
COMMENTARY

Does the physiology of chondrichthyan fishes constrain their
distribution in the deep sea?
Jason R. Treberg1,2,* and Ben Speers-Roesch3

ABSTRACT
The deep sea is the largest ecosystem on Earth but organisms living
there must contend with high pressure, low temperature, darkness
and scarce food. Chondrichthyan fishes (sharks and their relatives)
are important consumers in most marine ecosystems but are
uncommon deeper than 3000 m and exceedingly rare, or quite
possibly absent, from the vast abyss (depths >4000 m). By contrast,
teleost (bony) fishes are commonly found to depths of ∼8400 m.Why
chondrichthyans are scarce at abyssal depths is a major
biogeographical puzzle. Here, after outlining the depth-related
physiological trends among chondrichthyans, we discuss several
existing and new hypotheses that implicate unique physiological and
biochemical characteristics of chondrichthyans as potential
constraints on their depth distribution. We highlight three major, and
not mutually exclusive, working hypotheses: (1) the urea-based
osmoregulatory strategy of chondrichthyans might conflict with the
interactive effects of low temperature and high pressure on protein
and membrane function at great depth; (2) the reliance on lipid
accumulation for buoyancy in chondrichthyans has a unique
energetic cost, which might increasingly limit growth and
reproductive output as food availability decreases with depth; (3)
their osmoregulatory strategy may make chondrichthyans unusually
nitrogen limited, a potential liability in the food-poor abyss. These
hypotheses acting in concert could help to explain the scarcity of
chondrichthyans at great depths: the mechanisms of the first
hypothesis may place an absolute, pressure-related depth limit on
physiological function, while the mechanisms of the second and third
hypotheses may limit depth distribution by constraining performance
in the oligotrophic abyss, in ways that preclude the establishment of
viable populations or lead to competitive exclusion by teleosts.

KEY WORDS: Elasmobranch, Shark, Skate, Ray, Chimaera,
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Osmoregulation, Buoyancy, Energetics, Hydrostatic pressure,
Nitrogen limitation

Introduction
Sharks and their relatives (class Chondrichthyes) are an ancient,
ecologically important group of fisheswith a broad distribution across
marine and freshwater habitats worldwide (Compagno, 1990). A
conspicuous exception to this pervasiveness, however, is the deep
sea – the largest habitat on Earth – yet one that poses significant
environmental challenges for animal life (Box 1). Although
chondrichthyans contribute significantly to the biomass in the

shallower regions of the deep sea (200–1500 m), they are
uncommon deeper than 3000 m and are exceedingly rare, or
perhaps absent, in the vast abyssal zone (>4000 m) (Priede et al.,
2006). By contrast, teleosts have successfully colonized the deep sea
to at least 8370 m (Priede et al., 2006; Jamieson and Yancey, 2012).
While the logistical challenges of surveying the deep-sea biota
(Merrett and Haedrich, 1997) preclude a definitive statement that
chondrichthyans are absent at abyssal depths, decades of concerted
efforts have failed to detect any reliable chondrichthyan presence in
abyssal waters (Priede et al., 2006; Jamieson, 2015). Interestingly, the
available data also clearly demonstrate that chondrichthyan species
diversity declines with depth more steeply than for the other major
classes of fishes, including teleosts (Priede et al., 2006; Priede and
Froese, 2013). The factors limiting the depth distribution of
chondrichthyans remain unresolved and their apparent absence
from the abyss continues to be a curious biogeographical puzzle,
the solution to which is particularly important because of their
ecological significance and sensitivity to fisheries (Kyne and
Simpfendorfer, 2010).

Here, we explore hypotheses that implicate physiological attributes
of chondrichthyans as potential constraints on abyssal colonization.
Physiological characteristics and capacities are thought to be
important determinants of biogeographic patterns among animals,
including those in the deep sea (Hochachka and Somero, 2002;
Somero, 1998). Our approach involves comparisons of key
physiological attributes between deep-sea chondrichthyans and
deep-sea teleosts (Fig. 1; Box 2). In particular, we draw
comparisons with the macrourids (Fig. 1D) and other large teleosts
that successfully inhabit the abyss while sharing many lifestyle and
niche characteristics with chondrichthyans, such as slow growth,
large size and tertiary trophic level consumption ranging from
carrion to megafauna to benthic macrofauna (Gartner et al., 1997;
Kyne and Simpfendorfer, 2010; Priede et al., 2006). The scarcity of
chondrichthyans in an environment where ecologically similar
teleosts thrive (>3000 m), combined with the co-existence of these
competing groups in the shallower deep sea (200–1500 m), imply that
biological features unique to chondrichthyans could be constraints
upon their competitiveness and adaptive potential in the abyss.

Chondrichthyans successfully inhabit shallower regions of
the deep sea
The prevalence of chondrichthyans along continental slopes
indicates successful adaptation to shallower deep-sea zones, thus
emphasizing their rarity below 3000 m. How has the challenging
deep-sea environment shaped key features of chondrichthyan
physiology?

Locomotion, metabolism and buoyancy
Locomotory costs, buoyancy compensation and metabolic rate
are intimately linked in fishes (Alexander, 1990; Pelster, 1997).
Fishes maintain position by a combination of hydrodynamic lift
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and hydrostatic lift, derived from muscle-powered body
movement and the accumulation of low-density molecules (e.g.
gases in the teleostean swim bladder, lipids), respectively.
Hydrostatic lift is more economical than hydrodynamic lift at
slower swimming speeds (Alexander, 1990), so the hydrostatic
strategy is preferred among fishes with a slower pace of life

(e.g. lower activity levels, routine metabolic rates), such as most
deep-sea species.

Measurement of oxygen consumption rate, a key proxy of
metabolic rate, is difficult and rare for deep-sea fishes.
Consequently, the activities of key enzymes of energy
metabolism, especially in locomotory muscle, have been valuable
for assessing metabolic capacities among deep-sea fishes because
these enzyme activities typically correlate with metabolic rate in
teleosts (Drazen and Seibel, 2007). Muscle enzyme activities
decline with depth among teleost fishes (see below), which,
combined with limited measurements of oxygen consumption rate,
imply declines in metabolic rate with depth. Although complicated
by factors such as feeding mode, locomotory mode and size scaling,
the decline appears largely to occur over the transition from the
photic to aphotic zones (0–1000 m). This has led to the visual
interaction hypothesis (VIH), which posits that the depth-related
decline in metabolic rate results from relaxed selection for
locomotory capacity to capture prey or evade predators in an
increasingly dark environment (Childress, 1995; Drazen and Seibel,
2007; Seibel and Drazen, 2007; Drazen et al., 2015). In the aphotic
zone, where the transition to darkness is complete but oligotrophy
continues to increase with depth, it has been argued also that a low
basal metabolic rate, combined with associated low capacities for
resource utilization (e.g. growth) and reduced locomotory activity,
might be beneficial for persistence under the food-poor conditions
(Cohen, 1977; Collins et al., 1999, 2005; Drazen, 2002; Bailey
et al., 2003, 2005; Priede et al., 2003; Drazen and Yeh, 2012).

Muscle enzymes as a proxy for metabolic rate
In general, locomotory muscle in fishes is spatially separated into
the aerobic ‘red’ muscle, used for slow sustained swimming, and
the anaerobic ‘white’ muscle, recruited for burst swimming. In
white muscle of teleosts, the activities of enzymes related to
glycolytic capacity decrease in correlation with the depth-related
decline in whole-animal oxygen consumption rate (Drazen and
Seibel, 2007). Glycolytic enzyme activities also decrease with
depth in white muscle of chondrichthyans, implying similarly low
metabolic rates as deep-sea teleosts (Condon et al., 2012; Drazen
and Seibel, 2007; Treberg et al., 2003). By contrast, the aerobic
enzyme activities in both types of muscles decline with depth in
teleosts but not in chondrichthyans (Condon et al., 2012; Dickson
et al., 1993; Drazen et al., 2013; Drazen and Seibel, 2007; Speers-
Roesch et al., 2006; Treberg et al., 2003). Other red muscle
aerobic/oxidative properties are comparable between deep-sea and
shallow demersal chondrichthyans (Bernal et al., 2003; Condon

Glossary
Abyssal zone or

abyss
the region of the ocean deeper than 4000 m

Aphotic zone the dark region of the ocean where little to no
sunlight penetrates (deeper than 200–1000 m
depending on local conditions)

Bathyal zone the region of the ocean at depth of 1000–4000 m
Buoyancy an upward force exerted by water that

counteracts the weight of an underwater object
Chondrichthyan a member of the Chondrichthyes, a vertebrate

class including the subclasses Elasmobranchii
(sharks, skates and rays) and Holocephali
(chimaeras)

Demersal living on or near the seafloor
Elasmobranch a member of the subclass Elasmobranchii: the

sharks, skates, and rays
Hepatosomatic index a measure of relative liver size, specifically the

proportion of total body mass that is attributable
to the liver (i.e. liver mass/total body mass)

Hydrodynamic lift buoyancy imparted by water flowing over an
animal’s surface (e.g. the body or fins)

Hydrostatic lift buoyancy imparted by compounds lighter (less
dense) than water (e.g. most lipids, all gases)

Macrofauna small animal life, typically living on the seafloor
(e.g. polychaeteworms, amphipodcrustaceans)

Macrourid a member of the teleost family Macrouridae,
commonly named grenadiers or rat-tail fishes,
which are among the most abundant deep-sea
fishes

Megafauna large, oftenhighlymobile, animal life (e.g. decapod
crustaceans, cephalopods, fishes, also carrion)

Oligotrophy an environmental condition of low nutrient and/or
food availability

Photic zone the sunlit region of the ocean, from the surface to
the depth at which light intensity is 1% of the
surface (up to 200–1000 m depending on local
conditions)

Teleost a member of the actinoptergyian infraclass
Teleostei, commonly named the bony fishes

Ureotelism mode of excretion where urea is the predominant
molecule excreted to maintain nitrogen balance

Box 1. Environmental challenges of the deep sea

The deep sea can be broadly defined as depths >200 m, incorporating the midwater (200–1000 m), bathyal (1000–4000 m), abyssal (>4000 m) and hadal
(trenches >6000 m) zones. The deep sea is characterized by five major environmental characteristics that pose challenges to the persistence of animal life
(Herring, 2002).

Challenges Environmental characteristics

Can complicate sensing of
food, predators and mates

Vast (the deep sea deeper than 1000 m comprises ∼1 billion km3, or 88% of the world’s ocean).
Dark (the photic zone typically ends at 200 m but some light may penetrate to 1000 m).

Can interfere with
physiological function and
limit physiological or
ecological capacity

Cold (4–20°C at 200–1000 m depending on latitude and thermocline depth; typically 1–4°C below 1000 m).
High hydrostatic pressure (increases at 1 atm per 10 m).
Oligotrophic (nutrient availability generally declines markedly with depth).
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et al., 2012; Dickson et al., 1993; Kryvi et al., 1981; Treberg et al.,
2003). Deep-sea chondrichthyans and teleosts swim at similar,
slow speeds (∼0.1–0.3 m s−1) (Bagley et al., 1994; Carey and
Clark, 1995; Watanabe et al., 2012), so the retention in deep-sea
chondrichthyans of greater metabolic capacity in red muscle and
aerobic capacity in white muscle suggests a greater reliance upon
sustained swimming compared with deep-sea teleosts.

Buoyancy through hydrostatic lift: lipid accumulation in liver
Many deep-sea fishes have evolved strategies to achieve neutral
buoyancy via hydrostatic lift, including watery tissues, low-density
fluid-filled spaces, reduced skeletal systems, swim bladder
enhancements (in some teleost groups, e.g. macrourids) to maintain
inflation at high hydrostatic pressure and/or sequestration of low-
density compounds (e.g. lipids) (Herring, 2002; Pelster, 1997).

Chondrichthyans lack a swim bladder but typically have a large,
lipid-rich liver that serves as a hydrostatic buoyancy organ and as a
lipid fuel depot (Table 1). The low molal density of chondrichthyan
osmolytes provides additional hydrostatic lift (Withers et al., 1994).
The accumulation of lower-density trimethylamine N-oxide
(TMAO) in the place of urea in deep-sea chondrichthyans (see
below) might enhance their buoyancy, but the benefit is small
(<10%) relative to liver lift (Tables S1, S2). Compared with shallow
species where hydrodynamic and hydrostatic lifts combine to confer
buoyancy, it has been commonly accepted that deep-sea
chondrichthyans have enlarged livers with higher lipid contents
dominated by the low-density squalene and diacylglyceryl ether
(DAGE), allowing them to approach neutral buoyancy by
hydrostatic lift alone (Bone and Roberts, 1969; Corner et al.,
1969; Nevenzel, 1989; Pethybridge et al., 2010; Wetherbee and
Nichols, 2000). However, the patterns of lipid accumulation among
deep-sea chondrichthyans are more complex and there is no
available empirical evidence that benthic deep-sea species, such as
skates, are neutrally buoyant.

Depth-related trends in liver size and lipid accumulation
Among chondrichthyans, the liver mass relative to whole body
mass (hepatosomatic index, HSI) and liver lipid content both
increase with median depth of occurrence (MDO) until
approximately 1000 m, beyond which there is a plateau and
possibly a decrease at the deepest depths (Fig. 2A,C). The
increase with depth occurs within all chondrichthyan orders with a
wide interspecies depth range, but squaloid sharks drive the depth-
related maximum because the trends are linear among
carcharhinoid sharks and batoids (Fig. 2B,D). The HSI and liver
lipid contents of the deepest batoids and carcharhinoids do not
exceed the upper limit seen in squaloids, suggesting a universal

A B

C D

Fig. 1. Representative species belonging to three
chondrichthyan groups common in the deep sea and a
teleost group common in the deep sea. (A) A chimaeroid,
the spotted ratfish (Hydrolagus colliei). Northeast Pacific
Ocean (Barkley Sound, Canada), 30 m. Species depth range:
0–971 m. Photo: Ben Speers-Roesch. (B) A rajoid, the deep-
sea skate (Bathyraja abyssicola). Northeast Pacific Ocean
(Endeavour Ridge), 2157 m. Species depth range: 362–
2906 m. Photo: Ocean Networks Canada. (C) A squaloid
shark, the Portuguese dogfish (Centroscymnus coelolepis).
Southeast Atlantic Ocean (attracted to a baited lander
offshore of Angola), 1598 m. Species depth range: 128–
3675 m. Photo: Alan Jamieson, Oceanlab, University of
Aberdeen. (D) A macrourid teleost, the abyssal grenadier
(Coryphaenoides armatus). Northeast Atlantic Ocean
(attracted to a baited lander on the Porcupine Abyssal Plain),
4800 m. Species depth range: 282–5180 m. Photo: Alan
Jamieson, Oceanlab, University of Aberdeen. Photos are not
to scale.

Box 2. Summary of comparative physiological and
biochemical patterns in chondrichthyans and teleosts
with increasing depth

Trends in deep-sea versus shallow species

Chondrichthyans Teleosts

Whole animal
Metabolic rate ↓a ↓
Growth rate ↓ ↓

Muscle function and metabolism
Protein content ↔ ↓b

WM metabolic capacity
Glycolytic ↓ ↓b

Aerobic ↔ ↓b

RM metabolic capacity ↔ ↓
Liver

HSI (% body mass) ↑ ↔c

Liver lipid (% of organ
mass)

↑ ↔c

Protein stabilization
Extrinsic (organic
osmolytes)

↑ ↑

Intrinsic (protein structure) ? ↑
aPresumed based on white muscle enzyme activities. bExceptions occur
with more active species. cMay increase with depth in some taxa such as
Gadiformes (i.e. macrourids); ?, pattern unknown (no data). See text for
relevant citations. WM, white muscle; RM, red muscle; HSI,
hepatosomatic index.
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maximum for HSI and lipid accumulation in deep-sea
chondrichthyans. This maximum simply might reflect the
attainment of neutral buoyancy, with further increases in HSI or
liver lipid content being unnecessary. Indeed, chondrichthyans
approach neutral buoyancy when HSI reaches 15–20% and liver
lipid content is 50–80%, at least in species with abundant
squalene or DAGE (Bone and Roberts, 1969). These thresholds
match the values of the depth-related apexes of HSI and liver lipid
content among chondrichthyans (Fig. 2A,B). Extrahepatic density
reductions might also occur in some groups (e.g. chimaeroids)
(Corner et al., 1969). Unlike chondrichthyans, general depth-
related trends for HSI or lipid content are absent in teleosts
(Drazen, 2007). Certain common abyssal teleosts, however, have
large, lipid-rich livers, but these primarily serve as a fuel depot (e.
g. Coryphaenoides armatus and Bathysaurus ferox: HSI adult
means, ∼9–16%; liver lipid content, ∼45% and ∼70%,
respectively; Drazen, 2007; Marshall and Merrett, 1977; Sulak
et al., 1985).
Depth-related trends in the major lipid classes found in

chondrichthyan livers show limited influence of species-specific
MDO within orders, but highlight phylogenetic influences that, in
certain cases, might relate to selection for neutral buoyancy during
historical deep-sea adaptation of higher taxa (family or order;
Fig. 3). For example, substantial hepatic accumulation of squalene is
almost exclusive to members of five speciose deep-sea squaloid
families, which all evolved from the ancestral family Squalidae
(Klug and Kriwet, 2010), a shallow group lacking squalene
accumulation (Fig. 3B; Table S3). Although squalene is optimal
for buoyancy (Table 1), its accumulation is not required for deep-sea
existence in chondrichthyans given its sporadic occurrence in other
deep-sea orders (Fig. 3, Table S3).
Among certain deep-sea chondrichthyan orders lacking squalene,

namely chimaeroids and hexanchoids (and a few squaloid species),
DAGE accumulates to high levels (>40%) instead, possibly to confer
neutral buoyancy (Fig. 3, Table S3). In chondrichthyan orders with
lower DAGE levels, including most squaloids and carcharhinoids,
DAGE might serve primarily in fine-scale buoyancy adjustment
(Malins and Barone, 1970). Aside from the prevalence of squalene in
deep-sea squaloids, squalene and DAGE contents are both
poorly related to MDO, possibly as a result of phylogenetic
influences or because in the accumulating species these lipids are
uniformly retained up to but not exceeding the level required for
neutral buoyancy.
Accumulation of squalene or DAGE strictly for buoyancy in

deep-sea chondrichthyans may come at the expense of fuel storage
(Fig. 3A,B). For example, in contrast to squalene and bulk DAGE
accumulators, the TAG-rich livers of shallow-water squalids and
virtually all carcharhinoids have low DAGE and no squalene

(Table S3; Fig. 3B). Indeed, squalene and TAG contents are
inversely related among squaloids (Fig. S1).

Emerging from these data is a scenario illustrating how
phylogeny, deep-sea adaptation and the multi-functional roles of
lipids have led to several strategies of liver lipid accumulation
among chondrichthyans. Shallow-water chondrichthyans
(MDO<500 m), whose higher metabolic capacities allow them to
rely more on hydrodynamic lift for buoyancy, do not greatly
accumulate DAGE or squalene for buoyancy, allowing them to
sequester more TAG as an energy store. Deep-sea carcharhinoids
retain the TAG-rich lipid strategy of their shallow relatives despite
penetrating to considerable depths. Conversely, buoyancy-related
lipids dominate in deep-sea squaloid families and the largely deep-
living chimaeroids and hexanchoids, with the trade-off of less lipid
accumulation as metabolic substrate (e.g. TAG, DAGE). Given
that chimaeroids and squaloids occur much deeper than
carcharhinoids (see Fig. 2), selection for a dedicated and more
efficient method of achieving neutral buoyancy (i.e. bulk use of
low density squalene and/or DAGE) during deep-sea adaptation in
chondrichthyans may have outweighed the benefits of storing lipid
fuel in an oligotrophic environment. Unfortunately, the
lipid accumulation strategy is unknown for deep-sea skates,
which rival squaloids as the deepest chondrichthyans. In
comparison, deep-sea teleosts such as macrourids store liver
lipids as metabolic fuel rather than for buoyancy, so they have
TAG-rich livers with negligible DAGE or squalene (Drazen, 2007;
Drazen et al., 2009).

Osmoregulation
Marine chondrichthyans are ion-regulating osmoconformers.
Urea is the primary osmolyte accumulated in shallow marine
chondrichthyans, followed by trimethylamine oxide (TMAO) and
glycine-betaine, methylamines that probably counteract the
perturbation of macromolecular structure and function by high urea
levels (Yancey, 2005). Hydrostatic pressure can also destabilize
proteins (Yancey, 2005). Among teleosts, which have low urea levels,
tissue levels of stabilizing methylamines rise with increasing depth
(to ∼380 mmol kg−1 at 7000 m) (Yancey et al., 2014), possibly to
counteract increasing pressure (Samerotte et al., 2007). A similar
depth-related increase of muscle TMAO, and to a lesser extent
glycine-betaine, occurs among chondrichthyans but only up to a
MDO of ∼1000–1500 m, after which a plateau at ∼300 mmol kg−1

appears to occur (Fig. 4A). Interestingly, urea content in muscle
declines linearly with MDO among chondrichthyans (Fig. 4B). This
reciprocal accumulation of stabilizing osmolytes with decreasing
levels of urea is consistent with a strategy of recruiting the stabilizing
effects of trimethylamines to balance the destabilizing effects of
pressure and urea on proteins (Laxson et al., 2011).

Table 1. Major lipid classes accumulated in livers of chondrichthyans and their functional roles

Lipid
Densitya

(g l−1)
Lifta (g per ml
lipid) Functional roleb

Triacylglycerols (TAG) 0.93 +0.095 Primarily a metabolic fuel (released as free fatty acids or converted and released as
ketone bodies)

Diacylglycerol ethers
(DAGE)

0.89 +0.135 Buoyancy control as well as metabolic fuel (but used at lower rates than TAG)

Squalene 0.86 +0.165 Primarily buoyancy; a relatively metabolically inert intermediate of cholesterol
synthesis

The lipids accumulated are lighter than water and energetically rich so can serve roles in buoyancy or as metabolic fuel, respectively.
aValues for density (at 1 atm, 20°C) and lift (versus seawater of density 1.025 g ml−1) are taken from Phleger (1998).
bSee Ballantyne (1997); Nevenzel (1989); Speers-Roesch and Treberg (2010).
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Life history
As K-selected organisms, chondrichthyans grow slowly and invest in
few, well-developed young. Deep-sea chondrichthyans have even
slower growth rates, later maturation, lower fecundity and longer
reproductive cycles compared with shallow species, a pattern similar
to that seen in teleosts (Drazen and Haedrich, 2012; Kyne and
Simpfendorfer, 2010; Rigby and Simpfendorfer, 2015). All three
chondrichthyan reproductive modes (egg-laying, aplacental live
birth, placental live birth) occur among deep-sea taxa (Rigby
and Simpfendorfer, 2015). Deep-sea teleosts also feature diverse
reproductive modes, including live birth (Merrett, 1994). However,
the broadcast spawning and planktonic larval stages of many
deep-sea teleosts, including macrourids, are distinct from the
internally fertilizing, directly developing chondrichthyans (Priede
et al., 2006).

Why are chondrichthyans rare in the abyss?
Has the physiology of chondrichthyans constrained their ability to
tolerate, compete in, or adapt to the deep-sea environment? Priede
et al. (2006) pointed out that, rather than a single explanation,

multiple factors might combine to limit chondrichthyan depth
distribution. Below, we consider multiple hypotheses involving
potential incompatibilities between chondrichthyan physiology and
the environmental challenges of the deep sea (Box 1). Priede et al.
(2006) convincingly discounted darkness and cold temperature as
limitations, so we ignore these.

High hydrostatic pressure
Constraints imposed by interaction with the chondrichthyan solute
system
Recently, the capacity for organic osmolyte accumulation has
been hypothesized to limit depth distribution in chondrichthyans,
as well as teleosts (Laxson et al., 2011; Yancey et al., 2014).
Among chondrichthyans, Laxson et al. (2011) showed that the
decline in muscle urea content with depth of capture intercepts
zero urea at approximately 4700 m, which is close to the
maximum recorded depths of capture for chondrichthyans
(∼4000 m). Our regression, using MDO, intercepts zero urea
near 6000 m, well beyond known chondrichthyan depth limits
(Fig. 4B). Regardless, as depth passes 5000 m, urea theoretically

Median depth of occurrence (m)
0 500 1000 1500 2000 2500 3000

Chimaeriformes (chimaeras)
Hexanchiformes (six- and seven-gill sharks)
Squaliformes (dogfish sharks)
Squatiniformes (angel sharks)
Lamniformes (mackerel sharks)
Carcharhiniformes (ground sharks)
Rajiformes (batoids: skates and rays)
Other orders

Squaliformes (dogfish sharks)
Squaliformes <1115 m (overlapping
with Carcharhiniformes depth range) 
Carcharhiniformes (ground sharks)

Rajiformes (batoids: skates and rays)

All regressions are significant (see caption for details)
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Fig. 2. Hepatosomatic index (HSI, % of body mass) and liver lipid content (% of liver wet mass) as a function of median depth of occurrence among
chondrichthyans. HSI and liver lipid in chondrichthyan fishes (A,C) or within each of the three most speciose and successful deep-sea chondrichthyan orders
(B,D). Data points represent individual species. Median depth of occurrencewas used to approximate the depths at which species aremost commonly found. Our
analysis includes species with MDO overlapping or approaching the deepest MDO known for chondrichthyan fishes, which are for species in the most successful
chondrichthyan groups in the deep sea: carcharhinoids (∼1500 m, Apristurus spp.), chimaeroids (1925 m, Hydrolagus pallidus), squaloids (2500 m, Etmopterus
princeps) and batoids (2400 m,Rajella bigelowi; 2700 m, Bathyraja pallida) (Kyne and Simpfendorfer, 2010). Akaike information criterion (AICc; GraphPad Prism
v5.0b) was used to determine the best fit of five biologically plausible non-linear regression models that commonly describe depth-related biological phenomena:
linear, log-log, exponential, hyperbolic or quadratic polynomial. Regression equations (GraphPad) for A and C are: y=4.084+0.02275x+−0.000007117x2;
y=36.51+0.04756x+−0.00001391x2. Regression equations, R2 and P values: (B) Squaliformes: y=6.146+0.02352x+−0.000007714x2, R2=0.38, P<0.001;
Squaliformes <1115 m: y=0.01114x+10.28, R2=0.26, P<0.01; Carcharhiniformes: y=0.004492x+15.39, R2=0.44, P<0.0001; Rajiformes: y=0.005586x+3.309,
R2=0.69, P<0.0001. (D) Squaliformes: y=80.95x/(125.8+x),R2=0.36, P<0.01; Squaliformes <1115 m: y=0.01387x+57.65,R2=0.20, P<0.05; Carcharhiniformes:
y=0.0189x+43.84, R2=0.16, P<0.05; Rajiformes: y=0.01457x+39.48, R2=0.36, P<0.005. Raw data and references are provided in Table S3. Compiled literature
values for HSI and liver lipid composition have been deposited in Excel format at https://dx.doi.org/10.6084/m9.figshare.1614828.
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would have to be replaced entirely by stabilizing solutes in
order to maintain osmoconformation. Yet, for unknown
reasons, stabilizing solute accumulation does not appear to
exceed ∼300 mmol kg−1 in chondrichthyans examined to date
(Fig. 4A). Thus, the abyssal rarity of chondrichthyans may be
related either to an inability to attain very low urea levels or to
an inability to replace urea with other solutes as depth increases
(Laxson et al., 2011). It remains unclear why deep-sea
chondrichthyans could not eliminate urea and osmoconform
solely with stabilizing solutes (e.g. TMAO). In fact, the deepest-
sampled teleosts (∼7000 m) can accumulate higher muscle
TMAO (∼380 mmol kg−1), making their muscle nearly
isosmotic with seawater; extrapolation of the interspecies depth
trend for teleosts predicts complete isosmosis at approximately
8000–8500 m, coinciding remarkably well with the maximum
depth at which teleost fish have been found (Yancey et al., 2014).
Furthermore, although urea-requiring enzymes occur in marine
elasmobranchs (Yancey and Somero, 1978), urea accumulation
is not a prerequisite for chondrichthyans given the evolution
of non-ureotelic freshwater stingrays. Perhaps non-ureotelic

osmoconformation could evolve in marine chondrichthyans
inhabiting great depths, but with the insurmountable trade-off of
a permanently abyssal existence that might be incompatible with
other aspects of chondrichthyan biology.

Constraints imposed by interactions of membranes with solute
system and pressure
Increasing hydrostatic pressure and decreasing temperature cause
phospholipid bilayer membranes to become less fluid, which can
perturb function of the membrane andmembrane-bound proteins. In
response, deep-sea animals have membranes with a composition of
phospholipid fatty acids that increases inherent fluidity (e.g. by
removing saturated fatty acids), thus combating pressure- and
temperature-induced stiffening (Cossins and Macdonald, 1989;
Somero, 1992). The impacts of ureotelism on membranes might
constrain the potential for such deep-sea membrane adaptation in
chondrichthyans: they have highly saturated membranes that could
have lower intrinsic fluidity than those of teleosts, possibly as an
adaptation to urea, which makes membranes more fluid (Barton
et al., 1999; Glemet and Ballantyne, 1996). Furthermore, the depth-
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Fig. 3. Liver triacylglycerol,
diacylglycerol ether and squalene
contents as a function of median
depth of occurrence among
chondrichthyans. TAG, DAGE and
squalene levels in chondrichthyan
fishes (A,C,E) and within each of the
two most speciose and successful
deep-sea chondrichthyan orders
(B,D,F). Data points represent
individual species. See Fig. 2 for
further details on AICc analyses. NS,
not significant (P>0.05). Regression
equations (significant regressions
only) are: (A) y=71.63x/(1128+x);
(B) Squaliformes: y=78.98x/(684.5+x);
(C) y=−0.7724+0.07536x
−0.0000372x2; (D) Carcharhiniformes:
y=13.01x/(853.2+x);
(E) y=81.64e(−0.0009646x);
(F) Squaliformes: y=8180x−0.8958.
Raw data and references are provided
in Table S2. Compiled literature
values for liver lipid composition have
been deposited in Excel format at
https://dx.doi.org/10.6084/m9.figshare.
1614828.
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related decline of urea content in chondrichthyans might further
exacerbate the stiffening effects of high pressure and low
temperature. Thus, we propose that interactions between the
membranes and solute system of chondrichthyans may limit depth
distribution because the magnitude of fluidizing membrane
adaptation required to counteract the combined effects of depth-
related changes in urea, pressure and temperature eventually may
become unattainable as depth increases. Unfortunately, comparable
data on deep-sea chondrichthyan membranes are scant, warranting
the study of membranes from diverse chondrichthyans across
multiple depths.

Oligotrophy
Nutritional energy input (e.g. dissolved organic carbon levels) and
animal biomass (prey availability) decline markedly with depth
(Guo et al., 1995; Wei et al., 2010). The metabolically sluggish

lifestyle typical of deep-sea fishes is therefore advantageous,
combining low basal metabolism, low activity, slow growth and,
at least in some species, high food conversion efficiency (Koslow,
1996, 1997). Below, we assess the general hypothesis that
chondrichthyans are excluded from the oligotrophic abyss because
they have distinct metabolic and nutritional demands compared with
teleosts (Musick and Cotton, 2015; Priede et al., 2006).

Metabolic and locomotory constraints
Contrary to this general hypothesis, enzymatic indices of white
muscle glycolytic capacity suggest similar depth-related declines in
metabolism between chondrichthyans and teleosts (Condon et al.,
2012). However, the retention of aerobic capacity in muscles of
chondrichthyans, but not teleosts, suggests a heavier reliance on
costly endurance swimming, which could be inappropriate for an
abyssal existence. Similarly, the abyssal exclusion of certain bathyal
teleosts has been attributed to their higher activity levels and
metabolic rates compared with abyssal macrourids such as
C. armatus (Collins et al., 2005). Because of scarce data, this
notion remains speculative, warranting further study.

Constraints imposed by the energetics of lipid-based buoyancy
Despite depth-related decreases in food supply, even the deepest-
living chondrichthyans maintain an enlarged, lipid-rich liver,
probably to improve buoyancy and locomotory efficiency
(Fig. 2). Priede et al. (2006) argued that the depth distribution of
chondrichthyans is limited primarily because this enhanced liver
lipid accumulation is energetically unsustainable in the oligotrophic
abyss, with the accumulated lipid costing 100–1000 times more
energy than inflating a swimbladder to achieve the equivalent
buoyancy in abyssal teleosts. Here, we deconstruct Priede et al.’s
(2006) proposal in order to identify potential underlying
mechanisms.

Buoyancy costs: lipid-based buoyancy as a growth penalty
Priede et al.’s (2006) comparison of the energy invested in buoyancy
organs ignored the partitioning of lipid accumulation cost in
chondrichthyan energy budgets and the cost of large, fatty livers
found in certain abyssal teleosts. Unlike the swimbladder, lipid-
based buoyancy is not a basal (i.e. constantly required for life)
energy expenditure, but rather accrues cost only when the animal is
growing. During growth, the additional body mass must be buoyed
by synthesis or sequestration of new lipid, which will decrease
growth efficiency under a given food intake compared with teleosts,
where the equivalent buoyancy is achieved, at a lower cost, by
swimbladder inflation (Box 3). Thus, refining Priede and
colleagues’ proposal, we suggest that the penalty of lipid-based
buoyancy in deep-sea chondrichthyans is, simply, lower growth
efficiency and later maturation compared with deep-sea teleosts.
This penalty is best illustrated by thewhole-body energy content (i.e.
kJ invested per kg of fish) of deep-sea chondrichthyans, which,
primarily because of their larger and fattier livers, is approximately
1.4- to 1.6-fold greater than for deep-sea macrourids (Bulman et al.,
2002; Crabtree, 1995; J.R.T. and B.S.-R., unpublished calculations).
In other words, given comparable food intake and the similar
conversion efficiencies of teleosts and chondrichthyans (Wetherbee
and Cortés, 2004), the chondrichthyans require 40–60% more
digestible energy to equal the macrourid’s growth. Thus, the actual
consequence of lipid accumulation in deep-sea chondrichthyans
should be a roughly 30–40% lower growth rate than abyssal teleosts.
However, growth constants (k) are similar between deep-sea
chondrichthyans and teleosts, suggesting comparable growth rates
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Fig. 4. Relationships between muscle trimethylamines or urea and
median depth of occurrence (MDO) among chondrichthyan fishes.
(A) Muscle trimethylamine and (B) urea contents. Data points represent
individual species. There is no clear intraspecific pattern of increasing muscle
trimethylamine content with increasing depth of capture in chondrichthyans
(Laxson et al., 2011), thus for species captured from multiple depths we have
combined all solute values into a single mean. The power relationship [grey
lines where TMAO is y=30x0.27 (R2=0.65, P<0.001) or TMAO+GB is y=52x0.21

(R2=0.66,P<0.001), respectively] is favoured by AICc, but prevents calculation
of an asymptotic maximum content; as such we also include the results for a
hyperbola [black lines where TMAO is y=84+(274x)/(1463+x) or TMAO+GB is
y=101+(214x)/(668+x), respectively], which mirror the modelled power
relationships and have comparable R2 values. The urea line is best fit by the
linear relationship of y=319–0.054x (R2=0.5, P<0.001). TMAO, trimethylamine
oxide; GB, glycine-betaine. Data are from Kelly and Yancey, 1999; Laxson
et al., 2011; Robertson, 1989; Treberg et al., 2006; Treberg andDriedzic, 2007.
For the unknown Bathyraja species from Kelly and Yancey (1999), we used
depth of capture rather thanMDO. Also included are the average values for two
Somniosus microcephalus (urea: 226, 221 mmol kg−1; TMAO: 202,
149 mmol kg−1; median depth of occurrence 1100 m; J.R.T. and
W. R. Driedzic, unpublished results) and values for Amblyraja hyperborea
(N=9, urea: 185±8 mmol kg−1; TMAO: 132±8 mmol kg−1; median depth of
occurrence 1400 m; C. Brandt, W. G. Anderson, J. D. Reist and J.R.T.,
unpublished results).
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(Drazen and Haedrich, 2012; Kyne and Simpfendorfer, 2010). The
growth penalty of lipid accumulation therefore may be compensated
by a greater caloric intake, as observed in one available study on the
daily rations of deep-sea chondrichthyans and co-existing teleosts
(Madurell andCartes, 2005). If so, poor food availability in the abyss
and resource competition with teleosts, combined with the
aforementioned growth penalty, could make chondrichthyans more
susceptible to competitive exclusion by more efficiently growing
abyssal teleosts. Under this mechanistic proposal for how
lipid accumulation in deep-sea chondrichthyans might constrain
abyssal colonization, the barrier is set ultimately by biotic factors,
acting upon a proximate growth penalty imposed by lipid
accumulation.

Lipid-based buoyancy as a constraint on starvation tolerance
The dual role of liver lipids in buoyancy and energy storage in
chondrichthyans may place additional constraints upon abyssal
colonization.Musick and Cotton (2015) suggested that mobilization
of lipid fuels (TAG, DAGE) to sustain fasts between infrequent
meals in the abyss could compromise neutral buoyancy, leading to
unsustainable locomotory costs. However, because of associated
mobilization of body protein mass, HSI and liver lipid content of
sharks are maintained during prolonged starvation (Baldridge,
1972; Kajimura et al., 2008), suggesting unperturbed buoyancy.
Thus, the actual disadvantage in these species might be the loss of
body protein, which could hinder performance compared with
teleosts, where the swimbladder easily buffers any buoyancy loss
resulting from lipid mobilization. Among abyssal teleosts lacking
swimbladders (e.g. snailfishes), the reliance upon alternative
density reduction strategies (e.g. buoyant fluid spaces) (Pelster,
1997) could buffer such buoyancy loss.
Accumulation of relatively inert squalene, and its trade-off

against TAG levels (Fig. 3), could limit starvation endurance in
deep-sea squaloids (Musick and Cotton, 2015). However, it is
unclear whether a starvation (or any other) penalty of squalene
accumulation constrains depth limits because squalene-
accumulating squaloid sharks are the deepest chondrichthyans
(along with skates, in which squalene presence remains

unexplored). In fact, the high lift of abundant squalene may lessen
the impact upon buoyancy of mobilization of available TAG.

Reproductive constraints
Deep-sea chondrichthyans have notably low fecundity and long
reproductive cycles. The growth penalty of lipid-based buoyancy
proposed above could impact maturation and reproductive potential,
constraining reproductive viability of abyssal populations. Indeed,
the intrinsic rebound potential of deep-sea chondrichthyan
populations decreases with depth but ceases to decline below a
maximum depth of occurrence of ∼1500 m, suggesting a lower
viable limit on life history parameters (Simpfendorfer and Kyne,
2009). Furthermore, the egg yolk, which is the only nutrient supply
for the developing embryo in egg-layers and most aplacental live-
bearers, requires a substantial provision of hepatic lipid and protein
(Koob and Callard, 1999; Pethybridge et al., 2011). Consequently,
reproductively linked cycles in liver size and lipid content occur in
females of many chondrichthyans, including deep-sea species
(Clarke et al., 2001; Jakobsdóttir, 2001; Lucifora et al., 2002;
Pethybridge et al., 2010; Rossouw, 1987). These cycles of energy
investment by female chondrichthyans may be unsustainable in the
abyss, or could perturb buoyancy. Although the lipids allocated
from liver to yolk can make the eggs neutrally buoyant in aplacental
live-bearers (Corner et al., 1969; Pethybridge et al., 2011), thus
maintaining the mother’s overall buoyancy, this contribution to
buoyancy may decrease as the embryo depletes yolk and grows. If
so, maternal buoyancy compensation might be required, for
example by acquiring new liver lipid or relying more on
hydrodynamic lift. All of these energetic challenges of
reproduction are inapplicable to deep-sea teleosts such as
macrourids, where the swimbladder obviates the growth penalty
of lipid-based buoyancy and frees liver lipid for reproductive
investment. Additionally, the planktonic larval development of
macrourids and most other abyssal teleosts allows direct
exploitation of productive surface waters (Priede and Froese, 2013).

Constraints imposed by dietary nitrogen limitation
Ureotelism may make chondrichthyans uniquely nitrogen limited
(Wood, 2001), which could create distinct nutritional challenges for
deep-sea species. Unlike teleosts, chondrichthyans seem unable to
modulate nitrogen losses (specifically, urea efflux from the gills),
irrespective of dietary nitrogen intake (Treberg and Driedzic, 2006;
Wood et al., 2007). Indeed, urea nitrogen losses remain unchanged
even during starvation, suggesting that losses represent an
unavoidable consequence of ureotelism, rather than excretion
per se as in teleosts. When a teleost is fasted, whole-body
nitrogen losses remain low until the body lipid and glycogen
stores are depleted and they shift to protein catabolism (Black and
Love, 1986), at which point whole-body nitrogen losses are
expected to increase. By contrast, post-prandial nitrogen losses
might already be minimized in chondrichthyans. If so, unlike
teleosts, elasmobranchs are physiologically poised to maximize
retention of dietary nitrogen, which is consistent with urea-retention
mechanisms identified in their gills and kidneys (Ballantyne and
Robinson, 2011). Unavoidable urea/nitrogen losses leading to
persistent nitrogen demand for urea synthesis may also explain the
preferential catabolism of body protein, rather than liver lipid,
during starvation in sharks (Baldridge, 1972; Kajimura et al., 2008).
Thus, the low, stochastic and intermittent abyssal food supply may
cause a regular, problematic demand for body protein catabolism for
urea synthesis in chondrichthyans, to accommodate persistent losses
at the gills. Note, diffusional losses are driven by the concentration

Box 3. Where do energetic costs of hydrostatic buoyancy
fit in energy budgets?

The simplest expression for an animal’s energy metabolism is:
Energyin (food energy)=Energyout (energy use and loss)
This equation can be expanded:

Energyin = Digestion + Feces + Excretion + Metabolism + Activity + Growth + Reproduction

Food processing Homeostasis

Processes in red are obligatory 
costs, or losses (i.e. fecal or 
excretory loss) 

Processes in green only occur when energy intake exceeds the obligatory costs 
and losses

Maintaining swim 
bladder inflation

Lipid 
accumulation

Thus, lipid accumulation is the portioning of dietary carbon (energy) away
from reproduction or growth as lean tissues mass, whereas swimbladder
inflation is a constant basal cost regardless of feeding status. However,
while swimbladder costs are relatively small, lipid accumulation for
buoyancy requires a substantial diversion of energy, incurring a potential
growth or reproduction penalty compared with swimbladder buoyancy
(see text for further details).
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difference between organism and environment, with the latter being
∼0. Thus, even considering the lower urea contents in deep-sea
chondrichthyans, urea losses at the gills could remain significant
enough to lead to a nitrogen limitation not found in teleosts, which
might cause a reliance on body protein catabolism during food
shortages that constrains performance and growth.

Summary and conclusions
The interaction of multiple physiological and ecological factors
probably explains why chondrichthyans are rare in the abyss. Three
leading hypotheses have emerged, all of which implicate major
roles for physiological mechanisms and none of which are mutually
exclusive. First, the chondrichthyan osmoregulatory system may
limit abyssal penetration as a result of the inability to balance
stabilizing and destabilizing influences of pressure and osmolytes
on proteins, and/or through the interactive effects of temperature,
pressure and urea on membranes. Second, the reliance on lipid-
based buoyancy has a unique energetic cost that could increasingly
limit growth rate and reproductive output as oligotrophy intensifies
with depth. Third, chondrichthyans may be unusually nutrient
limited in the oligotrophic abyss because of their nitrogen-intensive
osmoregulatory strategy combined with inherent, unavoidable
nitrogen losses at their gills.
The first hypothesis, which involves an abiotic factor (hydrostatic

pressure), proposes an intrinsic and absolute physiological limit on
abyssal penetration because it implies that, if chondrichthyans
descend beyond a certain depth, the required balance of urea:TMAO
may be unattainable and/or acute, insurmountable physiological
dysfunction might occur. The second and third hypotheses, by
contrast, propose that the physiological attributes involved do not
pose absolute limits on depth range, but rather confer limits on
growth and reproduction in the abyss that prevent the establishment
of viable populations or ultimately allow teleosts to outcompete and
exclude chondrichthyan species. Under this scenario, the abyssal
rarity is influenced by physiology but ultimately determined by
biotic ecological factors, such that chondrichthyans could not spend
long periods or complete life cycles (i.e. colonize) at abyssal depths
but could make shorter, temporary forays (i.e. penetrate beyond
population range limits). To resolve whether absolute (pressure-
related) or relative (biotic) depth limits are involved, crucial albeit
challenging studies are required on chondrichthyan, teleost and prey
abundances along steep bathymetric gradients (e.g. canyon areas)
(King et al., 2008; Jones et al., 2003), long-term observations of large
food falls at abyssal depths (Kemp et al., 2006), telemetry
(Rodríguez-Cabello and Sánchez, 2014) and the effects of
hydrostatic pressure on chondrichthyans (still unstudied). Regional
variability in the depth-related decline in food availability (Wei et al.,
2010; Rex and Etter, 2010) is a particularly valuable, but
unexploited, tool to test whether oligotrophy constrains
chondrichthyan depth distribution, in which case the depth limit
should vary regionally depending on prey biomass at depth. This
prediction is testable provided detailed regional data on depth
gradients in abundance and biomass of chondrichthyans and their
prey are available. Interestingly, one localized bathymetric study
showed that suitable prey can be abundant below depths where
chondrichthyans disappear (Jones et al., 2003), possibly hinting that
oligotrophy alone does not set a depth limit. Still, seasonal lows in
seafloor biomass (Rex and Etter, 2010) could prevent year-round
abyssal persistence of chondrichthyans. Additionally, energetic
constraints on chondrichthyans remain a possible explanation for
their steeper decline in species diversity compared with the less
energetically demanding, and thus more competitive, teleosts.

Further study of fishes from the Mediterranean deep sea, which
has unusually warm waters (∼13°C versus 2–4°C elsewhere) that
could increase metabolic costs and thus accentuate metabolic
constraints, would improve our understanding of the potential
energetic determinants of chondrichthyan or teleost depth
distribution.

By combining large-scale field experiments and mechanistic
physiological approaches, it will be possible to evaluate the
hypotheses raised here to explain the vexing scarcity of
chondrichthyans in the abyss. Although deep-sea research is
challenging and expensive, these studies will also better position us
to forecast how anthropogenic impacts on the deep sea, including
expected changes in food supply and abiotic conditions resulting from
climate change (Smith et al., 2008), might alter the distribution,
physiology and ecological role of deep-sea chondrichthyan fishes.
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north-east Atlantic Ocean. J. Fish. Biol. 72, 1804-1814.

Klug, S. and Kriwet, J. (2010). Timing of deep-sea adaptation in dogfish sharks:
insights from a supertree of extinct and extant taxa. Zool. Scripta 39, 331-342.

Koob, T. J. and Callard, I. P. (1999). Reproductive endocrinology of female
elasmobranchs: lessons from the little skate (Raja erinacea) and spiny dogfish
(Squalus acanthias). J. Exp. Zool. 284, 557-574.

Koslow, J. A. (1996). Energetic and life-history patterns of deep-sea benthic,
benthopelagic and seamount-associated fish. J. Fish. Biol. 49, 54-74.

Koslow, J. A. (1997). Seamounts and the ecology of deep-sea fisheries: the firm-
bodied fishes that feed around seamounts are biologically distinct from their
deepwater neighbors - and may be especially vulnerable to overfishing. Am. Sci.
85, 168-176.

Kryvi, H., Flatmark, T., Flatmark, T. and Totland, G. K. (1981). The myoglobin
content in red, intermediate and white fibres of the swimming muscle sin
three species of shark: a comparative study using high-performance liquid
chromatography. J. Fish. Biol. 18, 331-338.

Kyne, P. M. and Simpfendorfer, C. A. (2010). Deepwater chondrichthyans. In
Sharks and Their Relatives II: Biodiversity, Adaptive Physiology, and
Conservation (ed. J. C. Carrier, J. A. Musick and M. R. Heithaus), pp. 37-113.
Boca Raton: CRC Press.

Laxson, C. J., Condon, N. E., Drazen, J. C. and Yancey, P. H. (2011). Decreasing
urea:trimethylamine N-oxide ratios with depth in chondrichthyes: a physiological
depth limit? Physiol. Biochem. Zool. 84, 494-505.

Lucifora, L. O., Menni, R. C. and Escalante, A. H. (2002). Reproductive ecology
and abundance of the sand tiger shark, Carcharias taurus, from the southwestern
Atlantic. ICES J. Mar. Sci. 59, 553-561.

Madurell, T. and Cartes, J. E. (2005). Trophodynamics of a deep-sea demersal fish
assemblage from the bathyal eastern Ionian Sea (Mediterranean Sea). Deep Sea
Res. I Oceanogr. Res. Papers 52, 2049-2064.

Malins, D. C. and Barone, A. (1970). Glyceryl ether metabolism: regulation of
buoyancy in dogfish Squalus acanthias. Science 167, 79-80.

Marshall, N. B. andMerrett, N. R. (1977). The existence of a benthopelagic fauna in
the deep-sea. Deep Sea Res. 24, 483-497.

Merrett, N. R. (1994). Reproduction in the North Atlantic oceanic ichthyofauna and
the relationship between fecundity and species’ sizes. Environ. Biol. Fishes 41,
207-245.

Merrett, N. B. and Haedrich, R. L. (1997). Deep-sea Demersal Fish and Fisheries.
London: Chapman & Hall.

Musick, J. A. and Cotton, C. F. (2015). Bathymetric limits of chondrichthyans in the
deep sea: a re-evaluation. Deep Sea Res. II Top. Stud. Oceanogr. 115, 73-80.

Nevenzel, J. C. (1989). Biogenic hydrocarbons of marine organisms. In Marine
Biogenic Lipids, Fats, and Oils, Vol. 1 (ed. R. G. Ackman), pp. 3-72. Boca Raton:
CRC Press.

Pelster, B. (1997). Buoyancyat depth. InDeep-Sea Fishes, Fish Physiology, Vol. 16
(ed. D. J. Randall and A. P. Farrell), pp. 195-237. San Diego: Academic Press.

Pethybridge, H., Daley, R., Virtue, P. and Nichols, P. (2010). Lipid composition
and partitioning of deepwater chondrichthyans: inferences of feeding ecology and
distribution. Mar. Biol. 157, 1367-1384.

Pethybridge, H., Daley, R., Virtue, P. and Nichols, P. D. (2011). Lipid (energy)
reserves, utilisation and provisioning during oocyte maturation and early
embryonic development of deepwater chondrichthyans. Mar. Biol. 158,
2741-2754.

Phleger, C. F. (1998). Buoyancy in marine fishes: direct and indirect role of lipids.
Am. Zool. 38, 321-330.

Priede, I. G. and Froese, R. (2013). Colonization of the deep sea by fishes. J. Fish.
Biol. 83, 1528-1550.

Priede, I. G., Deary, A. R., Bailey, D. M. and Smith, K. L. (2003). Low activity and
seasonal change in population size structure of grenadiers in the oligotrophic
abyssal central North Pacific Ocean. J. Fish Biol. 63, 187-196.

Priede, I. G., Froese, R., Bailey, D. M., Bergstad, O. A., Collins, M. A., Dyb, J. E.,
Henriques, C., Jones, E. G. and King, N. (2006). The absence of sharks from
abyssal regions of the world’s oceans. Proc. R. Soc. B Biol. Sci. 273, 1435-1441.

624

COMMENTARY Journal of Experimental Biology (2016) 219, 615-625 doi:10.1242/jeb.128108

Jo
u
rn
al

o
f
Ex

p
er
im

en
ta
lB

io
lo
g
y

http://dx.doi.org/10.1007/BF00691032
http://dx.doi.org/10.1007/BF00691032
http://dx.doi.org/10.1007/BF00691032
http://dx.doi.org/10.1017/S0025315400038017
http://dx.doi.org/10.1017/S0025315400038017
http://dx.doi.org/10.1071/MF01057
http://dx.doi.org/10.1071/MF01057
http://dx.doi.org/10.1071/MF01057
http://dx.doi.org/10.1007/BF00002345
http://dx.doi.org/10.1007/BF00002345
http://dx.doi.org/10.1016/S0169-5347(00)88957-0
http://dx.doi.org/10.1016/S0169-5347(00)88957-0
http://dx.doi.org/10.1017/S0025315401005008
http://dx.doi.org/10.1017/S0025315401005008
http://dx.doi.org/10.1017/S0025315401005008
http://dx.doi.org/10.1016/S0146-6291(77)80006-4
http://dx.doi.org/10.1016/S0146-6291(77)80006-4
http://dx.doi.org/10.1098/rspb.1999.0879
http://dx.doi.org/10.1098/rspb.1999.0879
http://dx.doi.org/10.1098/rspb.1999.0879
http://dx.doi.org/10.1098/rspb.2005.3189
http://dx.doi.org/10.1098/rspb.2005.3189
http://dx.doi.org/10.1098/rspb.2005.3189
http://dx.doi.org/10.1098/rspb.2005.3189
http://dx.doi.org/10.1007/BF00751027
http://dx.doi.org/10.1007/BF00751027
http://dx.doi.org/10.1007/s00227-012-1960-3
http://dx.doi.org/10.1007/s00227-012-1960-3
http://dx.doi.org/10.1007/s00227-012-1960-3
http://dx.doi.org/10.1098/rspb.1969.0003
http://dx.doi.org/10.1098/rspb.1969.0003
http://dx.doi.org/10.1007/BF00762215
http://dx.doi.org/10.1007/BF00762215
http://dx.doi.org/10.1007/BF00762215
http://dx.doi.org/10.1007/BF00345662
http://dx.doi.org/10.1007/BF00345662
http://dx.doi.org/10.1007/BF00345662
http://dx.doi.org/10.1007/BF00345662
http://dx.doi.org/10.1007/s00227-001-0747-8
http://dx.doi.org/10.1007/s00227-001-0747-8
http://dx.doi.org/10.1016/j.dsr.2006.10.007
http://dx.doi.org/10.1016/j.dsr.2006.10.007
http://dx.doi.org/10.1016/j.dsr.2006.10.007
http://dx.doi.org/10.1016/j.dsr.2011.11.002
http://dx.doi.org/10.1016/j.dsr.2011.11.002
http://dx.doi.org/10.4319/lo.2007.52.5.2306
http://dx.doi.org/10.4319/lo.2007.52.5.2306
http://dx.doi.org/10.1016/j.dsr.2011.09.007
http://dx.doi.org/10.1016/j.dsr.2011.09.007
http://dx.doi.org/10.1016/j.dsr.2011.09.007
http://dx.doi.org/10.3354/meps08106
http://dx.doi.org/10.3354/meps08106
http://dx.doi.org/10.3354/meps08106
http://dx.doi.org/10.1111/jfb.12268
http://dx.doi.org/10.1111/jfb.12268
http://dx.doi.org/10.1016/j.dsr.2015.02.013
http://dx.doi.org/10.1016/j.dsr.2015.02.013
http://dx.doi.org/10.1016/j.dsr.2015.02.013
http://dx.doi.org/10.1007/BF00351032
http://dx.doi.org/10.1007/BF00351032
http://dx.doi.org/10.1007/BF00351032
http://dx.doi.org/10.4319/lo.1995.40.8.1392
http://dx.doi.org/10.4319/lo.1995.40.8.1392
http://dx.doi.org/10.4319/lo.1995.40.8.1392
http://dx.doi.org/10.1016/S0165-7836(01)00250-8
http://dx.doi.org/10.1016/S0165-7836(01)00250-8
http://dx.doi.org/10.1016/S0165-7836(01)00250-8
http://dx.doi.org/10.3354/meps251075
http://dx.doi.org/10.3354/meps251075
http://dx.doi.org/10.3354/meps251075
http://dx.doi.org/10.3354/meps251075
http://dx.doi.org/10.1111/j.1095-8649.2007.01756.x
http://dx.doi.org/10.1111/j.1095-8649.2007.01756.x
http://dx.doi.org/10.1111/j.1095-8649.2007.01756.x
http://dx.doi.org/10.2307/1543162
http://dx.doi.org/10.2307/1543162
http://dx.doi.org/10.2307/1543162
http://dx.doi.org/10.3354/meps310065
http://dx.doi.org/10.3354/meps310065
http://dx.doi.org/10.3354/meps310065
http://dx.doi.org/10.1111/j.1095-8649.2008.01834.x
http://dx.doi.org/10.1111/j.1095-8649.2008.01834.x
http://dx.doi.org/10.1111/j.1095-8649.2008.01834.x
http://dx.doi.org/10.1111/j.1463-6409.2010.00427.x
http://dx.doi.org/10.1111/j.1463-6409.2010.00427.x
http://dx.doi.org/10.1002/(SICI)1097-010X(19991001)284:5<557::AID-JEZ12>3.0.CO;2-P
http://dx.doi.org/10.1002/(SICI)1097-010X(19991001)284:5<557::AID-JEZ12>3.0.CO;2-P
http://dx.doi.org/10.1002/(SICI)1097-010X(19991001)284:5<557::AID-JEZ12>3.0.CO;2-P
http://dx.doi.org/10.1111/j.1095-8649.1996.tb06067.x
http://dx.doi.org/10.1111/j.1095-8649.1996.tb06067.x
http://dx.doi.org/10.1111/j.1095-8649.1981.tb03774.x
http://dx.doi.org/10.1111/j.1095-8649.1981.tb03774.x
http://dx.doi.org/10.1111/j.1095-8649.1981.tb03774.x
http://dx.doi.org/10.1111/j.1095-8649.1981.tb03774.x
http://dx.doi.org/10.1086/661774
http://dx.doi.org/10.1086/661774
http://dx.doi.org/10.1086/661774
http://dx.doi.org/10.1006/jmsc.2002.1183
http://dx.doi.org/10.1006/jmsc.2002.1183
http://dx.doi.org/10.1006/jmsc.2002.1183
http://dx.doi.org/10.1016/j.dsr.2005.06.013
http://dx.doi.org/10.1016/j.dsr.2005.06.013
http://dx.doi.org/10.1016/j.dsr.2005.06.013
http://dx.doi.org/10.1126/science.167.3914.79
http://dx.doi.org/10.1126/science.167.3914.79
http://dx.doi.org/10.1007/BF02197846
http://dx.doi.org/10.1007/BF02197846
http://dx.doi.org/10.1007/BF02197846
http://dx.doi.org/10.1016/j.dsr2.2014.10.010
http://dx.doi.org/10.1016/j.dsr2.2014.10.010
http://dx.doi.org/10.1007/s00227-010-1416-6
http://dx.doi.org/10.1007/s00227-010-1416-6
http://dx.doi.org/10.1007/s00227-010-1416-6
http://dx.doi.org/10.1007/s00227-011-1773-9
http://dx.doi.org/10.1007/s00227-011-1773-9
http://dx.doi.org/10.1007/s00227-011-1773-9
http://dx.doi.org/10.1007/s00227-011-1773-9
http://dx.doi.org/10.1093/icb/38.2.321
http://dx.doi.org/10.1093/icb/38.2.321
http://dx.doi.org/10.1111/jfb.12265
http://dx.doi.org/10.1111/jfb.12265
http://dx.doi.org/10.1046/j.1095-8649.2003.00142.x
http://dx.doi.org/10.1046/j.1095-8649.2003.00142.x
http://dx.doi.org/10.1046/j.1095-8649.2003.00142.x
http://dx.doi.org/10.1098/rspb.2005.3461
http://dx.doi.org/10.1098/rspb.2005.3461
http://dx.doi.org/10.1098/rspb.2005.3461


Rex, M. A. and Etter, R. J. (2010). Deep-Sea Biodiversity: Pattern and Scale.
Cambridge, MA: Harvard University Press.

Rigby, C. and Simpfendorfer, C. A. (2015). Patterns in life history traits of deep-
water chondrichthyans. Deep-Sea Res. II Top. Stud. Oceanogr. 115, 30-40.

Robertson, J. D. (1989). Osmotic constituents of the blood plasma and parietal
muscle of Scyliorhinus canicula (L.). Comp. Biochem. Physiol. A Physiol. 93,
799-805.
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