Takara Bio), according to the
manufacturer’s protocols; 2 µl of cDNA was used as a template
in each PCR reaction using gene-specific primers: NPY forward,
5′-ACCCTCGCTCTGTCCCTG-3′, reverse, 5′-AATCAGTGTC-
TCAGGGCTA-3′; AgRP forward, 5′-TGTTCCCAGAGTTCCC-
AGGTC-3′, reverse, 5′-ATTGAAGAAGCGGCAGTAGCAC-3′;
POMC forward 5′-GGTGGGCAAGAAGCGACG-3′, reverse 5′-C-
TTGTCCTTGGGCGGGCT-3′; cocaine- and amphetamine-regulated
transcript (CART), forward 5′-TACCTTTGCTGGGTGCCG-3′, rev-
erse 5′-AAGTTCCTCGGGGACAGT-3′. The final reaction volume
was 20 μl, including 10 μl of 2× SYBR Premix EX Tag TM (TAK-
ARA), 0.4 μl of forward and reverse primer and 2 μl cDNA template.
The reactions were performed using the Roche LightCycler480 real-
time qPCR system (Forrentrasse CH-6343Rotkreuz, Switzerland). The
PCR conditions were 40 cycles of 5 s at 95°C, 30 s at 55°C and 30 s at
72°C, followed by thermal denaturation curves. All samples were q-
uantified for relative quantity of gene expression with actin expression
as an internal standard (actin forward 5′-AAAGACCTCTATGCCA-
ACA-3′, reverse 5′-ACATCTGCTGGAAGGTGG-3′).

Statistics
Data are expressed as means±s.e.m. and were analyzed using SPSS
13.0 statistical software. All variables were tested for normality
using the Kolmogorov–Smirnov test. For experiment 1, the
differences in gross energy intake, digestive energy intake and
digestibility, mass of digestive tract, digestive enzyme activity, body
fat content, serum leptin levels and neuropeptide mRNA expression
among the non-lactation , peak-lactation and post-lactation groups
were examined using one-way ANOVA. Correlations between
digestive enzyme activity and gross energy intake, digestive energy
intake and digestibility were examined using Pearson’s correlation
analysis. For experiment 2, the effect of litter size on litter mass,
mean pup mass and serum leptin levels, as well the other parameters
mentioned above, were examined using one-way ANOVA. For both
experiment 1 and experiment 2, one-way ANOVAwas followed by
Tukey post hoc comparisons. Correlations of gross energy intake
and body mass, litter mass and digestibility, and of gross energy
intake and litter mass were also analyzed using Pearson’s correlation
analysis. The tests were two-tailed, and the level of significance was
set at P<0.05.

RESULTS
Experiment 1
Reproductive performance with natural litters, gross energy intake
and digestibility
Litter size ranged from 3 to 8, and it averaged 5.0±0.4 at weaning.
Litter mass averaged 52.9±4.7 g and mean pup body mass was
10.6±0.8 g at weaning. Hamsters in the peak-lactation group
showed a significant increase in gross energy intake compared
with those in the other two groups (F2,21=63.08, P<0.01; Fig. 1A);
values were 292.78% higher in the peak-lactation group than in the
non-lactation group ( post hoc P<0.05). Hamsters in the post-
lactation group significantly reduced gross energy intake compared
with those in the peak-lactation group ( post hoc P<0.05), whereas
the difference was not significant between the post-lactation and
non-lactation groups ( post hoc P>0.05). Consistent with gross
energy intake, digestive energy intake significantly increased in the
peak-lactation group, and it was 3.46-fold and 3.02-fold higher than
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in the non-lactation and post-lactation groups, respectively
(F2,21=56.66, P<0.01, post hoc P<0.05; Fig. 1B), whereas the
difference between the non-lactation and post-lactation groups was
not statistically significant ( post hoc P>0.05). The hamsters in the
peak-lactation group showed significantly higher digestibility than
those in the other two groups (F2,21=50.27, P<0.01, post hoc
P<0.05; Fig. 1C). Digestibility in the post-lactation group was
similar to that in the non-lactation group ( post hoc P>0.05).

Digestive tract segment mass
There were significant differences in the mass of digestive tract
segments between the three groups (stomach, F2,21=9.69, P<0.01;
small intestine, F2,21=11.25, P<0.01; large intestine, F2,21=8.92,
P<0.01; and cecum, F2,21=9.89, P<0.01; Table 1). The stomach,
small and large intestine and cecum in the peak-lactation group were
heavier by 30.4%, 66.9%, 42.8% and 36.7% than in the
non-lactation group (Table 1). The mass of digestive tract
segments in the post-lactation group was reduced relative to that
of the peak-lactation group, and returned to the levels of the non-
lactation group.

Pepsin activity
The three groups differed significantly in pepsin activity
(F2,21=32.21, P<0.01; Fig. 2A). The hamsters in the peak-
lactation group showed 170.8% higher pepsin activity than those
in the non-lactation group ( post hoc P<0.05). Pepsin activity in the
post-lactation group was significantly higher than that in the non-

lactation group ( post hoc P<0.05), but was lower by 39.2% than that
in the peak-lactation group ( post hoc P<0.05). There were strong
positive correlations between pepsin activity and gross energy
intake, digestive energy intake and digestibility (Table 2).

Maltase, sucrase and aminopeptidase activity
There were significant differences between the three groups in the
activity of maltase, sucrase and aminopeptidase, which increased by
106.2%, 114.5% and 116.2% in the peak-lactation group compared
with the non-lactation group (maltase, F2,21=11.60, P<0.01, post
hoc P<0.05; Fig. 2B; sucrase, F2,21=13.68, P<0.01, post hoc
P<0.05; Fig. 2C; aminopeptidase, F2,21=23.27, P<0.01, post hoc
P<0.05; Fig. 2D). The activities of the three digestive enzymes were
all significantly decreased in the post-lactation group compared with
those in the peak-lactation group ( post hoc P<0.05). Strong positive
relationships were observed between the activities of maltase,
sucrase, aminopeptidase and pepsin and gross energy intake,
digestive energy intake and digestibility (Table 2).

Carcass mass, body fat content and serum leptin levels
There was a significant effect of lactation on the mass of the wet
carcass (F2,21=4.23, P<0.05; Fig. 3A) and dry carcass (F2,21=5.58,
P<0.01; Fig. 3B). The dry carcass mass decreased by 14.9% in the
peak-lactation group compared with the non-lactation group ( post
hoc P<0.05), and that of the post-lactation group returned to the
levels of the non-lactation group ( post hoc P>0.05). However, wet
carcass mass was not significantly different among the three groups
( post hoc P>0.05). Body fat content averaged 31.3±2.2% in the
non-lactation group; it decreased to 23.5±1.1% in the peak-lactation
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Fig. 1. Energy intake and digestibility in striped hamsters at different
stages of lactation. (A) Gross energy intake, (B) digestive energy intake and
(C) digestibility during non-lactation (NL), and peak- (Peak) and post-lactation
(Post) periods. Data are means±s.e.m. Asterisks indicate a significant effect of
lactation (**P<0.01). Different letters above the bars indicate a significant
difference among the three groups (P<0.05).

Table 1. Digestive tract mass in striped hamster

Non-lactation Peak-lactation Post-lactation F P

Stomach (g) 0.307±0.019b 0.401±0.019a 0.319±0.010b 9.69 **
SI (g) 0.529±0.034b 0.883±0.056a 0.707±0.068a,b 11.25 **
LI (g) 0.206±0.013b 0.294±0.020a 0.240±0.012a,b 8.92 **
Cecum (g) 0.188±0.012b 0.257±0.008a 0.224±0.013a,b 9.89 **

SI, small intestine; LI, large intestine. Data are means±s.e.m., **P<0.01.
Different letters in the same row indicate a significant difference among the
three groups (P<0.05).
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Fig. 2. Digestive enzyme activity of striped hamsters at different stages of
lactation. (A) Stomach pepsin activity and (B–D) small intestine maltase (B),
sucrase (C) and aminopeptidase (D) activity during non-lactation (NL), andpeak-
(Peak) and post-lactation (Post) periods. Data are means±s.e.m. Asterisks
indicate a significant effect of lactation (**P<0.01).Different letters above thebars
indicate a significant difference among the three groups (P<0.05).
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group (F2,21=4.81, P<0.05, post hoc P<0.05; Fig. 3C) but the
non-lactation and post-lactation groups did not differ in fat content
( post hoc P>0.05). Serum leptin levels in the peak-lactation group
were lower by 28.4% and 38.3%, respectively, than in the non-
lactation and post-lactation groups (F2,21=8.44, P<0.01, post hoc
P<0.05; Fig. 3D).

Experiment 2
Litter size and litter mass
Litter size and litter mass on day 13–14 of lactation were
significantly different among the three groups (litter size,
F2,22=855.66, P<0.01; Fig. 4A; litter mass, F2,22=249.09, P<0.01;
Fig. 4B). The females in the LS1 group raised significantly lighter
litters than those in the LS4 group ( post hoc P<0.05). Litter size and
litter mass in the LS8 group were higher by 7.1- and 6.5-fold than
those in the LS1 group ( post hoc P<0.05), and were higher by 1.9-
and 1.7-fold than those in the LS4 group ( post hoc P<0.05). Mean
pupmass was not significantly affected by litter size during lactation
(F2,22=0.68, P>0.05; Fig. 4C), and pup mass in the LS4 group did
not differ from that of the other two groups ( post hoc P>0.05).

Gross energy intake, digestive energy intake and digestibility
Gross energy intakewas 109.2±7.7 kJ day−1 in the LS1 group, and it
increased to 216.5±14.5 kJ day−1 and 386.5±12.5 kJ day−1 in the

LS4 and LS8 groups, respectively (F2,22=139.20, P<0.01; Fig. 4D).
Gross energy intake in the LS4 and LS8 groups increased by 98.2%
and 253.9% relative to that in the LS1 group (post hoc P<0.05).
Similar changes were observed in digestive energy intake. Females
raising large litters had higher digestive energy intake than those
supporting small andmedium litters (F2,22=133.22,P<0.01, post hoc
P<0.05; Fig. 4E). Digestibility was also affected by litter size, and
females tended to increase digestibility with increases in litter size
(F2,22=33.65, P<0.01, post hoc P<0.05; Fig. 4F). No relationship
was observed between gross energy intake and body mass (Fig. 5A),
but significant correlations were found between gross energy intake
and litter mass (Fig. 5B) and digestibility (Fig. 5C). Digestibility was
significantly positively correlated with litter mass (Fig. 5D).

Mass and protein content of the stomach and small intestine
Litter size had a significant effect on the mass of the stomach
(F2,22=4.56, P<0.05; Fig. 6A) and small intestine (F2,22=27.72,
P<0.01; Fig. 6B). In the LS8 group, the stomach was heavier by
15.3% and 13.0% than in the LS1 and LS4 groups, respectively
( post hoc P<0.05). The small intestine in the LS8 group was heavier

Table 2. Pearson’s correlation coefficients for the relationship between the activity of pepsin, maltase, sucrase and aminopeptidase and gross
energy intake, digestive energy intake and digestibility in the striped hamster

Pepsin Maltase Sucrase Aminopeptidase GEI DEI Digestibility

Pepsin 1
Maltase 0.70** 1
Sucrase 0.73** 0.95** 1
Aminopeptidase 0.76** 0.95** 0.94** 1
GEI 0.80** 0.71** 0.71** 0.81** 1
DEI 0.79** 0.70** 0.71** 0.80** 0.99** 1
Digestibility 0.70** 0.65** 0.69** 0.76** 0.94** 0.94** 1

GEI, gross energy intake; DEI, digestive energy intake. **P<0.01.
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by 54.6% and 32.5%, respectively, than in the LS1 and LS4 groups
( post hoc P<0.05). The differences in the mass of the stomach and
small intestinewere not significant between the LS1 and LS4 groups
(stomach, post hoc P>0.05; small intestine, post hoc P>0.05). The
protein content of the stomach did not differ significantly between
the three groups (F2,22=1.49, P>0.05; Fig. 6C), whereas it did in the
small intestine (F2,22=18.60, P<0.01; Fig. 6D). The protein content
of the small intestine in the LS8 group was higher by 57.8% and
33.4% than in the LS1 and 4 groups, respectively ( post hoc
P<0.05).

Digestive enzyme activity of the digestive tract
Pepsin activity was significantly affected by litter size, and it was
higher by 35.2% and 22.5% in the LS8 group than in the LS1 and

LS4 groups (F2,22=5.61, P<0.01, post hoc P<0.05; Fig. 7A).
Maltase and sucrase activity were also affected by litter size
(maltase, F2,22=9.88, P<0.01; Fig. 7B; sucrase, F2,22=12.91,
P<0.01, Fig. 7C). The females in the LS8 group showed
significantly higher maltase and sucrase activity than those in the
LS1 group ( post hoc P<0.05). There was a significant effect of litter
size on aminopeptidase activity, and it increased by 98.3% in the
LS8 group compared with the LS1 group (F2,22=10.76, P<0.01,
post hoc P<0.05; Fig. 7D).

Mass, protein content and digestive enzyme activity of the small
intestine
Litter size had a significant effect on the mass of the duodenum
(F2,22=14.32, P<0.01) and jejunum (F2,22=9.94, P<0.01), whereas
no effect was observed on the ileum (F2,22=1.85, P>0.05; Fig. 8A).
The duodenum and jejunum in the LS8 group were significantly
heavier than those in the LS1 and LS4 groups ( post hoc P<0.05).
Similarly, the protein content of the duodenum and jejunum was
significantly higher in the LS8 group than in the LS1 and LS4 groups
(duodenum, F2,22=11.16, P<0.01; jejunum, F2,22=8.27, P<0.01;
Fig. 8B). Litter size had a significant effect on maltase activity in the
duodenum (F2,22=15.05, P<0.01), but not in the jejunum
(F2,22=0.43, P>0.05) or ileum (F2,22=0.83, P>0.05; Fig. 8C).
Sucrase activity differed significantly between the three groups in
the duodenum (F2,22=14.53, P<0.01) and jejunum (F2,22=7.07,
P<0.01), but not in the ileum (F2,22=1.43, P>0.05; Fig. 8D). Sucrase
activity in the LS8 group was higher by 113.4% than in the LS1
group in the duodenum ( post hoc P<0.05) and was higher by 62.4%
in the jejunum ( post hoc P<0.05). Aminopeptidase activity in the
LS8 group increased by 122.9% compared with that in the LS1
group in the duodenum (F2,22=7.91, P<0.01, post hoc P<0.05), and
increased by 119.5% in the jejunum (F2,22=6.79, P<0.01, post hoc
P<0.05; Fig. 8E). The three groups did not differ in aminopeptidase
activity of the ileum (F2,22=1.96, P>0.05).

Hypothalamic neuropeptide mRNA expression
Hypothalamic NPY mRNA expression in the LS4 and LS8 groups
increased by 22.4% and 65.8%, respectively, compared with the
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LS1 group, but the effect of litter size was not statistically significant
(F2,22=0.76, P>0.05; Fig. 9A). The hypothalamus AgRP mRNA
expression was significantly affected by litter size, being up-
regulated with increasing litter size (F2,22=7.15, P<0.01; Fig. 9B).
AgRP expression in females raising 8 pups increased by 262.1%
and 126.7% compared with that in females raising 1 and 4 pups,
respectively ( post hoc P<0.05). POMC and CART mRNA
expression was not significantly affected by litter size (POMC,
F2,22=0.19, P>0.05; Fig. 9C; CART, F2,22=0.32, P>0.05; Fig. 9D).

Leptin levels
Serum leptin levels tended to decrease with increases in litter size.
Females raising 8 pups showed 18.5% lower leptin levels than those
supporting 1 pup, but the difference among the three groups was not
statistically significant (F2,22=1.18, P>0.05; Fig. 9E).

DISCUSSION
Lactation is the most energy-demanding state in the lifetime of most
female mammals, which in small mammals is met primarily by
increasing energy intake (Hammond and Kristan, 2000; Johnson
and Speakman, 2001; Król and Speakman, 2003; Rogowitz, 1998;
Speakman and Król, 2005; Valencak et al., 2009, 2010; Weiner,
1992). In the present study, energy intake increased by 292.8% in
lactating hamsters compared with the non-reproductive group.
Energy intake dropped in hamsters after lactation, showing marked
plasticity at different stages of reproduction. Consistently, energy
intake during peak lactation increased by 3.3-fold in MF1 mice
(Johnson et al., 2001), 153.0% in Brandt’s voles (Lasiopodomys
brandtii) (Zhang et al., 2008), 168.3% in Swiss mice (Zhao and
Cao, 2009) and 68% in European hares (Lepus europaeus)
(Valencak et al., 2009) in comparison with non-reproductive
controls. Females not only consumed more food but also

increased assimilation efficiency (digestibility) to meet the high
energy requirement during lactation (Valencak et al., 2009). Here,
we observed a significant elevation of digestibility in lactating
hamsters (91.2%) compared with that in non-reproductive (80.7%)
and post-lactating animals (78.2%). Conversely, digestibility
averaged 83.7% in late-lactating MF1 mice, a significant decrease
relative to non-reproductive controls (86.1%) (Speakman and
McQueenie, 1996). This suggests that the strategies used by
females to meet the energetic demands of lactation differ across
rodent taxa, during which the plasticity of the gut morphology and
digestive enzymes may be involved.

The striped hamster in this study showed significant plasticity of
the digestive tract at different stages of reproduction. The stomach,
small and large intestine and cecum in lactating hamsters were larger
in size than in the non-reproductive and post-lactating animals. Such
marked plasticity has also been observed in many other animals
(Campbell and Fell, 1964; Derting and Austin, 1998; Hammond
et al., 1996; Koteja, 1996a; Reilly et al., 2006; Simons et al., 2011;
Speakman and McQueenie, 1996). Moreover, significant plasticity
was observed in the digestive enzymes among the non-reproductive,
lactating and post-lactating hamsters. Pepsin activity of the stomach,
and the activity of maltase, sucrase and aminopeptidase in the small
intestine were all significantly increased during peak lactation,
probably resulting in the increased energy-processing capacity
(Fig. 2). This suggests that animals can use phenotypic plasticity of
the gut morphology and digestive enzyme activity to cope with the
increased food intake in response to high energy demand conditions
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(Bozinovic and Nespolo, 1997; Debray et al., 2003; Nespolo et al.,
2002). This may explain why the SusEI is not constrained centrally
by the mother’s capacity for food (energy) assimilation.
In order to examine the phenotypic plasticity of the gastrointestinal

tract in response to conditions of higher energy demand, we
manipulated litter size. This is because the mothers raising larger
litters have more energy requirements for raising their offspring than
those supporting small litter sizes (Hammond et al., 1996; Johnson
et al., 2001; Liu et al., 2003; Rogowitz, 1998; Scantlebury et al., 2001;
Zhang et al., 2008; Zhao et al., 2010, 2013). We observed that the
female hamsters supporting large litters raised significantly heavier
litters than those supporting smaller litters, indicating that the mass of
individual pups was not affected by litter size. During peak lactation,
gross energy intake in females raising 8 pups (386.5±12.5 kJ day−1)
increased considerably beyond that observed in females supporting a
natural litter size (259.33±20.43 kJ day−1). Digestibility also
increased significantly in the mothers with 8 pups, indicating that
female hamsters could increase energy intake and energy assimilation
efficiency further to cope with the increased energy requirements of
additional pups. This was inconsistent with a previous study
performed on the same strain of hamster (Zhao et al., 2010), where
female hamsters cannibalized some of the pupswhen given additional
pups to raise, and finally weaned similar-sized litters to those
supporting natural litter sizes. It is unknown why different results
were obtained from the two studies. One plausible reason is that
females and pups were measured daily following parturition in that
study, which may have caused the cannibalization of addition pups
(Zhao et al., 2010). In the present study, no measurement was carried
out following litter size manipulation. This may suggest that wild
hamsters are more sensitive to disturbance during the early lactation
period than laboratorymice and rats, rodents inwhich infanticide does
not occur.
The digestive enzymes, one of the most important components of

digestion, have been reported to be regulated plastically to meet high
energy demand conditions (Bozinovic and Nespolo, 1997; Debray
et al., 2003; del Valle et al., 2004; Nespolo et al., 2002; Sabat et al.,
1999). In this study, the female hamsters raising larger litters showed
an increase in the mass, protein concentration and digestive enzyme
activity of the stomach and small intestine above those observed in
the females raising a natural litter size, suggesting that the mothers
had a higher capacity to meet increased energy intake. Consistent
with this, maltase and aminopeptidase-N activity did not changewith
lactation in degus (Octodon degus) (Naya et al., 2008b). However,
marked plasticity of several central organs was observed in degus,
which possibly contributed to the increased food assimilation during
lactation (Naya et al., 2008b). It has been observed that maltase and
aminopeptidase-N had greater activity values in themiddle portion of
the small intestine (Naya et al., 2008b). In the present study,
significant plasticity of maltase, sucrase and aminopeptidase activity
was observed in the middle section of the small intestine ( jejunum),
and also in the first section of the small intestine (duodenum). These
results may reflect a different capacity of the digestive system across
species, which determines the strategies used by females tomeet their
energetic demands (Bozinovic and Nespolo, 1997; Bozinovic et al.,
2010; Debray et al., 2003; del Valle et al., 2004; Naya et al., 2008b;
Nespolo et al., 2002; Sabat et al., 1999; Zhao et al., 2010). The
remarkable plasticity of digestive enzyme activity in the stomach and
in particular in the jejunum and duodenum likely drove the digestive
mechanisms underpinning the plasticity of the gut morphology,
providing strong refutation of the central limitation hypothesis.
Several other hypotheses regarding the factors limiting SusEI

during peak lactation have been proposed (Hammond and

Diamond, 1992, 1994; Hammond et al., 1994, 1996; Koteja,
1996b; Król and Speakman, 2003; Król et al., 2003; Rogowitz,
1998; Simons et al., 2011; Speakman and Król, 2005, 2011;
Valencak et al., 2009, 2010; Weiner, 1992). The saturated neural
control hypothesis explains that hypothalamic control of energy
homeostasis may be involved in the limits to SusEI during lactation
(Speakman and Król, 2005). It has been proposed that food intake is
stimulated by a number of peripheral signals that act with several
pathways in the brain to promote feeding behavior. However, it may
reach a point of maximal stimulation during the second half of the
lactation period because receptors become saturated (Speakman and
Król, 2005). Leptin has been reported to be a peripheral signal
involved in the hypothalamic control of energy intake during
lactation (Kalra et al., 1999; Pickavance et al., 1996, 1999;
Speakman and Król, 2005; Stephens et al., 1995; Wauters et al.,
2000). In the present study, serum leptin tended to decrease with
increasing litter size in lactating striped hamsters, but the change
was not statistically significant. So far, the reported changes in leptin
levels in lactating animals have been inconsistent. Some studies
found that leptin levels were significantly reduced during peak
lactation (Brogan et al., 1999, 2000; Cui et al., 2011; Denis et al.,
2003a; Herrera et al., 2000; Kunz et al., 1999; Pickavance et al.,
1998; Speakman and Król, 2005; Vernon et al., 2002; Zhang and
Wang, 2007), but others suggested that leptin levels increased in
lactating animals (Mistry and Romsos, 2002; Mukherjea et al.,
1999). López-Soriano et al. (1999) demonstrated that leptin levels
were unchanged during lactation. The diversity of leptin levels in
lactation suggests that it only reflects a state of energy balance rather
than being the prime driver of hyperphagia (Vernon et al., 2002).

The neuroendocrine basis of hyperphagia in lactation is
suggested to be triggered by hypothalamic neuropeptides, such as
the orexigenic neuropeptides NPY and AgRP, and the anorexigenic
neuropeptides POMC and CART (Brogan et al., 2000; Chen et al.,
2004; Crowley et al., 2004; Malabu et al., 1994; Li et al., 1999;
Pickavance et al., 1999; Smith, 1993; Sorensen et al., 2002; Suzuki
et al., 2014). In the present study, AgRP mRNA expression was
significantly up-regulated in striped hamsters raising larger litter
sizes, whereas NPY, POMC and CART mRNA expression did not
differ between the hamsters raising different litter sizes. This is
partly consistent with the observation that in lactating rats, both
NPY and AgRP are greatly elevated (Chen et al., 2004; Crowley
et al., 2004; Li et al., 1999; Malabu et al., 1994; Pickavance et al.,
1999; Smith, 1993; Suzuki et al., 2014), but the increase in AgRP
mRNA expression during lactation is especially marked (Suzuki
et al., 2014). POMC and/or CART mRNA expression significantly
decreased during lactation in comparison with the non-lactation
period (Brogan et al., 2000; Smith, 1993; Sorensen et al., 2002;
Suzuki et al., 2014). The findings of this study suggest that, in
striped hamsters, hyperphagia during lactation may be caused by an
increase in AgRP expression in the hypothalamus, rather than by
NPY, POMC and CART. The absence of adaptive changes in NPY,
POMC and CART mRNA expression seems to be weak evidence
for the saturated neural control hypothesis, but it indicates that some
hypothalamic neuropeptides, such as NPY, POMC and CART, may
be involved in the limitation to the SusEI during lactation.

Conclusions
Female striped hamsters showed significant plasticity of gross
energy intake, digestibility, gut morphology and digestive enzyme
activity among the non-reproductive, peak-lactation and post-
lactation periods. Our findings suggest that females not only
increased the size of the gut but also increased digestive enzyme
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activity to meet the increased food intake during the high energy
demand period of lactation. Further, energy intake, digestibility, gut
mass and digestive enzyme activity significantly increased in the
females raising additional pups above that observed in the females
supporting natural litters, indicating that the significant plasticity of
digestive physiology increased reproductive performance. These
findings provide strong refutation of the central limitation
hypothesis. Serum leptin levels and hypothalamus NPY, POMC
and CART mRNA expression did not differ among females raising
different litter sizes. Thus, leptin levels in lactation might only
reflect a state of energy balance rather than being the prime driver of
hyperphagia. Some hypothalamic neuropeptides, such as NPY,
POMC and CART, may be involved in the limitation to SusEI
during lactation, but this does not provide strong support for the
saturated neural control hypothesis.
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