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Reconfiguration of the immune system network during food
limitation in the caterpillar Manduca sexta
Shelley A. Adamo*, Gillian Davies, Russell Easy, Ilya Kovalko and Kurtis F. Turnbull

ABSTRACT
Dwindling resources might be expected to induce a gradual decline in
immune function. However, food limitation has complex and seemingly
paradoxical effects on the immune system. Examining these changes
from an immune system network perspective may help illuminate the
purpose of these fluctuations. We found that food limitation lowered
long-term (i.e. lipid) and short-term (i.e. sugars) energy stores in the
caterpillar Manduca sexta. Food limitation also: altered immune gene
expression, changed the activity of key immune enzymes, depressed
the concentration of a major antioxidant (glutathione), reduced
resistance to oxidative stress, reduced resistance to bacteria (Gram-
positive and -negative bacteria) but appeared to have less effect on
resistance to a fungus. These results provide evidence that food
limitation led to a restructuring of the immune system network. In
severely food-limited caterpillars, some immune functions were
enhanced. As resources dwindled within the caterpillar, the immune
response shifted its emphasis away from inducible immune defenses
(i.e. those responses that are activated during an immune challenge)
and increased emphasis on constitutive defenses (i.e. immune
components that are produced consistently). We also found changes
suggesting that the activation threshold for some immune responses
(e.g. phenoloxidase) was lowered. Changes in the configuration of the
immune system network will lead to different immunological strengths
and vulnerabilities for the organism.
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INTRODUCTION
Animals have evolved against a backdrop of an uncertain food
supply. Individuals that can best survive periods of low food
availability will have a selective advantage. However, globally
suppressing a physiological pathway to save resources may not
optimize fitness. Instead, restructuring physiological pathways into
different network configurations could minimize resource use while
maintaining a high degree of function (Adamo, 2014). One system
that seems capable of reconfiguration is the immune system (e.g.
during stress, vertebrates, Dhabhar et al., 2012; invertebrates,
Adamo, 2014). Although our understanding of immune systems at
the network level is limited (Afacan et al., 2012), taking a network
perspective can still help us to formulate testable hypotheses about
the adaptive purpose of changes in immune function in response to
environmental stressors such as food limitation.
The immune system is composed of multiple components that

can be separately regulated (e.g. in insects, Beckage, 2008), a

necessary precondition for adaptive reconfiguration. The immune
system is critical for survival, yet it is energetically expensive (Ardia
et al., 2012) and resource intensive (Adamo et al., 2008), suggesting
that selection pressure will favor organisms that can reduce resource
use while still maintaining function. Recent studies show that
reduced food availability induces a mix of positive and negative
effects on different immune components (e.g. Ayres and Schneider,
2009; Brunner et al., 2014). For example, brief food deprivation (i.e.
6 h) leads to increased antimicrobial peptide gene transcription in
Drosophila melanogaster, even in the absence of pathogens
(Becker et al., 2010). This response is the opposite of what would
be predicted if immune systems gradually decline as resources
dwindle. At the molecular level, intracellular immune signaling
pathways show intricate interconnections with nutrient signaling
pathways (e.g. invertebrates, Becker et al., 2010; vertebrates,
Odegaard and Chawla, 2013), providing a mechanism for the
complex effects of food deprivation on immunity. Moreover, the
existence of these pathways suggests that these complex responses
are an evolved response.

We examine the effects of food limitation on the immune system
of the last larval instar of the caterpillar Manduca sexta (Linnaeus
1763) using a physiological network perspective (Tieri et al., 2010;
Cohen et al., 2012). This species is likely to exhibit immune
reconfiguration when food is short. Manduca sexta caterpillars feed
voraciously; their future reproductive success depends on their
ability to acquire resources at this developmental stage (Awmack
and Leather, 2002). Therefore, when food is limited, M. sexta is
likely to be under selection pressure to reduce metabolic running
costs in order to preserve resources for future reproduction.
Moreover, slow larval growth increases predation risk in this
species (Kingsolver et al., 2012); therefore, selection is likely to
favor animals that maintain growth even when resources are limited.
Reducing investment in immune function, then, may be one of the
most fitness-sparing options for this species under low food
conditions. And, although some insects are able to alter their diet to
enhance immune function (Singer et al., 2014), M. sexta is a
specialist herbivore that typically feeds on a single plant for its
entire larval life (Bernays andWoods, 2000). Therefore, this species
probably relies on internal reconfigurations to optimize immune
function when resources become limited. Furthermore, the immune
system of M. sexta has the potential for reconfiguration; for
example, the expression of some immune genes is sensitive to
hormonal concentrations (Zou et al., 2005) and varies depending on
the host plant (Koenig et al., 2015).

We assessed the effects of food limitation on what appear to be
key points in the immune system network of M. sexta, including:
a pattern recognition molecule (hemolin), a cytokine that activates
antimicrobial gene expression via the toll receptor (spätzle; An
et al., 2010; Zhong et al., 2012), antimicrobial molecules (attacin
and lysozyme), an antioxidant [glutathione (GSH)], and parts
of the phenoloxidase (PO) cascade, including an activatorReceived 9 October 2015; Accepted 17 December 2015
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[prophenoloxidase activating proteinase-3 (PAP-3)] and an
inhibitor of PAP-3, Serpin-3 (Fig. 1, see Jiang, 2008; Kanost
and Gorman, 2008; Christen et al., 2012; Zhang et al., 2011; Cao
et al., 2015; Chevignon et al., 2015). This assessment included
different aspects of constitutive immunity, i.e. the branches of the
immune system that are maintained regardless of whether there is
an ongoing infection (Schmid-Hempel, 2011). These components
represent the caterpillar’s ‘standing army’ against pathogens, such
as the number of hemocytes (immune cells of the blood; Strand,
2008) and the PO system (Kanost and Gorman, 2008). This
assessment also included aspects of the caterpillar’s inducible
immune system, i.e. those components of the immune system that
are synthesized in response to infection (Schmid-Hempel, 2011).
These include molecules such as attacin that are capable of killing
bacteria (Jiang, 2008). Both vertebrates and invertebrates have
examples of constitutive and inducible responses (Schmid-
Hempel, 2011). Which type of response requires the most
resources depends on pathogen prevalence (Westra et al., 2015),
although specific, inducible responses are thought to be less
costly overall because of reduced running costs (Lee, 2006, but
see Buehler et al., 2009). Finally, our assessment of the M. sexta
immune system includes host resistance tests using three types of
pathogen. Immune assays frequently correlate only weakly with
disease resistance (Adamo, 2004a,b), making it difficult to
determine the adaptive significance of immune system changes
without host resistance tests.
We make three predictions: (1) food limitation will not induce a

global immunosuppression, but will cause a shift in the pattern of
the immune response (Adamo, 2014); (2) food limitation will
lead to a greater reliance on inducible immunity to reduce energetic
costs (Lee, 2006); and (3) self-damage from immune-generated
molecules (e.g. Sadd and Siva-Jothy, 2006) is also thought to be a
major immune system cost (Råberg et al., 1998; Pursall and Rolff,
2012), thus food limitation will reduce immune components that
cause collateral damage to an animal’s own tissues (e.g. PO activity;
Gonzalez-Santoyo and Cordoba-Aguilar, 2012) and upregulate less
damaging methods of pathogen control (e.g. antimicrobial peptides;
Soares et al., 2014).

MATERIALS AND METHODS
Animals
Manduca sexta eggswere obtained fromGreat LakesHornworm (MI,
USA) and larvae were cultured as outlined by Bell and Joachim
(1976). Caterpillars were fed ad libitum on a standard artificial diet
designed for M. sexta (Recorp, Georgetown, ON, Canada).
Caterpillars were reared in individual cups (7 cm diameter×10.5 cm
height) after the first instar. Caterpillars were kept at 21±2°C and on a
12 h:12 h light:dark cycle, with a relative humidity of 45–70%.
The study was approved by the University Committee on

Laboratory Animals (Dalhousie University; I-11-025) and was in
accordance with the Canadian Council on Animal Care.

Food limitation
During the molt to the final larval instar (fifth), all food and fecal
pellets were removed. At eclosion (fifth instar-day 0), caterpillars
were weighed and head capsule diameter was measured using
Vernier calipers. Caterpillars were size-matched and assigned into
one of three groups: high nutrition (colony diet), low nutrition (1:3
mixture by volume of colony diet and non-nutritive cellulose) and
absent nutrition (140 g of cellulose with 500 ml water to give the
same approximate consistency as the other diets). There were no
initial size or mass differences across the three groups (Table 1). The
low-nutrition diet provided sufficient resources for larval
development; however, caterpillars on this diet produce smaller
adults (Timmins et al., 1988). The absent-nutrition diet provided
water for the caterpillars, but had no nutritional value. Caterpillars
were given ad libitum access to their allotted diet for 2 days.

Because immune function in M. sexta changes with age
(Eleftherianos et al., 2008; Beetz et al., 2008; Booth et al., 2015),
we included a fourth group of caterpillars that were fed on the high-
nutrition diet for a single day. We wanted to exclude the possibility
that the results from the food-limited animals could be explained by
developmental delay.

Energy resources
Caterpillars were weighed on fifth instar-day 2 prior to sample
collection. We measured the immediate energy resources of the
caterpillars by assessing the concentration of two sugars, glucose and
trehalose, in their hemolymph (i.e. blood). To collect hemolymph
samples, the animals were surface sterilized around the dorsal horn
with 70% ethanol. The horn was snipped with clean, chilled
dissecting scissors and the blood was collected for a maximum
of 30 s into an ice-chilled centrifuge tube. Total hemolymph
glucose was determined using a Glucose HK Assay Kit (Sigma-
Aldrich, St Louis, MO, USA). Hemolymph was diluted 1:8 in ice-
cold phosphate-buffered saline (PBS; Sigma-Aldrich). After
centrifugation (10,000 g for 3 min at 4°C), the samples were added
to the kit reagents according to the manufacturer’s instructions. The
absorbance was measured at 340 nm and values were interpolated
from glucose standards. Tomeasure trehalose, trehalase (1 mg ml−1)
was added to the hemolymph/PBS mixture (10:1 hemolymph-PBS:
trehalase). The trehalase breaks down the trehalose to glucose. The
mixture was incubated for 3 h. Preliminary tests showed that 3 h was
sufficient time to convert the trehalose to glucose. The samples were
then tested for glucose concentration using the Glucose HK Assay
Kit as previously described. To calculate the total trehalose
concentration, the total glucose concentration measured previously
for a given sample was subtracted from the final glucose
concentration found in this assay, and the result was then divided
by two (each trehalose molecule supplies two glucose molecules)
(Thompson, 2003). Standards and samples were run in triplicate.

Total hemolymph protein was measured using a Bradford assay
(Bradford, 1976). Hemolymph was diluted 1:9 in ice-cold PBS
and vortexed. Hemolymph was then centrifuged (10,000 g for 5 min
at 4°C) and 30 µl of the supernatant was added to 180 µl of Bradford
reagent (Sigma-Aldrich) in a 96-well plate. After a 10 to 15 min
incubation period at room temperature, the samples were read in a
plate reader set at 590 nm. Bovine albumin (Sigma-Aldrich) was used
for standards. Sampleswere run in duplicate and standardswere run in
triplicate.

Total lipid content of M. sexta caterpillars was estimated using a
chloroform-methanol extraction method (Barnes and Blackstock,
1973). Immediately after hemolymph sampling, larvae were
supplied with non-nutritive cellulose for 5 h to clear the contents

List of symbols and abbreviations
CPC cetylpridinium chloride
Cq quantitative cycle
GSH glutathione
LD50 half-maximal lethal dose
PAP-3 prophenoloxidase activating proteinase-3
PBS phosphate-buffered saline
PO phenoloxidase
qPCR quantitative real-time PCR
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of the gut. We used the 5 h time point, because after 5 h on the
cellulose diet, the frass was composed of cellulose. Larvae were
dehydrated at 60°C for 3 days. Next, dry mass was recorded and
remains were ground with mortar and pestle. Grinds were
transferred to a vial containing 18 ml of a 2:1 chloroform:
methanol mixture (Sigma-Aldrich) and shaken for 4 h. The grinds
were filtered through Whatman grade 1 filter paper and the flow-
through was collected in a vial containing 2 ml of 0.9% NaCl
solution (Sigma-Aldrich). Vials were shaken and refrigerated
overnight at 4°C. The bottom phase was collected into
pre-weighed vials and heated at 60°C for 8 h to evaporate the
solvent. The remaining lipid residue was weighed as an estimate of
total lipid content.

Immune assays
Immune assays were performed on subsamples taken from the same
hemolymph sample used for the sugar and protein determinations.

Total PO activity in the hemolymph was quantified using a
method modified from Hall et al. (1995). Hemolymph was diluted
1:20.6 in ice-cold PBS and vortexed. For each sample, 30 µl
of the hemolymph-PBS mixture was added to 180 µl of 0.2 mol l−1

L-3,4-dihydroxyphenylalanine (Sigma-Aldrich) and left to incubate
for 5 min at room temperature. To activate the zymogen
prophenoloxidase, 2 µl of 10% cetylpridinium chloride (CPC;
Sigma-Aldrich) was added to each reaction mixture (Saul and
Sugumaran, 1987; Hall et al., 1995). CPC induces a confirmation
change in prophenoloxidase, exposing the catalytic site of active
PO (Hall et al., 1995). The addition of phenylthiocarbamide
(Sigma-Aldrich), a potent inhibitor of PO (Ryazanova et al., 2012),
prevented a change in absorbance of the reaction mixture,
suggesting that the action of CPC was specific for
prophenoloxidase. In addition, no change in absorbance was
measured when hemolymph was excluded from the well,
indicating that the observed activation was not an artifact of CPC
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Fig. 1. Inferred immune system network
changes. A simplified schematic of the Manduca
sexta immune system (see Jiang, 2008; Jiang
et al., 2010; Zhang et al., 2011; Christen et al.,
2012; Chevignon et al., 2015) featuring the
immune components assessed in this study. The
fill pattern for each immune component denotes
whether it is important for constitutive responses,
capable of induction by an immune challenge, or
both. (A) Baseline configuration. (B) Configuration
after food limitation (absent-nutrition group).
Change in textbox size represents a change in
gene expression and/or function in response to
food limitation. GSH, glutathione; Lyso, lysozyme;
PAP-3, prophenoloxidase activating proteinase-3;
PO, phenoloxidase; ProPO, prophenoloxidase;
SPZ, spätzle. Dashed lines represent multi-step
reactions, while the cross mark represents
inhibition.
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alone. Immediately after the addition of CPC, the wells were mixed
for 5 s and the change in absorbance at 490 nm was recorded for
10 min at room temperature. A standard curve within the linear
range of the assay was run concurrently on each microplate using
mushroom tyrosinase (Sigma-Aldrich), which captured the linear
range of the reaction. Mushroom tyrosinase catalyzes the formation
of the same dopachrome as PO (Xie et al., 2003).
Total lysozyme-like activity in the hemolymph was determined

using a turbidity assay modified from Adamo (2004b). Hemolymph
samples were diluted 1:4 in ice-cold PBS and vortexed. For
each sample, 10 µl of the hemolymph–PBS mixture was transferred
to a microplate well containing 180 µl of a Micrococcus luteus cell
wall suspension in PBS (12.5 mg 25 ml−1, Sigma-Aldrich).
Microplate wells were mixed for 5 s and the change in absorbance

at 450 nm was recorded for 10 min at room temperature. Lysozyme
(Sigma) standards in the linear range of the assay were run
concurrently.

GSH levels were assessed by measuring both reduced and
oxidized GSH species (GSH/GSSG; Cayman Chemicals, Ann
Arbor, MI, USA). Although GSH is not typically thought of as part
of the immune response, it plays a key role in buffering animals
against both pathogen toxins (Aucoin et al., 1995) and the oxidative
stress that can be generated by PO activity (Clark et al., 2010). We
include it here as a likely component of ‘infection tolerance’
(Stahlschmidt et al., 2015). Hemolymph was deproteinated
immediately after collection by centrifuging at 18,845 g for
10 min at 4°C and then adding the sample to an equal amount of
metaphosphoric acid (0.1 g ml−1, Sigma-Aldrich). After incubating

Table 1. The effect of diet on long-term and short-term energy availability in Manduca sexta caterpillars

High (N=22) Low (N=25) Absent (N=22) Age 5-1 (N=21) F3,86 P Dunnett’s test

Head capsule width (mm) 5.6±0.2 5.6±0.2 5.6±0.2 5.6±0.2 0.47 0.71 n.s.
Initial mass (5-0) (g) 1.15±0.2 1.11±0.2 1.12±0.21 1.13±0.20 0.12 0.95 n.s.
Final mass (5-2) (g) 2.98±0.56 3.26±0.64 1.44±0.27 1.90±0.38 70.9 <0.0001 H=L

P=0.47
H,L>A
P<0.0001
5-1<H,L
5-1>A
P<0.0001

Dry mass (g) 0.45±0.09 0.43±0.11 0.16±0.03 0.29±0.09 62.2 <0.0001 H=L
P=0.96
H,L>A
P<0.0001
5-1<H,L
5-1>A
P<0.0001

Total lipid (g) 0.039±0.016 0.029±0.10 0.007±0.014 0.018±0.007 23.3 <0.0001 H>L
P=0.04
H,L>A
P<0.0001
5-1<H,L
5-1>A
P=0.02

Hemolymph protein
(mg ml−1)

4.37±1.2 3.12±0.84 2.89±0.87 3.27±0.62 12.3 <0.0001 H>L
P=0.001
H>A
P<0.0001
L=A
P=0.73
5-1=L,A
P>0.5
5-1<H
P<0.0001

Trehalose (mg ml−1) 3.16±0.55 2.78±0.38 1.14±0.56 3.31±0.59 79.8 <0.0001 H>L
P=0.05
H,L>A
P<0.0001
5-1=H
P=0.99
5-1>L,A
p<0.008

Glucose (mg ml−1) 0.57±0.48 0.21±0.15 0.048±0.03 0.68±0.45 17.4 <0.0001 H>L
P=0.01
H,L>A
P<0.0001
5-1=H
P=0.99
5-1>L,A
P<0.001

Multivariate analysis, followed by univariate post hoc tests. Values are means±s.d. H, high nutrition; L, low nutrition; A, absent; 5-1, fifth instar-day 1.
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at room temperature for 5 min, the samples were spun at 3350 g for
3 min. The supernatant was stored at −80°C. The deproteinated
samples were thawed and processed according to the manufacturer’s
instructions. Absorbance was measured at 405 nm. Samples and
standards were run in triplicate.
Total hemocyte counts were prepared by diluting hemolymph

in ice-cold anti-coagulant (1:10). The anticoagulant consisted
of 140 mmol l−1 NaCl, 5 mmol l−1 KCl, 5 mmol l−1 HEPES,
8 mmol l−1 EDTA and 0.16 mmol l−1 phenylthiocarbamide
dissolved in double-distilled water (Sigma-Aldrich). Diluted
hemolymph was placed on a Fuchs-Rosenthal hemocytometer.
Cells were counted using phase contrast microscopy.

RNA extraction and cDNA generation
In M. sexta, the fat body makes the majority of immune proteins
(Zhang et al., 2014). Fat body was harvested from fifth instar-day 2
caterpillars that had been placed on the three different diets
(constitutive expression) at eclosion. To assess inducible expression
(i.e. after an immune challenge), a second set ofM. sexta larvaewere
randomly assigned to one of the three diets, and injected with 60 µl
mixture of heat-killed Serratia marcescens [Gram-negative
bacterium, Microkwik culture, Carolina Biological, 1/10 half-
maximal lethal dose (LD50)], Bacillus cereus (Gram-positive
bacterium, Microkwik culture, Carolina Biological, 1/10 LD50) or
Beauveria bassiana (strain GHA, fungus, 1/10 LD50, BotaniGard
22WP; Laverlam, Butte, MT, USA) on fifth instar-day 1. The LD50

values had been determined during the disease resistance studies.
We also included a control group of unchallenged caterpillars fed
the high-nutrition diet.
Fat body was excised from fifth instar-day 2 larvae and tissue was

immediately stabilized in 100 µl of RNAlater (Qiagen, Hilden,
Germany) and stored at −80°C. All samples were processed for
RNA extraction and cDNA generation in adherence with guidelines
to preserve sample quality (Taylor et al., 2010). RNA extraction was
performed using the RNeasy Lipid Tissue Mini kit (Qiagen). All
steps adhered to the manufacturer’s instructions and included a
DNase 1 treatment (RNase-Free DNase set, Qiagen) step to remove
genomic DNA contamination. The integrity of total RNA samples
was assessed using denaturing ‘bleach gel’ electrophoresis (Aranda
et al., 2012). The purity and concentration of extracted total RNA
was determined with a NanoDrop 2000c spectrophotometer
(Thermo Scientific, Waltham, MA, USA). Only samples with an
A260/A280 ratio greater than 1.8 were used. The concentration of
extracted total RNA samples ranged from 23 to 290 ng µl−1. cDNA
was synthesized using iScript (Bio-Rad, Hercules, CA, USA) and
samples were stored at −20°C.

Quantitative real-time PCR
To determine the relative expression of genes encoding immune-
related proteins, cDNA levels were measured by quantitative real-
time PCR (qPCR). The qPCR experiments used previously reported
primer sets for M. sexta genes (Table 2). Primers were purchased
from integrated DNA Technologies (http://www.idtdna.com/site)
and stored at −20°C at a working stock of 10 µmol l−1.

For each biological sample and gene, a 25 µl reaction mixture
was prepared containing 1 µl of sample cDNA, 12.5 µl of SYBR
Green Supermix (Bio-Rad), 1 µl of forward primer (10 µmol l−1),
1 µl of reverse primer (10 µmol l−1), and 9.5 µl RNase-free
dH2O. Reactions were performed in 96-well plates with a CFX96
real-time system (Bio-Rad). The reaction proceeded as follows:
initial denaturation (95°C: 3 min), followed by 45 cycles of
denaturation (95°C: 30 s), annealing (52°C: 45 s) and extension
(72°C: 30 s). After the qPCR, a melt curve analysis was run to
assess the specificity of the qPCR product. Quantitative cycle
(Cq) values for each sample and gene target were calculated in
CFX Manager (Bio-Rad). For each biological sample, qPCR
reactions were performed in duplicate and for each gene target
no-template controls were run. The qPCR efficiency (E) and
correlation coefficient (R2) for primer sets were estimated from a
standard curve generated with 10-fold dilutions of mixed cDNA
samples.

Reference gene selection
For constitutive expression of immune-related genes, RpL17A was
selected as a reference gene (Rewitz et al., 2006) after testing the
stability of three candidate reference genes suggested from the
literature. Studying expression during an immune challenge
required additional controls and treatment groups. For this reason,
we selected the most stable reference genes from six candidate
reference genes used in previous studies inM. sexta: RpL17A, actin
(MsA), ribosomal protein S3 (MsS3), ubiquitin, beta FTZ-F1 and
glycerol-3-phosphate dehydrogenase (G3PDH) (Table 2). We
used NormFinder for R (http://moma.dk/normfinder-software)
to determine stable reference genes (Andersen et al., 2004)
(i.e. ubiquitin and beta FTZ-F1), using the Cq values of five
biological samples for each candidate reference gene, for each
treatment.

Disease resistance tests
High- and low-nutrition diet caterpillars were injected on fifth
instar-day 2 with the LD50 of one of three pathogens: Serratia
marcescens (Gram-negative bacterium, 2×105 cells), Bacillus
cereus (Gram-positive bacterium, 2×104 cells) or Beauveria

Table 2. Forward and reverse primer sequences for target immune-related genes and reference genes

Gene Primer sequence Reference

Spätzle F: 5′-AGTGACCAGTAAGCCAACAAC-3′ R: 5′-CGAAGAGCCAAACGAGTAAATG-3′ An et al., 2010
Hemolin F: 5′-CAACCAAGCAACAACACAGG-3′ R: 5′-CAGCACAGGCATCTTCTCC-3′ An et al., 2010
Attacin-1 F: 5′-GCAGGCGACGACAAGAAC-3′ R: 5′-ATGCGTGTTGGTAAGAGTAGC-3′ An et al., 2010
Lysozyme F: 5′-GTGTGCCTCGTGGAGAATG-3′ R: 5′-ATGCCTTGGTGATGTCGTC-3′ An et al., 2010
PAP-3 F: 5′-ATTAAGCTGTTGTGTGGTG-3′ R: 5′-CGGGTGCGGTATTGTCTTC-3′ Jiang et al., 2003
Serpin-3 F: 5′-GATTCCTCGCGATTCGATGC-3′ R: 5′-CATTTACGTCATTAAGTTTCATG-3′ Zhu et al., 2003
MsA* F: 5′-CTCTTCCAGCCTTCCTTCCT-3′ R: 5′-ACAGGTCCTTACGGATGTCG-3′ Schwartz et al., 1993
RpL17A* F: 5′-TCCGCATCTCACTGGGTCT-3′ R: 5′-CACGGCAATCACATACAGGTT-3′ Rewitz et al., 2006
MsS3* F: 5′-CGCGAGTTGACTTCGGT-3′ R: 5′-GCCGTTCTTGCCCTGTT-3′ Zhu et al., 2003
Ubiquitin* F: 5′-AAAGCCAAGATTCAAGATAAG-3′ R: 5′-TTGTAGTCGGATAGCGTGCG-3′ Kumar et al., 2012
βFTZ-F1* F: 5′-CGTGCCTCCTACAATAGTGCTT-3′ R: 5′-AATCCCTAGCGGTTACTGACC-3′ MacWilliam et al., 2015
G3PDH* F: 5′-CGATTAAGGAACTTGAGGACG-3′ R: 5′ATAAGGAAGCGGATGCAAGG -3′ Mészaros and Morton, 1996

All primers were previously reported. Asterisks (*) indicate candidate reference genes.
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bassiana (strain GHA, fungus, approximately 1×105 conidia).
Caterpillars were maintained on their assigned diet during the live
challenge. All three are common pathogens of insects (Fuxa and
Tanada, 1987). Caterpillars were checked daily for mortality, or for
the exposure of the dorsal vessel (i.e. the start of metamorphosis;
Dominick and Truman, 1984). Datawere censored at 10 days for the
bacterial studies and 12 days for the fungus. By this time, the
infected caterpillars had either died or had reached the start of
metamorphosis. However, because absent-nutrition caterpillars
only live approximately 1 week even when uninfected, the
injected absent-nutrition caterpillars were compared with
uninfected absent-nutrition controls. Caterpillars fed the absent-
nutrition diet were given half the LD50, as they weigh approximately
half that of high-nutrition caterpillars by fifth instar-day 2 (Table 1).
Survival was plotted as Kaplan–Meier survival plots and tested
using Mantel–Cox (log-rank) tests.

Paraquat challenge
Paraquat generates oxidative stress in animals, and drives down
GSH levels inM. sexta (Guillet et al., 2000). We tested the ability of
caterpillars on the different diets to withstand a paraquat challenge.
Fifth instar-day 2 caterpillars were injected with 2 µl of
2.5 mg 100 µl−1 paraquat dichloride hydrate (Fluka, Germany) in
double-distilled water. Caterpillars fed the absent-nutrition diet
were given half this dose, as they weigh approximately half that of
high-nutrition controls by fifth instar-day 2 (Table 1). Caterpillars
were observed for mortality for 10 days.

Test of gut integrity
Food limitation could lead to leakage from the gut into the
hemocoel. To test for this possibility, caterpillars were fed on the
three diets for the first 2 days of the fifth instar. On fifth instar-day 2,
food and fecal pellets were removed. After 1 h, 5 mm3 cubes of each
diet were injected with 2 µl of food coloring (Club House no.
900806843R, containing red FD and C no. 40 and FD and C red no.
3) and these were presented to the caterpillars. A similar method was
used to test the integrity of the gut in D. melanogaster (Rera et al.,
2012). Five hours later, caterpillars began to produce pinkish fecal
pellets. Blood was collected from each caterpillar by snipping the
dorsal horn. One hundred microliters of hemolymph was added to
800 µl of a supersaturated solution of phenylthiocarbamide in water.
After vortexing, the absorbance was measured at 500 nmol l−1.
Preliminary tests found that this wavelength was the most sensitive
to the presence of dye in the blood. After blood collection,
caterpillars were chilled and dissected carefully to avoid damaging
the gut.

Statistical analysis
Data were analyzed using SPSS (v. 21.0) and GraphPad Prizm (v.
5.0); the qPCR data were analyzed using the CFX Manager v. 3.1
(Bio-Rad). The normalized expression (ΔΔCq) was calculated as the
relative quantity of the target gene normalized to the quantities of
the reference genes. The P-values comparing the expression values
relative to controls were calculated using a modified t-statistic using
the normalized expression values (http://www.bio-rad.com/
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Fig. 2. Effect of diet and age on energy-
related variables in Manduca sexta
caterpillars. (A) Final mass; (B) total lipid
content; (C) hemolymph glucose
concentration; (D) hemolymph trehalose
concentration; and (E) energy factor score.
5-1, fifth instar-day 1. Bars represent first
and third quartiles, with the internal line
representing the median. Error bars denote
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are significantly different have dissimilar
letters above the bars. See Results for
statistics; sample sizes are given in Table 1.
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webroot/web/pdf/lsr/literature/10021337.pdf, p. 131). Other data
were tested for normality using Shapiro–Wilk tests. Outliers were
removed using the outlier labeling rule (Hoaglin and Iglewicz,
1987). Two or fewer data points were removed from the total data
set/variable. Post hoc treatment comparisons used Dunnett’s test.
Although there were no significant differences in initial mass (see
Table 1), changes in mass and lipid content were examined using
initial mass as a covariate. Other variables, which were measured
per microliter hemolymph, were not corrected for initial mass.
Energy measures were found to be correlated; therefore, we used a
principal components analysis (PCA) with a direct Oblimin rotation.
Final mass, dry mass, total lipid, trehalose and total protein were
combined in a PCA. Glucose concentration was omitted as
some caterpillars in the absent-nutrition group had undetectable
levels. The first factor explained 62.3% of the variance and had an
eigenvalue of 3.115. All other eigenvalues had scores less
than 1. Therefore, the first factor was used as the ‘energy
availability score’. To test for changes in immune configuration,
hemolymph samples that had values for all four immune measures
(i.e. hemocyte number, lysozyme activity, PO activity and GHS
concentration) were normalized and log transformed, resulting in a
normal distribution and homoscedasticity across groups. A linear
discriminant analysis was performed.

RESULTS
Energy resources
Diet had a significant effect on all energy-related variables
[multivariate ANOVA (MANOVA), Pillai’s trace=1.9,
F24,243=17.8, P<0.0001, followed by post hoc univariate tests;
Fig. 2, Table 1]. Caterpillars fed an absent-nutrition diet were lighter
(Fig. 2A) and had less lipid (Fig. 2B) than the other groups

(Table 1). They had less than one-tenth of the hemolymph glucose
concentration, and approximately one-third the hemolymph
trehalose concentration, of caterpillars fed a high nutrient diet
(Fig. 2C,D). Total hemolymph protein was also reduced in absent-
nutrition caterpillars and low-nutrition caterpillars compared with
caterpillars fed a high-nutrition diet (Table 1). Diet affected the
PCA-derived energy score (F3,90=87.2, P<0.0001; Fig. 1E). The
high- and low-nutrition groups had the highest scores (Dunnett’s
P=0.18), followed by the nutrient absent group (high and low
nutrition>nutrient absent, P<0.0001).

The high-nutrition group (n=21) developedmore quickly than the
low-nutrition group, reaching the wandering stage 7.1±0.9 days into
the fifth instar. The low-nutrition group required 9.0±1.1 days
(n=19; F1,39=32.2, P<0.0001). The absent-nutrition group (n=10)
did not reach the wandering stage, but died 6.8±1.0 days into the
fifth instar.

Immune assays
Diet had a significant effect on immune function (MANOVA,
Pillai’s trace=0.77, F12,231=6.65, P<0.0001, followed by post
hoc univariate tests). High-nutrition caterpillars (n=22) had
significantly more hemocytes per microliter hemolymph than
low-nutrition caterpillars (n=24; F3,78=8.7, P<0.0001; Dunnett’s,
P=0.016; Fig. 3A). Absent-nutrition caterpillars (n=15) had the
same number of hemocytes as high-nutrition caterpillars (P=0.99),
and had significantly more than low-nutrition caterpillars
(P=0.045). Absent-nutrition caterpillars had significantly higher
levels of total PO activity compared with high- (F3,78=4.84,
P=0.004, Dunnett’s P=0.026; Fig. 3B) or low-nutrition caterpillars
(P=0.027). There was no significant difference between high- and
low-nutrition caterpillars (P=1.0). Diet did not have a significant
effect on lysozyme-like activity (F3,78=1.05, P=0.37; Fig. 3C).
However, absent-nutrition caterpillars had significantly lower
concentrations of GSH in their hemolymph compared with low-
and high-nutrition caterpillars (F3,78=17.76, both P<0.0001;
Fig. 3D). Low- and high-nutrition caterpillars did not differ in
GSH hemolymph concentration (P=0.41). Absent-nutrition
caterpillars were also less resistant to paraquat (n=56) compared
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Fig. 3. Effect of diet and age on
immune function in Manduca sexta
caterpillars. (A) Hemocyte count; (B)
phenoloxidase activity; (C) lysozyme-like
activity; and (D) hemolymph glutathione
concentration. 5-1, fifth instar-day 1. Bars
represent first and third quartiles, with the
internal line representing the median.
Error bars denote maximum and
minimum values. Values that are
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assays’ section in the Results for
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analyses.

Table 3. Standardized canonical discriminant function coefficients

Function 1 Function 2

Glutathione 0.89 0.16
Lysozyme-like activity −0.25 −0.38
Hemocyte number −0.41 0.83
Phenoloxidase activity 0.77 0.24
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with high- (n=62) and low-nutrition groups (n=62; Mantel-Cox,
χ2
2
=102.5, P<0.0001). The high-nutrition group was significantly

more resistant to paraquat than the low-nutrition group (Mantel–
Cox, χ2

1
=14.06, P=0.0002).

A linear discriminant analysis using the four immune responses
found two significant canonical discriminant factors (factor 1, Wilks’
lambda, P<0.0001; factor 2, Wilks’ lambda, P=0.052; Table 3). The
first factor (eigenvalue=1.32) accounted for 89.6% of the variance. The
two functions derived from these factors were able to correctly classify
67.2% of the caterpillars (n=61) into one of the three food treatments.
We found no correlation between lysozyme-like activity and PO

activity under high-nutrition conditions (Spearman’s rho, r=+0.06,
n.s., N=24). However, there was a positive correlation between the
two assays in both the low-nutrition group (Spearman’s rho, r=
+0.724, P<0.0001, n=26) and the absent-nutrition group
(Spearman’s rho, r=+0.438, P=0.038, n=20). Moreover, there was
a negative correlation between GSH concentrations and PO activity
under high-nutrition conditions (Spearman’s rho, r=−0.41, P=0.05,
n=24), and no correlation in either the low-nutrition (Spearman’s
rho r=−0.24, P=0.24) or absent-nutrition (Spearman’s rho, r=
−0.09, P=0.72, n=20) groups, even though GSH is important for
reducing PO-generated damage (Clark et al., 2010).

Immune gene expression
Constitutive
The relative expression of six immune-related genes did not differ
between caterpillars fed the low- (n=6) and high-nutrition diets
(n=6; Fig. 4). However, caterpillars fed the absent-nutrition diet
showed a significant upregulation of spätzle (5.4-fold, P=0.005),
hemolin (13.6-fold, P=0.006), attacin-1 (6.2-fold, P=0.04) and
PAP-3 (5.4-fold, P<0.0001) compared with caterpillars reared on
the high-nutrition diet (Fig. 4).

Inducible
An immune challenge caused an upregulation of hemolin (54.9-
fold, P=0.02), attacin-1 (23.1-fold, P=0.007), PAP-3 (19.2-fold,
P=0.003), lysozyme (5.1-fold, P=0.01) and spätzle (5.3-fold,
P=0.006) in high-nutrition caterpillars (n=5) relative to
unchallenged high-nutrition controls (n=5). Only serpin-3 was

unchanged (P=0.83). Low-nutrition caterpillars (n=5) showed the
same pattern of upregulation, but the upregulation was smaller than
that of controls, and for some genes (e.g. lysozyme, P=0.25 and
spätzle, P=0.25) the upregulation was not statistically significant
(Fig. 5). Absent-nutrition caterpillars (n=5) given an immune
challenge had higher levels of expression of hemolin (11.4-fold,
P=0.005) than did unchallenged high-nutrition controls. However,
this increase is similar to the increase in hemolin gene expression
found in unchallenged absent-nutrition caterpillars relative to high-
nutrition controls (13.6-fold, P=0.006; Fig. 4). Absent-nutrition
caterpillars did not upregulate the other assessed immune genes
(Fig. 5). Instead, serpin-3 (0.06-fold, P=0.048) was significantly
downregulated relative to high-nutrition controls.

Host resistance tests
Caterpillars fed the high-nutrition diet (n=30) had greater resistance
to the Gram-negative bacterium S. marcescens than caterpillars fed
the low-nutrition diet (n=21; log-rank Mantel–Cox, χ2

1
=30.64,

P<0.0001; Fig. 6). High-nutrition caterpillars (n=52) also had
greater resistance to the Gram-positive bacterium B. cereus than
low-nutrition caterpillars (n=46; log-rank Mantel–Cox, χ2

1
=30.48,

P<0.0001; Fig. 6). High- (n=50) and low-nutrition (n=52) animals
did not differ in susceptibility to fungal challenge (log-rank Mantel-
Cox, χ2

1
=0.06, P=0.80). Injection of caterpillars fed the absent-

nutrition diet exhibited reduced lifespan compared with uninjected
controls (n=20) for all three pathogens (S. marcescens, n=15, log-
rank Mantel–Cox, χ2

1
=34.9, P<0001; B. cereus, n=45, log-rank

Mantel–Cox, χ2
1
=52.6, P<0.0001; B. bassiana, n=41, log-rank

Mantel–Cox, χ2
1
=28.0, P<0.0001).

Changes due to age
Younger caterpillars (fifth instar-day 1, n=21) were lighter and had
less lipid than fifth instar-day 2 caterpillars fed the high-nutrition
(i.e. normal) diet (Fig. 2, Table 1). However, the concentrations of
trehalose and glucose in the hemolymph were the same as on day 2
(Table 1). Fifth instar-day 1 caterpillars had significantly higher
concentrations of trehalose and glucose in their hemolymph than
caterpillars fed a low- or absent-nutrition diet (Table 1). Younger
caterpillars, like older fifth instar-day 2 caterpillars, had higher GSH
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Fig. 4. Constitutive immune gene expression varies according to diet in
Manduca sexta caterpillars. Bars represent means and error bars represent
the s.e.m. (n=6 for all groups). Asterisks represent values statistically different
(P<0.05) from high-nutrition controls, whose expression values have been
normalized to 1.
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Fig. 5. Inducible immune gene expression varies according to diet in
Manduca sexta caterpillars. Bars represent means and error bars represent
the s.e.m. (n=5 for all groups). Asterisks represent values statistically different
(P<0.05) from unchallenged high-nutrition controls, whose expression values
have been normalized to 1.
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levels in their hemolymph than absent-nutrition caterpillars
(Dunnett’s P<0.001; Fig. 3), but had fewer hemocytes than older
caterpillars (Dunnett’s P=0.001; Fig. 3). Their PO activity
(Dunnett’s P=0.99) and lysozyme activity (Dunnett’s P=1.0) were
the same as those of fifth instar-day 2 caterpillars (Fig. 3).

Test of gut integrity
Caterpillars from all three diets had bright red digestive tracts (n=10
per group). However, the fat body, Malpighian tubules and other
tissues showed no traces of dye. Therewas no evidence of dye in any
of the blood samples (F2,29=0.66, P=0.53). Therefore, there is no
evidence for a lack of integrity of the gut in the food-limited
caterpillars.

DISCUSSION
As predicted, declining resource availability did not result in a
global suppression of immune function, but instead resulted in a
shift in the pattern of the immune response (Fig. 1). Caterpillars
faced with the most severe reduction in resources showed increased,

not decreased, constitutive expression of some immune genes
(Fig. 5) and greater constitutive immune function (Fig. 4) than did
better-fed controls.

Contrary to our prediction, severe food limitation induced a shift
towards constitutive immune function and away from inducible
responses (Fig. 1). For example, constitutive expression of lysozyme
was maintained on the absent-nutrition diet, and this result was
corroborated by the maintenance of lysozyme-like activity in this
group. However, lysozyme, which is both a constitutive and an
inducible immune component (He et al., 2015), was not upregulated
during an immune challenge in the absent-nutrition group,
suggesting a decrease in lysozyme as an inducible response
(Fig. 5). Furthermore, some immune components that were
inducible in well-fed controls were constitutively upregulated in
the absent-nutrition group (e.g. attacin-1 and spätzle), but were not
induced upon challenge (Figs 4 and 5). In fact, absent-nutrition
caterpillars showed little, if any, inducible responses, especially
when the fact that their immune genes are constitutively upregulated
was taken into account (Figs 4 and 5). Food-deprived Drosophila
(Becker et al., 2010) and mosquitoes (Aedes aegypti; Price et al.,
2015) also show a similar shift towards a more constitutive
expression of inducible antimicrobial genes (Becker et al., 2010),
suggesting that this may be a common response in insects.

Prioritizing the early constitutive response may give resource-
strapped caterpillars the best disease resistance when investment in
immunity is reduced. Insects, including M. sexta (Dunn and Drake,
1983), respond to the presence of pathogens using a two-stage
process (Haine et al., 2008; Johnston et al., 2014). The initial
response, using constitutively available components (e.g. PO
activity), removes most of the invading pathogens and the slower,
inducible responses mop up any pathogens that escape the original
attack (Haine et al., 2008). The initial constitutive response may be
the immune response that is the most important for survival (e.g.
Lochmiller and Deerenberg, 2000; Dubovskiy et al., 2013).

We had predicted that PO activity would be reduced with food
limitation because it can be damaging (Gonzalez-Santoyo and
Cordoba-Aguilar, 2012); however, this important constitutive
response was enhanced (Figs 1, 3). Food limitation also induced
changes that we speculate would lead to a lowered threshold for PO
activation. The gene for PAP-3, an activator of the PO cascade, was
upregulated constitutively with severe food limitation, whereas the
gene for serpin-3, an inhibitor of PAP-3 (Kanost and Gorman,
2008), and probably of spätzle as well (Christen et al., 2012), was
one of the few genes not upregulated by food limitation.
Furthermore, during an immune challenge, serpin-3 was
downregulated in absent-nutrition caterpillars, possibly decreasing
inhibition of PO activation. In other words, absent-nutrition
caterpillars were in a pro-inflammatory state (Paddibhatla et al.,
2010), potentially allowing them to have an augmented early
response to pathogens; however, this remains to be empirically
tested. Once an immune response was initiated, further
amplification was probably prevented, in part, by the lack of
upregulation of the cytokine spätzle.

The importance of buttressing the first line of defense appears to
outweigh the potential costs of this new configuration. Flies
(Scathophaga stercoraria) selected for high PO levels show
decreased longevity when starved (Schwarzenbach and Ward,
2006), suggesting that the shifts observed in the absent-nutrition
caterpillars carry costs. The reduction in GSH, which buffers insects
against reactive molecules (Guillet et al., 2000), such as those
generated by PO (Gonzalez-Santoyo and Cordoba-Aguilar, 2012),
likely contributes to these costs. However, by reducing GSH levels,
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food-limited caterpillars may maximize the ability of immune-
generated reactive molecules to destroy pathogens because GSH can
also inhibit PO activation if levels are locally high (Clark et al.,
2010). Unfortunately, this strategy will also increase the risk of
damage to the host, and probably helps explain why absent-nutrition
caterpillars were more sensitive to paraquat, a chemical that
generates oxidative stress (Halliwell and Gutteridge, 2007). GSH
requires the sulphur-containing amino acid cysteine, and this amino
acid is not abundant in the diet of leaf-eating caterpillars (Barbehenn
et al., 2013); therefore, a reduction in GSH with food limitation may
be unavoidable.
Network reconfiguration also led to changes that may mitigate

costs. For example, hemolin, an immune recognition molecule
(Jiang, 2008), was the only immune gene tested that showed
both constitutive and inducible upregulation in nutrient
absent caterpillars (Fig. 5). Hemolin can bind to bacterial
lipopolysaccharides and by facilitating interactions with
lipophorins, lead to the detoxification of these compounds
(Schmidt et al., 2010). This may be an important alternative
method of reducing pathogen-generated damage if molecules such
as GSH are unavailable. Hemolin is a much larger molecule than
GSH (it contains 411 amino acids, including several that contain
sulphur; Ladendorff and Kanost, 1991), but it may be less likely to
dampen early immune responses than GSH. The changes in
hemolin and GSH may reflect network changes designed to both
enhance PO activity and to mitigate some of the costs due to
damage. Food limitation also activates the stress response in insects
(Davenport and Evans, 1984), and leads to the upregulation of
molecules that buffer homeostasis (e.g. heat shock proteins; King
and MacRae, 2015). This stress response may also mitigate some of
the costs of reducing GSH and increasing PO.
Hemocyte number exhibited a complex response to food

limitation. Hemocyte numbers declined in low-nutrition
caterpillars, but were maintained in absent-nutrition caterpillars.
The decline in hemocyte number in low-nutrition caterpillars may
be immunologically significant; M. sexta showed reduced
encapsulation when fed a low-nutrition diet (Diamond and
Kingsolver, 2011). However, changes in hemocyte number are
difficult to interpret. Hemocytes can reside in the hematopoietic
organ (Nardi et al., 2003), as well as in the hemolymph and along
the surface of organs, and can be released upon challenge (Strand,
2008). Therefore, absent-nutrition animals may have maintained
their hemocyte number by mobilizing hemocyte stores, not because
they maintained hemocyte production. If this second possibility
were correct, this would also suggest a shift from an inducible to
constitutive response type.
We found no evidence of a negative trade-off between PO activity

and lysozyme-like activity under control or food-limited conditions,
although this has been reported for some insects (e.g. Cotter et al.,
2004, 2011; Ardia et al., 2012). This difference may be due, in part,
to species differences, but may also be due to methodological issues,
especially regarding how PO activity is measured (e.g. Laughton
and Siva-Jothy, 2011; Moreno-Garcia et al., 2013; Kohlmeier et al.,
2015). Lysozyme appears to regulate PO activity during an immune
response (e.g. Rao et al., 2010; Zdybicka-Barabas et al., 2014), but
this does not mean that there is a negative trade-off between the two
at the systemic level.
Both experimental diet treatments lowered the energy resources

of the caterpillars (Table 1). The values found in this study are
within the range of those found in earlier studies on food-limitedM.
sexta (Kramer et al., 1978; Siegert, 1986, 1987; Siegert et al., 1993;
Bedoyan et al., 1992; Ismail and Matsumura, 1992; Meyer-

Fernandes et al., 2001; Beetz et al., 2008). Surprisingly, the
caterpillars on the low-nutrition diet managed to maintain their
mass, including their dry mass, despite the decline in lipid stores.
Possibly the digestive system of the low-nutrition caterpillars
increased in mass as it attempted to extract resources from the low-
nutrition food. Such an increase occurs in third-instar larvalM. sexta
when food consumption is reduced, although only under conditions
of high predation risk (Thaler et al., 2012).

Absent-nutrition caterpillars were not exhibiting ‘pathological’
dysregulated functions, despite the low levels of some measures
(Table 1). Although 2 days of starvation produced substantial
physiological effects, caterpillars will develop normally if re-fed at
this point (Cymborowski et al., 1982). Moreover, the caterpillars
typically lived approximately 1 week on the cellulose diet.
Therefore they were not ‘dying’ on fifth instar-day
2. Furthermore, food-limited caterpillars were not simply
developmentally delayed. Caterpillars fed the low- or absent-
nutrition diet showed physiological differences (e.g. lower blood
sugar levels) from younger (i.e. fifth instar-day 1) caterpillars (e.g.
Figs 2, 3, Table 1).

Effects on disease resistance
Food limitation led tomixed effects on disease resistance in this study
(Fig. 6) and mixed effects have been found in other insects (Ponton
et al., 2013), including an increase in disease resistance to some
pathogens (e.g. D. melanogaster, Ayres and Schneider, 2009; tent
caterpillars Malacosoma pluviale californicum, Myers et al., 2011;
crickets, Gryllus texensis, Kelly and Tawes, 2013; Galleria
mellonella, Kangassalo et al., 2015). Pathogens differ in their
sensitivity to different components of the host’s immune system
(Chambers et al., 2012). Therefore, as immune system networks
realign, resistance against specific pathogens will also change.
Presumably the configuration of well-fed caterpillars represents the
optimal configuration for their present pathogen environment.
However, our host resistance tests might underestimate the ability
of food-limited caterpillars to resist disease. It takes between 2 and
9 days for the pathogens used in this study to kill their hosts.
During this time, resources may become increasingly scarce for the
food-limited caterpillars. Therefore, the host resistance tests assess
the effectiveness of the immune configuration at the time of injection,
as well as the configuration as it changes due to age (e.g. Booth et al.,
2015) or continued nutrient loss (i.e. the food-limited groups).

Immune system network shifts
Although our data are consistent with the reconfiguration
hypothesis, this requires further testing. The PO system, for
example, consists of many activators and inhibitors (Kanost and
Gorman, 2008). For this reason it is difficult to predict the effect of
changes in the expression of a single activator and inhibitor on the
PO cascadewithout knowing the effects on the other components. A
similar issue exists with respect to changes in immune gene
expression, as many more genes are involved in immunity than were
measured in this study (e.g. see He et al., 2015; Cao et al., 2015).
Additionally, recent studies show that genes and molecules not
traditionally considered ‘immune genes’ are also important for the
immune response (Adamo et al., 2008; Unckless et al., 2015) and a
wider view is needed to develop a comprehensive understanding of
the immune system network. We also assume that without the
postulated reconfiguration, the food-limited caterpillars would be
even more susceptible to pathogens given the physiological effects
of food limitation. However, this assumption needs to be tested
empirically.
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We speculate that low-nutrition caterpillars were losing their
ability to mount an inducible response, consistent with the reduction
in metabolism that occurs during food limitation (Jiao et al., 2015).
However, they had not yet switched to the absent-nutrition
configuration. Using more diet levels, it may be possible to
determine whether there is an energy factor score threshold that
triggers an immune system conformational switch, or whether
changes occur gradually. Discrete changes in network configuration
may provide an explanation for the threshold-like effect of food
deprivation on disease resistance seen in some studies (e.g. see
discussion in McKean et al., 2008).

Network reconfiguration in other systems
Most studies have found a decline in PO activation with food
limitation (e.g. Tenebrio molitor, Siva-Jothy and Thompson, 2002;
Lestes viridis damselflies, DeBlock and Stoks, 2008; tent caterpillars
Malacosoma pluviale californicum, Myers et al., 2011), although
Yang et al. (2007) found an increase in the geometrid Epirritia
autumnata. In contrast, most studies have found no effects of food
limitation on cell-mediated immunity (e.g. encapsulation, Siva-
Jothy and Thompson, 2002; Rantala et al., 2003; phagocytosis,
Ayres and Schneider, 2009; or hemocyte number, Myers et al.,
2011), although some studies reported a decline (e.g. DeBlock and
Stoks, 2008) and others an increase (e.g. Krams et al., 2015). Food
limitation levels varied across studies, making them difficult to
compare. Our study found that different levels of food limitation
produce different immune response patterns.
Food limitation also alters vertebrate immunity (e.g. Klasing,

2007), but the complexity of the vertebrate immune system has
made it difficult to determine the functional significance of these
alterations at a network level (Afacan et al., 2012). Moreover, this
complexity probably allows for multiple possible immune system
network configurations in response to food limitation (i.e. network
degeneracy; Tieri et al., 2010), making it difficult to discern
patterns. The hypothesis that early constitutive immune responses
will have priority over inducible responses when food is limited
(Lochmiller and Deerenberg, 2000) is supported by work on birds
(e.g. Calidris canutus; Buehler et al., 2010). When access to food
was limited, first-line defense constitutive responses were
maintained, but at least one aspect of the inducible response (the
acute phase response) was reduced (Buehler et al., 2010), similar in
outline to our results in M. sexta.
Our study provides evidence that food limitation can produce a

shift in the configuration of the immune system. These shifts alter
the response patterns of individual immune components, leading to
a re-prioritization of different immune functions (e.g. Fig. 1). Such
changes will lead to different immunological strengths and
vulnerabilities for the organism. Changes in the expression and/or
activity of individual immune components during environmental
stressors such as food limitation may sometimes be better
interpreted as an example of immune reconfiguration, as opposed
to immunosuppression.
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