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Hemoglobin–oxygen affinity in high-altitude vertebrates: is there
evidence for an adaptive trend?
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ABSTRACT
In air-breathing vertebrates at high altitude, fine-tuned adjustments in
hemoglobin (Hb)–O2 affinity provide an energetically efficient means
of mitigating the effects of arterial hypoxemia. However, it is not
always clear whether an increased or decreased Hb–O2 affinity
should be expected to improve tissue O2 delivery under different
degrees of hypoxia, due to the inherent trade-off between arterial O2

loading and peripheral O2 unloading. Theoretical results indicate that
the optimal Hb–O2 affinity varies as a non-linear function of
environmental O2 availability, and the threshold elevation at which
an increased Hb–O2 affinity becomes advantageous depends on the
magnitude of diffusion limitation (the extent to which O2 equilibration
at the blood–gas interface is limited by the kinetics of O2 exchange).
This body of theory provides a framework for interpreting the possible
adaptive significance of evolved changes in Hb–O2 affinity in
vertebrates that have colonized high-altitude environments. To
evaluate the evidence for an empirical generalization and to test
theoretical predictions, I synthesized comparative data in a
phylogenetic framework to assess the strength of the relationship
between Hb–O2 affinity and native elevation in mammals and birds.
Evidence for a general trend in mammals is equivocal, but there is a
remarkably strong positive relationship between Hb–O2 affinity and
native elevation in birds. Evolved changes in Hb function in high-
altitude birds provide one of the most compelling examples of
convergent biochemical adaptation in vertebrates.

KEY WORDS: Biochemical adaptation, Blood oxygen transport,
Hemoglobin, High-altitude adaptation, Hypoxia, Physiological
adaptation

Introduction
An adaptive trend in phenotypic evolution is indicated when
genetically based trait variation is consistently associated with the
same environmental factors in multiple taxa, and when the pattern of
co-variation exhibits a regularity that cannot be explained by chance
alone. Such generalizations or ‘ecogeographic rules’ are instructive
about relationships between form and function, and they motivate
the development of mathematical models to describe particular
features that organisms might be expected to possess in particular
environments. These models can be used to explain evolved trait
differences among organisms that inhabit different environments, or
to predict features of organisms based on information about their
habitats.
In comparative physiology, a fairly well-accepted empirical

generalization is that vertebrate taxa that are native to high-
altitude environments tend to have elevated hemoglobin (Hb)–O2

affinities in comparison with lowland relatives (Hall et al., 1936;
Bullard, 1972; Lenfant, 1973; Bunn, 1980; Monge and León-
Velarde, 1991; Weber, 1995, 2007; Storz, 2007; Powell and
Hopkins, 2010; Storz et al., 2010b). However, this putative trend is
based on a relatively small number of case studies, and comparative
data have not always been interpreted in a well-informed
phylogenetic framework. There are also reasons to question
whether an elevational trend should generally be expected, as
theory predicts that the optimal Hb–O2 affinity is a non-monotonic
function of the ambient partial pressure of O2 (PO2

). Thus, if a given
lowland species colonizes a high-altitude environment, it is not
always clear whether an increased or decreasedHb–O2 affinity should
be expected to improve tissue O2 delivery, and this has been the
subject of considerable debate (Barcroft et al., 1923; Aste-Salazar and
Hurtado, 1944; Lenfant et al., 1968, 1969, 1971; Eaton et al., 1969;
Torrance et al., 1970/71; Bullard, 1972; Turek et al., 1973; Eaton
et al., 1974; Dempsey et al., 1975; Frisancho, 1975; West and
Wagner, 1980; Bencowitz et al., 1982; Willford et al., 1982; Samaja
et al., 1986, 2003; Mairbäurl, 1994).

The purpose of this Review is to evaluate the evidence for an
empirical generalization about the relationship between Hb–O2

affinity and native elevation in terrestrial vertebrates. I start by
providing an overview of Hb function and allosteric regulatory
control (see Glossary). I then review theoretical and experimental
results that demonstrate how the optimal Hb–O2 affinity varies as a
function of environmental O2 availability. Finally, I synthesize
comparative data in a phylogenetic framework to assess the strength
of the relationship between Hb–O2 affinity and native elevation in
mammals and birds, the vertebrate groups for which the most data
are available.

Challenges to respiratory gas transport under hypoxia
In order for air-breathing vertebrates to cope with the low ambient
PO2

at high altitude, blood O2 transport capacity must be increased to
sustain O2 flux to the tissue mitochondria in support of aerobic ATP
synthesis (Mairbäurl, 1994; Samaja et al., 2003; Storz et al., 2010b;
Scott, 2011; Mairbäurl and Weber, 2012). Such changes
complement physiological adjustments in other convective and
diffusive steps in the O2 transport pathway (Bouverot, 1985; Scott
and Milsom, 2006). Although an increased Hb–O2 affinity helps to
safeguard arterial O2 saturation under environmental hypoxia, it can
hinder O2 unloading in the systemic circulation. For this reason,
vertebrates at high altitude face the physiological challenge of
optimizing the trade-off between O2 loading in the pulmonary
capillaries and O2 unloading in the tissue capillaries.

The oxygenation properties of blood reflect inherent properties of
the Hb protein as well as the physicochemical operating conditions
for Hb in the red blood cell. Below, I briefly describe the intrinsic
O2-binding properties of the Hb protein, and I then explain how
these properties are modulated by metabolically induced changes in
the erythrocytic microenvironment.
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Hb function and allosteric regulatory control
The Hbs of jawed vertebrates are heterotetramers, composed of two
α-type and two β-type subunits. Each of the subunit polypeptides
contains a covalently bound heme group (see Glossary) that can
reversibly bind a single O2 molecule when the iron atom is in the
ferrous (Fe2+) state; thus tetrameric Hb binds up to four O2

molecules. The Hb tetramer, α2β2, consists of paired, semi-rigid αβ
dimers that undergo a symmetrical rotation during the oxygenation-
linked transition in quaternary structure between the high-affinity
(oxygenated) ‘R’ state and the low-affinity (deoxygenated) ‘T’ state
(Fig. 1A). The oxygenation-linked shift in the T↔R conformational
equilibrium is central to homotropic allostery (cooperative
O2-binding that stems from subunit–subunit interaction) and
heterotropic allostery (regulation of heme reactivity by ligands
that bind at sites remote from the heme pocket) (Perutz, 1970;
Baldwin and Chothia, 1979).

Homotropic allostery
The cooperativity of Hb–O2 binding stems from an interaction
between subunits of the tetrameric protein. The binding of O2 to
the heme iron of each subunit produces a localized change in
tertiary structure that is transmitted to each of the other
unliganded heme-bearing subunits, triggering the T→R shift in
quaternary structure [Perutz, 1970, 1979; Baldwin and Chothia,
1979; Gelin et al., 1983; Perutz et al., 1987; Liddington et al.,
1988; extensions of this two-state allosteric mechanism are
discussed by Yonetani and Tsuneshige (2003) and Eaton et al.
(2007)]. The binding of O2 to each heme therefore increases the
O2 affinity of the remaining unliganded hemes in the same Hb
tetramer and, conversely, O2 released by each heme reduces the
O2 affinity of the remaining liganded hemes. The physiological
significance of cooperativity is that it permits efficient O2

unloading over a relatively narrow range of blood PO2
. This

property is manifest in the sigmoidal shape of the O2 equilibrium
curve (Fig. 1), which describes how the fractional saturation of
Hb varies as a function of PO2

. This relationship is quantified by

List of symbols and abbreviations
βbO2 blood O2 capacitance coefficient
CaO2 arterial O2 content
CvO2 venous O2 content
DPG 2,3-diphosphoglycerate
Hb hemoglobin
IHP inositol hexaphosphate
IPP inositol pentaphosphate
n Hill coefficient
P50 partial pressure of O2 at which Hb is half-saturated
PO2 partial pressure of O2

PaO2 arterial O2 pressure
PvO2

venous O2 pressure
_Q cardiac output
SO2 fraction of O2-saturated Hb relative to total Hb (unsaturated

+saturated) in the blood
SaO2 arterial O2 saturation
SvO2 venous O2 saturation
V̇O2 rate of O2 consumption

Glossary
Allosteric regulation
Regulation of protein activity by binding a cofactor molecule at a site
other than the protein’s active site; the binding of allosteric cofactors
typically induces a change in protein conformation.
Bohr effect
The modulation of Hb–O2 affinity by changes in pH and CO2 content. In
the physiological range, the O2 affinity of vertebrate Hb is inversely
related to the acidity and CO2 concentration of the blood.
Donnan equilibrium
The ionic equilibrium attained in an electrolyte solution when diffusible
and non-diffusible ions are separated by a semi-permeable membrane.
Heme group
A porphyrin ring that coordinates an iron atom at the centre; it serves as a
prosthetic group for Hb and other hemoproteins.
Homotropic allostery
Modulation of protein activity by binding a ligand that serves as a
substrate for the protein (O2 in the case of Hb), but which also serves as a
regulatory molecule. For example, heme–O2 binding at one Hb subunit
alters the heme reactivity of other subunits in the same tetrameric
assembly.
Heterotropic allostery
Modulation of protein activity by binding a cofactor that is not a substrate
for the protein; hydrogen ions, chloride ions and organic phosphates are
examples of heterotropic regulators of Hb function.
Hypoxemia
Reduced PO2 in arterial blood.

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1.0

PO2 (Torr)

Fr
ac

tio
na

l O
2 

sa
tu

ra
tio

n

Stripped

+ Cl–

+ OPH

B

A Cl– H Cl–H

Cl– H Cl–HOPH

α

β

T R

+ 4 O2 + OPH + Cl– + H+ + heat

O2 O2

O2 O2

Fig. 1. The allosteric regulation of hemoglobin (Hb)–O2 affinity. (A) The
oxygenation reaction of tetrameric Hb (α2β2) involves an allosteric transition in
quaternary structure from the low-affinity T-state to the high-affinity R-state.
The oxygenation-induced T→R transition entails a breakage of salt bridges
and hydrogen bonds within and between subunits (open squares), dissociation
of allosterically bound organic phosphates (OPHs), Cl− ions and protons, and
the release of heat (heme oxygenation is an exothermic reaction).
Oxygenation-linked proton binding occurs at multiple residues in the α- and
β-chains, Cl− binding mainly occurs at the N-terminal α-amino groups of the
α- and β-chains in addition to other residues in both chains, and phosphate
binding occurs between the β-chains in the central cavity of the Hb tetramer.
(B) O2 equilibrium curves for purified Hb in the absence of allosteric effectors
(Stripped) and in the presence of chloride ions (+Cl−) and organic phosphates
(+OPH). The preferential binding of allosteric effectors to deoxyHb stabilizes
the T-state, thereby shifting the allosteric equilibrium in favour of the low-affinity
quaternary structure. The O2 equilibrium curves are therefore right-shifted
(Hb–O2 affinity is reduced) in the presence of such effectors. Hb–O2 affinity is
indexed by the P50 value (dashed grey lines) – the PO2 at which Hb is
half-saturated. The sigmoidal shape of the O2 equilibrium curves reflects
cooperative O2 binding, involving a PO2-dependent shift from low- to
high-affinity conformations.
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the Hill equation (Hill, 1910):

SO2
¼ Pn

O2

Pn
O2

þ Pn
50

; ð1Þ

where SO2
is the fractional saturation, PO2

is the partial pressure of O2

in Torr, P50 is the PO2
at which Hb is 50% saturated, and n is the

cooperativity coefficient. The Hill equation is extended by the more
complex Adair equation (Adair, 1925), which expresses SO2

as a
function of PO2

and association constants for binding each of the
four O2 molecules per Hb tetramer.

Heterotropic allostery
Heterotropic mechanisms of regulating Hb–O2 affinity involve the
oxygenation-linked binding of non-heme ligands such as H+, Cl−,
CO2, lactate and organic phosphates. Binding sites for these
allosteric effectors are mainly located at the N- and C-termini of
the globin subunits and in the positively charged central cavity of
the Hb tetramer (Arnone, 1972; Arnone and Perutz, 1974;
O’Donnell et al., 1979; Nigen et al., 1980). Different organic
phosphates serve as allosteric effectors in the definitive red
blood cells of different groups of terrestrial vertebrates: 2,3-
diphosphoglycerate (2,3-DPG) in mammals, inositol
pentaphosphate (IPP) in birds, adenosine triphosphate (ATP) and
guanosine triphosphate (GTP) in non-avian reptiles, and ATP and
DPG in amphibians (Rapoport and Guest, 1941; Benesch and
Benesch, 1967; Bartlett, 1980; Hazard and Hutchison, 1982;
Weber, 1995; Weber and Fago, 2004). These polyphosphate
molecules electrostatically bind to a constellation of cationic
residues lining the cleft between the β-chains of deoxyHb, thereby
stabilizing the T-state through the formation of salt bridges within
and between the α- and β-chain subunits (Arnone, 1972; Arnone
and Perutz, 1974). Phosphate binding has the effect of reducing
Hb–O2 affinity by shifting the conformational equilibrium in
favour of the low-affinity T-state; this allosteric transition in
quaternary structure promotes O2 unloading to the cells of
respiring tissues. As organic phosphates are non-diffusible
anions, changes in their intracellular concentration also exert an
indirect effect on O2 affinity by perturbing the Donnan equilibrium
(see Glossary) of protons across the red cell membrane, as changes
in cellular pH modulate Hb–O2 binding via the Bohr effect (see
Glossary).
Whereas cooperativity accounts for the shape of the O2

equilibrium curve, the O2 affinity of Hb determines the position
of the curve along the x-axis. As shown in Fig. 1B, the curve is
shifted to the right [corresponding to a reduction in Hb–O2 affinity
(increased P50)] or to the left [corresponding to an increased Hb–O2

affinity (decreased P50)] in response to changes in temperature, pH
and erythrocytic concentrations of Cl− ions and organic phosphates.

Changes in Hb–O2 affinity
Evolutionary changes in Hb−O2 affinity
Evolutionary changes in Hb–O2 affinity can involve changes in the
intrinsic O2 affinity of Hb and/or changes in the responsiveness to
allosteric effectors. The former mechanism can involve changes in
the equilibrium constants of heme–O2 binding in the R- or T-state,
or changes in the allosteric equilibrium constants for the R↔T
transition. These genetically based modifications of Hb function are
attributable to amino acid replacements in the α- and/or β-type
subunits (Weber, 1995, 2007; Bellelli et al., 2006; Storz and
Moriyama, 2008).

Reversible changes in Hb–O2 affinity
Reversible changes in Hb–O2 affinity can be achieved by modulating
intraerythrocytic pH and/or the concentration of organic phosphates
or other allosteric effectors (Nikinmaa, 2001; Jensen, 2004, 2009).
These changes in the chemical milieu of the red blood cell alter the
operating conditions for Hb, but are not associated with structural
changes in the Hb protein itself.

In principle, reversible changes can also be produced by cellular
changes in Hb isoform composition. All vertebrates possess multiple
α- and β-type globin genes, and therefore express multiple,
structurally distinct Hb isoforms during different stages of prenatal
development and postnatal life (Hoffmann et al., 2010, 2012; Storz
et al., 2011a, 2013; Storz, 2016b). In this Review, I focus on
postnatally expressed Hb isoforms and blood O2 transport during
adulthood [see Brittain (2002) for a discussion of prenatally
expressed Hbs and their functional properties]. Whereas adult
mammals typically express a single Hb isoform or multiple
isoforms that have very similar functional properties, other
terrestrial vertebrates generally express two or more Hb isoforms
that are functionally distinct (Weber and Jensen, 1988; Weber, 1990;
Storz, 2016b). For example, birds typically express two main Hb
isoforms in definitive red blood cells – a major isoform, HbA,
which incorporates α-type products of the αA-globin gene, and a
minor isoform, HbD, which incorporates α-type products of the
αD-globin gene; the two isoforms share the same β-type subunits
(Hoffmann and Storz, 2007; Grispo et al., 2012; Opazo et al.,
2015). In all bird species that have been examined to date, the
minor HbD isoform has an appreciably higher O2 affinity than the
major HbA isoform in the presence of allosteric effectors (Grispo
et al., 2012; Projecto-Garcia et al., 2013; Cheviron et al., 2014;
Galen et al., 2015; Natarajan et al., 2015b, 2016). Other sauropsid
taxa also tend to co-express multiple, structurally distinct Hb
isoforms in definitive erythrocytes (Weber and Jensen, 1988; Storz
et al., 2011b, 2015b; Damsgaard et al., 2013). The Hb multiplicity
that has been documented in birds and non-avian reptiles suggests
a potential mechanism for modulating blood–O2 affinity via
changes in the relative abundance of distinct Hb isoforms with
different O2-binding properties (Hiebl et al., 1988; Weber et al.,
1988a; Grispo et al., 2012; Opazo et al., 2015).

In summary, reversible modulation of Hb–O2 affinity via
metabolically induced changes in the red cell microenvironment
and regulatory changes in Hb isoform expression represent potential
mechanisms of phenotypic plasticity. These mechanisms could
complement genetically based changes in Hb function, or they
could obviate the need for such changes in the first place.

Is it physiologically advantageous to have an increased
Hb–O2 affinity at high altitude?
Having explored functional mechanisms for altering Hb–O2

affinity, let us now address the question of whether the optimal
Hb–O2 affinity varies as a function of atmospheric PO2

. This is
central to the question of whether we should generally expect natural
selection to favour different Hb–O2 affinities in populations or
species that inhabit different elevational zones.

Theoretical results
At high altitude, the reduced PO2

of inspired air generally results in a
concomitant reduction in the PO2

of arterial blood (PaO2
). Under

such conditions, changes in the oxygenation properties of red blood
cells can limit the reduction in O2 flux while simultaneously
preserving an adequate pressure gradient for O2 diffusion from the
capillary blood to the cells of perfused tissue.
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At a given PaO2
, tissue O2 supply is enhanced by increasing

cardiac output ( _Q) and/or the blood capacitance coefficient (βbO2
;

Fig. 2A). This latter parameter is defined as the slope of the line

joining the arterial and venous points on the blood O2 equilibrium
curve:

bbO2
¼ CaO2

� CvO2

PaO2
� PvO2

; ð2Þ

where CaO2
−CvO2

is the arterial–venous difference in O2 content
and PaO2

−PvO2
is the arterial–venous difference in PO2

(Dejours
et al., 1970) (Fig. 2A). The capacitance coefficient therefore
quantifies the amount of O2 unloaded to the tissues for a given
arterial–venous difference in PO2

.
With regard to the maintenance of an adequate pressure gradient

for O2 diffusion to the cells of perfused tissue, the venous PO2
can be

expressed as:

PvO2
¼ PaO2

� 1

bbO2
�

_Q
_VO2

 ! ; ð3Þ

where V̇O2
is the rate of O2 consumption and the product

bbO2
� ð _Q= _VO2

Þ is the specific blood O2 conductance (Dejours
et al., 1970; Bouverot, 1985).

With the above relationships in mind, we can see that under
conditions of moderate hypoxia (PaO2

>45 Torr), a reduced Hb–O2

affinity (right-shifted curve) maximizes βbO2
(Fig. 2B). That is, it

produces the largest increase in the slope of the line connecting the
arterial and venous points, thereby maximizing tissue O2 delivery
(CaO2

−CvO2
) for a given difference in PO2

between the sites of O2

loading in the pulmonary capillaries and the sites of O2 unloading in
the systemic circulation (PaO2

−PvO2
). By contrast, under severe

hypoxia, an increased Hb–O2 affinity (left-shifted curve) produces
the largest increase in βbO2

because the arterial–venous difference in
PO2

spans a steeper portion of the curve (Fig. 2B). Figure 2B also
shows that a left-shifted curve preserves a higher PvO2

under such
conditions (Woodson, 1988). Under hypoxia, an increased
circulatory O2 conductance can also be achieved via increases in
cardiac output, but increasing βbO2

via fine-tuned adjustments in
Hb–O2 affinity is far more energetically efficient (Mairbäurl, 1994;
Samaja et al., 2003).

In summary, this body of theory predicts that a reduced Hb–O2

affinity is generally beneficial under moderate hypoxia, whereas an
increased Hb–O2 affinity is beneficial under severe hypoxia. This is
consistent with theoretical investigations of tissue O2 delivery at rest
and during exercise (Turek et al., 1973; West and Wagner, 1980;
Bencowitz et al., 1982; Willford et al., 1982; Samaja et al., 1986,
2003; Scott and Milsom, 2006).

Several theoretical treatments have calculated optimal values of
P50 that maximize the arterial–venous difference in O2 content or O2

saturation for a given arterial–venous difference in PO2
(Bencowitz

et al., 1982; Willford et al., 1982; Brauner and Wang, 1997). The
arterial–venous difference in O2 saturation can be expressed as:

SaO2
� SvO2

¼ Pa nO2

Pa nO2
� Pn

50

" #
� Pv n

O2

Pv n
O2

� Pn
50

" #
: ð4Þ

Taking the first derivative of the maximum arterial–venous
saturation difference with respect to P50 indicates that the optimal
P50 (P

�
50) can be expressed as:

P�
50 ¼ ðPaO2

� PvO2
Þ0:5: ð5Þ

Eqn 4 can also be solved for PvO2
, but the same conditions that

maximize SaO2
−SvO2

also maximize PvO2
(Willford et al., 1982).
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Fig. 2. Schematic illustration of blood O2 transport. (A) An O2 equilibrium
curve under the physicochemical conditions prevailing in arterial blood (a,
continuous curve, open symbol) and venous blood (v, dashed curve, closed
symbol). The curve is a plot of blood O2 content (y-axis) versus PO2 (x-axis),
with paired values for arterial and venous blood connected by a continuous
line. CaO2

−CvO2
denotes the arterial–venous difference in blood O2 content,

PaO2−PvO2 denotes the corresponding difference in PO2, βbO2 denotes the
blood O2 capacitance coefficient (see text for details), _Q denotes cardiac
output, and _VO2

denotes the rate of O2 consumption. On the right-hand side of
the graph, the area of the rectangle is proportional to total O2 consumption,
which can be enhanced by increasing _Q and/or by increasing βbO2. Increases
in βbO2 produce a corresponding increase in CaO2−CvO2 through shifts in the
shape or position of the O2 equilibrium curve. (B) O2 equilibrium curves
showing the effect of changes in Hb–O2 affinity on tissue O2 delivery under
conditions of moderate hypoxia (open symbols) and severe hypoxia (filled
symbols). For each pair of arterial and venous points, the PO2 for venous blood
(PvO2) is marked by a vertical grey line that extends to the x-axis. The sigmoid
O2 equilibrium curves are shown for high, intermediate and low Hb–O2

affinities; P50, the PO2 at which Hb is 50% saturated. Each change in Hb–O2

affinity produces a shift in PvO2
, but the PO2

of arterial blood (PaO2
) is assumed

to remain constant. Note that under conditions of moderate hypoxia the right-
shifted curve maximizes βbO2 and preserves a higher PvO2 (an overall index of
tissue oxygenation). Under severe hypoxia, by contrast, the left-shifted curve
maximizes βbO2 and preserves a higher PvO2 relative to the right-shifted curve.
When the kinetics of O2 transfer across the alveolar gas–blood barrier is a
limiting step (diffusion limitation), a left-shifted O2 equilibrium curve may also
be advantageous under less severe hypoxia (Bencowitz et al., 1982).
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Under normoxia (PaO2
=90 Torr, PvO2

=30 Torr), and assuming
that pH, partial pressure of CO2 (PCO2

), cardiac output and Hb
concentration remain constant, Eqn 4 predicts that tissue O2 delivery
increases as n increases and as P50 increases to its optimum
(Fig. 3A). According to Eqn 5, the optimal P50 under these
conditions is (90×30)0.5=52.0 Torr. This is the point on the plot
where the slope with respect to P50 is zero. By contrast, under severe
hypoxia (PaO2

=40 Torr, PvO2
=20 Torr), with other assumptions as

above, the optimal P50 is predicted to be (40×20)0.5=28.3 Torr,
indicating that tissue O2 delivery is maximized at a far higher Hb–
O2 affinity (Fig. 3B). In both cases, tissue O2 delivery generally
increases as a positive function of n, demonstrating the adaptive
significance of cooperative O2 binding. The only exception occurs
under extremely severe hypoxia, when the venous point on the O2

equilibrium curve drops down to the lower curvilinear asymptote.
Figure 4 illustrates the relationships between P50, PaO2

and PvO2
,

while keeping P50 constant. Assuming 50% tissue O2 extraction (as
might occur during exercise), the figure shows that a higher P50

maintains a higher PvO2
under normoxia (PaO2

=∼90 Torr), resulting
in improved tissue oxygenation as discussed above. By contrast, a
lower P50 maintains a higher PvO2

under severe hypoxia
(PaO2

=∼40 Torr). If the ‘critical PvO2
’ for tissue oxygenation is,

for example, 10 Torr, then a blood P50 of 20 Torr would allow
PaO2

to fall as low as 25 Torr, whereas a blood P50 of 50 Torr would
not allow PaO2

to fall below 52 Torr. Results are qualitatively similar
under the assumption of 25% tissue O2 extraction, corresponding to
the situation at rest (Willford et al., 1982).

Experimental results
The most direct means of testing theoretical predictions about how
the optimal Hb–O2 affinity varies in relation to ambient PO2

is to
experimentally evaluate how titrated changes in blood P50 affect
relevant measures of physiological performance under normoxia
and varying degrees of hypoxia. Experiments on rats with
pharmacologically manipulated Hb–O2 affinities have confirmed
theoretical predictions that an increased P50 improves tissue O2

delivery under normoxia and moderate hypoxia, and that a reduced
P50 is beneficial under severe hypoxia (Turek et al., 1978a,b).
Similarly, reciprocal-transplant experiments involving wild-derived
strains of deer mice (Peromyscus maniculatus) revealed that high-
altitude natives with high Hb–O2 affinities have higher capacities
for thermogenesis and aerobic exercise under severe hypoxia,
whereas lowland natives with lower Hb–O2 affinities exhibit
superior performance under normoxia (Chappell and Snyder,
1984). Experiments involving other mammals have reported
qualitatively similar findings, suggesting that a reduced Hb–O2

affinity improves tissue O2 delivery under normoxia or moderate
hypoxia, whereas an increased O2 affinity provides the greatest
improvement under more severe hypoxia (Dawson and Evans,
1966; Banchero and Grover, 1972).

Experiments involving rats with pharmacologically manipulated
Hb–O2 affinities have also demonstrated that reductions in blood
P50 significantly increase the survival of animals subjected to acute,
severe hypoxia (Eaton et al., 1974; Penney and Thomas, 1975).
Similar results were reported in studies of physiological
performance under hypoxia in other mammals with naturally
occurring variation in Hb–O2 affinity (Dawson and Evans, 1966;
Hall, 1966; Hebbel et al., 1978). In addition to studies of survival
and whole-animal physiological performance, ex vivo studies of
microvascular O2 transport and tissue perfusion have also
demonstrated that an increased Hb–O2 affinity enhances O2

delivery under severe hypoxia (Bakker et al., 1976; Stein and
Ellsworth, 1993; Yalcin and Cabrales, 2012).

Threshold altitude
The theoretical and experimental results reviewed above indicate
that the optimal Hb–O2 affinity varies according to ambient PO2

.
The relationship is non-linear and depends critically on the
magnitude of diffusion limitation (Bencowitz et al., 1982). For
any given species, theory predicts that there must be some threshold
altitude at which it becomes beneficial to have an increased Hb–O2

affinity. However, the threshold altitude at which this becomes
beneficial varies from one species to the next due to variation in
PaO2

(mainly determined by ventilation) and numerous other
diffusive and convective steps in the O2 transport pathway
(Bencowitz et al., 1982; Scott and Milsom, 2006). The key
question is whether a given species inhabits elevations above that
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critical threshold. In a comparison between sister species with
contrasting elevational ranges, the species with the higher
elevational range limit would not necessarily be expected to have
evolved a higher Hb–O2 affinity unless an appreciable fraction of its
native range exceeded the upper critical threshold.
In the case of humans living at high altitude, modelling results

suggest that an increased Hb–O2 affinity only confers a benefit to
tissue O2 delivery at elevations >5000–5400 m (Samaja et al., 1986,
2003). At 5400 m above sea level, which is roughly the elevation of
the South Everest base camp in Nepal, the standard barometric
pressure is 53 kPa (399 Torr), meaning that the ambient PO2

is 52%
of that at sea level. The highest human settlements in the Himalayas
and the Andes are generally at elevations of <4900 m (the Peruvian
mining town, La Rinconada, is situated 5100 m above sea level, and
most mine workers have homes at lower elevation). The highest
permanent settlements in the Ethiopian highlands are <3500 m
above sea level. The fact that humans do not live at elevations above
the theoretically predicted 5000–5400 m threshold provides a
possible explanation for why increased Hb–O2 affinities have not
evolved in indigenous mountain dwellers. Whether the samemay be
true of non-human mammals and birds at high altitude is an open
question.

Insights from comparative studies
Since natural selection is ‘the ultimate arbiter of what constitutes an
adaptation’ (Snyder, 1982, p. 92), a systematic survey of altitude-
related changes in Hb–O2 affinity – as revealed by comparisons
among extant species – can provide insights into the possible
adaptive significance of such changes. If high-altitude taxa have
generally evolved increased Hb–O2 affinities relative to lowland
sister taxa – and if the elevational pattern is too consistent to be
ascribed to chance (i.e. genetic drift) – this would be consistent with
the hypothesis that the elevational differences reflect a history of
natural selection. Ideally, comparative studies that exploit the
outcomes of natural experiments (e.g. the independent colonization
of high-altitude environments by multiple species) complement
insights derived from controlled laboratory experiments. For
example, comparative studies have documented that high-altitude
rodents often have higher Hb and/or blood O2 affinities than their
lowland relatives (Hall et al., 1936; Bullard et al., 1966; Ostojic
et al., 2002; Storz, 2007; Storz et al., 2009, 2010a; Natarajan et al.,
2013, 2015a; Jensen et al., 2016), and these observations
complement the results of experiments demonstrating that
increases in blood-O2 affinity enhance tissue O2 delivery and
measures of physiological performance in rodents subjected to
environmental hypoxia (Eaton et al., 1974; Turek et al., 1978a,b;
Chappell and Snyder, 1984). Such consilience of evidence from
comparative and experimental studies can greatly strengthen
conclusions about the adaptive significance of evolutionary
changes in Hb–O2 affinity.

The importance of accounting for phylogenetic history
In comparative analyses of phenotypic variation it is important to
account for the fact that trait values from different species are not
statistically independent because the sampled species did not evolve
independently of one another; the phylogenetic history of any set of
species is represented by a hierarchically nested pattern of
relationships (Garland et al., 2005). If a phylogeny is available for
a given set of species, then phylogenetically independent contrasts
(PIC) (Felsenstein, 1985) can be used to test for a relationship
between native elevation and Hb–O2 affinity. The PIC approach
uses phylogenetic information and a model of trait evolution

(typically a stochastic, Brownian motion-like model) to transform
the data for the set of surveyed species into values that are
statistically independent and identically distributed. This approach
was used to document a strong positive correlation between Hb–O2

affinity and native elevation in Andean hummingbirds (Projecto-
Garcia et al., 2013).

An alternative to using PIC is the paired-lineage test, which
restricts comparisons to phylogenetically replicated pairs of taxa
that are chosen so that there is no overlap in evolutionary paths of
descent (see Fig. 5). A non-random association between Hb–O2

affinity and native elevation can then be assessed using a sign test (a
non-parametric test that contrasts matched pairs of samples with
respect to a continuous outcome). If the comparative analysis
includes a phylogenetically diverse range of taxa, an advantage of
the paired-lineage test is that comparisons can be restricted to
closely related species by excluding pairs with long paths between
them. To determine whether there is a relationship between Hb–O2

affinity and native elevation, wewant to make comparisons between
close relatives so that we can minimize the number of potentially
confounding differences in other aspects of their biology. For
example, a comparison of Hb–O2 affinity between a pair of high-
and low-altitude hummingbirds is more physiologically informative
than a comparison involving a high-altitude hummingbird and a
low-altitude duck. In the latter case, an evolved difference in Hb
function may be related to the difference in native elevation, but it
may also be related to differences in metabolic rate or any number of
other physiological differences between the two taxa.

There are two additional issues to consider in comparative studies
of Hb function in relation to native elevation. The first relates to the
effect of environmentally induced variation, which can obscure
phylogenetic signal in trait values (Garland et al., 2005; Storz et al.,
2015a).Measurements of an environmentally labile trait (like the O2

affinity of whole blood, which is influenced by red cell metabolism
and acid–base status) may prevent an accurate assessment of the
extent to which phenotypic similarity between a given pair of
species is attributable to shared phylogenetic heritage versus a
shared, plastic response to similar environmental conditions (i.e.
exposure to hypoxia). This problem can be avoided if the trait is
measured under common-garden conditions to control for
environmentally induced variation, or if measurements are
restricted to genetically based trait variation (e.g. O2 affinity of
purified Hb rather than O2 affinity of blood).

Another issue concerns genealogical discordance between the
phylogeny of the examined species and the phylogenies of the genes
that underlie the measured trait (Hahn and Nakhleh, 2016; Storz,
2016a). In comparative studies of Hb evolution involving
orthologous genes from a diversity of species, it may often be the
case that phylogenies of the α- and β-globin genes are not congruent
with one another or with the assumed species tree (Storz et al., 2007;
Hoffmann et al., 2008a,b; Opazo et al., 2008a,b, 2009; Runck et al.,
2009, 2010; Gaudry et al., 2014; Natarajan et al., 2015a). This
genealogical discordance can have multiple biological causes,
including ectopic gene conversion (a form of non-reciprocal
recombinational exchange between duplicated genes),
introgressive hybridization (incorporation of allelic variants from
one species into the gene pool of another species by means of
hybridization and repeated back-crossing) and incomplete lineage
sorting (the retention of ancestral polymorphism from one split
between populations to the next, followed by stochastic sorting of
allelic lineages among the descendant species). A given amino acid
substitution may have occurred a single time on an internal branch
of the gene tree, but it can present the appearance of having occurred
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Golden-mantled ground squirrel, Callospermophilus lateralis 
Yellow-bellied marmot, Marmota flaviventris
Hoary marmot, Marmota caligata
Thirteen-lined ground squirrel, Ictidomys tridecimlineatus
Uinta ground squirrel, Tamias umbrinus
Least chipmunk, Tamias minimus
Deer mouse, Peromyscus maniculatus
Deer mouse, Peromyscus maniculatus
White-footed mouse, Peromyscus leucopus
Aztec mouse, Peromyscus aztecus
American pika, Ochotona princeps
Collared pika, Ochotona collaris
Snow leopard, Panthera uncia
African lion, Panthera leo

Black-winged ground dove, Metriopelia melanoptera 
Croaking ground dove, Columbina cruziana
Band-winged nightjar, Hydropsalis longirostris
Tschudi’s nightjar, Hydropsalis decussata
Sparkling violetear, Colibri coruscans
Eastern wedge-billed hummingbird, Schistes geoffroyi 
Broad-tailed hummingbird, Selasphorus platycercus
Black-chinned hummingbird, Archilochus alexandri
Green-and-white hummingbird, Amazilia viridicauda
Amazilia hummgingbird, Amazilia amazilia
Blue-mantled thornbill, Chalcostigma stanleyi
Rufous-capped thornbill, Chalcostigma ruficeps
Andean hillstar, Oreotrochilus estella
Speckled hummingbird, Adelomyia melanogenys
Sapphire-vented puffleg, Eriocnemis luciani
Greenish puffleg, Haplophaedia aureliae
White-tufted sunbeam, Aglaeactis castelnaudii
Violet-fronted brilliant, Heliodoxa leadbeateri
Great sapphirewing, Pterophanes cyanopterus
Chestnut-breasted coronet, Boissonneaua matthewsii
Violet-thoated starfrontlet, Coeligena violifer
Bronzy inca, Coeligena coeligena
Cream-winged cinclodes, Cinclodes albiventris
Pale-legged hornero, Furnarius leucopus
Brown-bellied swallow, Notiochelidon murina
Blue-and-white swallow, Pygochelidon cyanoleuca
House wren, Troglodytes aedon
House wren, Troglodytes aedon
Hooded siskin, Spinus magellanicus
Hooded siskin, Spinus magellanicus
Rufous-collared sparrow, Zonotrichia capensis
Rufous-collared sparrow, Zonotrichia capensis
Blue-and-black tanager, Tangara vassorii 
Beryl-spangled tanager, Tangara nigroviridis 
Cinereous conebill, Conirostrum cinereum
Cinereous conebill, Conirostrum cinereum
Black-throated flowerpiercer, Diglossa brunneiventris 
Deep-blue flowerpiercer, Diglossa glauca 
Band-tailed seedeater, Catamenia analis
Band-tailed seedeater, Catamenia analis
Ruddy duck, Oxyura jamaicensis
Ruddy duck, Oxyura jamaicensis
Torrent duck, Merganetta armata
Torrent duck, Merganetta armata
Andean goose, Chloephaga melanoptera
Orinoco goose, Neochen jubata
Abyssinian blue-winged goose, Cyanochen cyanoptera
Hartlaub’s duck, Pteronetta hartlaubi
Andean crested duck, Lophonetta specularioides alticola
Patagonian crested duck, Lophonetta specularioides specularioides
Yellow-billed pintail, Anas georgica
Yellow-billed pintail, Anas georgica
Sharp-winged teal, Anas flavirostris oxyptera
Chilean teal, Anas flavirostris flavirostris
Cinnamon teal, Anas cyanoptera orinoma
Cinnamon teal, Anas cyanoptera cyanoptera
Puna teal, Anas puna
Silver teal, Anas versicolor

A  Mammals

B  Birds

Fig. 5. Phylogenetic relationships of 14 mammalian taxa and 58 avian taxa used in comparative analyses of Hb function. Rows corresponding to high-
altitude taxa are shaded. (A) In the mammalian phylogeny, branches in bold connect pairs of high- and low-altitude taxa that were used to test for a relationship
between Hb–O2 affinity and native elevation. As there are no overlaps in the paths of descent connecting each designated pair of high- and low-altitude taxa, the
seven pairwise comparisons are statistically independent. For information regarding elevational ranges, see Storz et al. (2009, 2010a), Revsbech et al. (2013),
Janecka et al. (2015), Natarajan et al. (2015a) and Tufts et al. (2015). (B) In the avian phylogeny, branches in bold connect pairs of high- and low-altitude taxa that
were used to test for a relationship between Hb–O2 affinity and native elevation. As in the case with the mammals, the 29 pairwise comparisons are
phylogenetically independent. For information regarding elevational ranges, see Projecto-Garcia et al. (2013), Cheviron et al. (2014), Galen et al. (2015) and
Natarajan et al. (2015b, 2016).
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twice independently when mapped onto a discordant species tree,
resulting in spurious inferences. Hahn and Nakhleh (2016) discuss
possible solutions to the problem of species tree/gene tree
discordance in comparative studies of trait evolution.

Considerations of zoogeographic history
In addition to making comparisons between high- and low-altitude
taxa that are as closely related as possible, it is also important to
consider the evolutionary histories of study species with regard to
their current elevational distributions. Many alpine and subalpine
natives may have predominantly lowland ancestries, possibly
reflecting post-glacial range shifts. Alternatively, residence at high
altitude may represent the ancestral condition for members of
groups that diversified in mountainous regions. For example,
Andean hummingbirds in the Brilliants/Coquettes clade
diversified during a period of rapid uplift of the Andean massif
in the period between ∼10 and ∼6 million years ago (McGuire
et al., 2014). Within this group, many species with lowland
distributions may have descended from highland ancestors. In
such cases, it is important to consider that any altitude-related
species differences in Hb–O2 affinity could be attributable to
derived increases in O2 affinity in highland species and/or
secondarily derived reductions in O2 affinity in lowland species
(Projecto-Garcia et al., 2013).

Evaluating evidence for an empirical generalization regarding the
relationship between native altitude and Hb–O2 affinity
The theoretical and experimental results reviewed above suggest
that it is generally beneficial to have an increased Hb–O2 affinity
under conditions of severe hypoxia. An obvious prediction is that
derived increases in Hb–O2 affinity will have evolved repeatedly in
disparate vertebrate taxa that have independently colonized extreme
altitudes (provided that their range limits exceed the elevational
threshold at which an increased Hb–O2 affinity becomes
beneficial). Let us now test this prediction using available
comparative data for mammals and birds (Fig. 5).
I restrict the analysis to data based on standardized measurements

of purified Hbs, so the variation in P50 values is purely genetic,
reflecting evolved changes in the amino acid sequences of the α- and/
or β-chain subunits. This focus on purified Hbs avoids problems
associated with the confounding effects of environmentally induced
variation. However, an analysis based on in vitromeasures of protein
function involves its own interpretative challenges because evolved
changes in the inherent properties of Hb are physiologically relevant
to circulatory O2 transport only to the extent that such changes affect
the oxygenation properties of blood (Berenbrink, 2006). I have opted
to focus on data for purified Hbs while recognizing that species
differences in Hb–O2 affinity may not perfectly reflect in vivo
differences in blood–O2 affinity.
In the case of mammals, I have summarized data from 14 taxa

representing seven high- versus low-altitude pairwise comparisons
(Fig. 5A). These comparisons include rodents (marmotine ground
squirrels and Peromyscus mice), lagomorphs (pikas) and carnivores
(Storz et al., 2009, 2010a; Revsbech et al., 2013; Janecka et al., 2015;
Natarajan et al., 2015a; Tufts et al., 2015). Six of the comparisons
involve closely related species with contrasting elevational ranges,
and one comparison involves high- and low-altitude populations of
the broadly distributed deer mouse, P. maniculatus. Each of these
pairwise comparisons involves a pronounced elevational contrast
between an alpine or subalpine taxon and a closely related lowland
taxon. For example, the high-altitude ground squirrels, deer mice and
pikas occur at elevations >4300 m (the highest elevations that occur

within the limits of their geographical distributions in North
America). Since an increased Hb–O2 affinity is only expected to be
physiologically beneficial above a given threshold elevation,
potentially adaptive differences in Hb–O2 affinity can only be
detected if the high- and low-altitude members of each taxon pair
have range limits on opposite sides of that threshold.

In each taxon, O2 affinities of purified Hbs were measured in the
presence and absence of Cl− ions (added as KCl) and DPG (see
Fig. 6 legend for experimental details). The ‘KCl+DPG’ treatment is
most relevant to in vivo conditions in mammalian red blood cells,
and I therefore focus primarily on measures of P50(KCl+DPG).
However, measurements under each of the experimental treatments
are valuable because they can provide insights into the functional
mechanism responsible for observed differences in Hb–O2 affinity.

In the presence of anionic effectors, high-altitude taxa have
higher Hb–O2 affinities than their lowland counterparts in some
cases (e.g. deer mice and pikas; Fig. 6A,B), but in other cases there
are no appreciable differences (e.g. marmots and big cats; Fig. 6C,D).
In comparisons involving deer mice, pikas and some ground
squirrels, integrated analyses of Hb function and sequence
divergence revealed that the high-altitude member of each pair
evolved a derived increase in Hb–O2 affinity (i.e. the phenotype of
the lowland taxon represents the ancestral condition). In the
comparisons between conspecific populations of deer mice and
between the golden-mantled ground squirrel (Callospermophilus
lateralis) and thirteen-lined ground squirrel (Ictidomys
tridecemlineatus), the evolved changes in Hb function involved
an increase in intrinsic O2 affinity in combination with a suppressed
sensitivity to anionic effectors (Storz et al., 2009, 2010a; Natarajan
et al., 2013; Revsbech et al., 2013; Natarajan et al., 2015a). In the
case of the deer mice, this is indicated by the fact that the high-
altitude Hb variant exhibits a slightly lower P50 in the absence of
anions (‘stripped’) and the P50 difference is further augmented in the
presence of Cl− and DPG (Fig. 6A). By contrast, in the comparison
between the two pika species (Ochotona princeps and O. collaris),
the difference in Hb function was exclusively attributable to an
evolved change in intrinsic O2 affinity (Tufts et al., 2015) (Fig. 6B).

Phylogenetically independent comparisons involving the full set of
mammalian taxa revealed no significant association between Hb–O2

affinity and elevation (Wilcoxon’s signed-rank test, W=6.5, P>0.05,
N=7; Fig. 7). Previous studies involving experimental measurements
on whole blood indicate that high-altitude mammals have lower P50
values than their lowland relatives in some cases (Chiodi, 1970/71;
León-Velarde et al., 1996; Ostojic et al., 2002) but not in others
(Lechner, 1976). Unless measures of blood–O2 affinities are
integrated with measurements on purified Hbs (Petschow et al.,
1977; Campbell et al., 2010), components of environmental and
genetic variation are confounded and it is unclear to what extent the
measured differences represent evolved changes in Hb function and/
or red cell metabolism. Overall, evidence for an altitudinal trend in
Hb–O2 affinity in mammals is equivocal; data from additional taxa
may eventually reveal a clearer relationship.

In the case of birds, I have summarized data from 58 taxa
representing 29 matched pairs of high- versus low-altitude taxa
(Fig. 5B). These taxa include ground doves, nightjars,
hummingbirds, passerines and waterfowl (Projecto-Garcia et al.,
2013; Cheviron et al., 2014; Galen et al., 2015; Natarajan et al.,
2015b, 2016). In the case of the passerines and waterfowl, we can
make comparisons between closely related species as well as
conspecific populations. All pairwise comparisons involved
dramatic elevational contrasts; high-altitude taxa native to very
high elevations (3500–5000 m above sea level) were paired with
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close relatives that typically occur at or near sea level. As with the
analysis of mammalian Hbs, O2 affinities of purified avian Hbs were
measured under standardized conditions in the presence and
absence of anionic effectors (see legend for Fig. 8). However, to
obtain measurements that are physiologically relevant to in vivo
conditions in avian red cells, inositol hexaphosphate (IHP; a
chemical analogue of IPP) was used instead of DPG. In species that
expressed both HbA and HbD, the O2-binding properties of isolated
isoforms were measured separately.

In the overwhelming majority of pairwise comparisons, the high-
altitude taxon exhibited a higher Hb–O2 affinity across all treatments,
as illustrated by representative examples for the HbA isoform (Fig. 8).
Phylogenetically independent comparisons revealed that highland
natives generally have an increased Hb–O2 affinity relative to their
lowland counterparts, a pattern consistent for both HbA (Wilcoxon’s
signed-rank test, Z=−4.314, P<0.0001, N=29; Fig. 9A) and HbD
(Z=−2.798, P=0.0051, N=21; Fig. 9B). In all pairwise comparisons
in which the high-altitude taxa exhibited significantly higher Hb–O2

affinities relative to the lowland taxa (N=23 taxon pairs for HbA,
N=15 for HbD), the measured differences were almost entirely
attributable to differences in intrinsic O2 affinity rather than
differences in sensitivity to Cl− ions or IHP (Natarajan et al.,
2015b, 2016). Comparisons between the high-flying bar-headed
goose (Anser indicus) and lowland congeners based on O2 affinity
measurements of whole blood or purified hemolysates (Petschow
et al., 1977; Black and Tenney, 1980; Jessen et al., 1991) are also
consistent with the relationship shown in Fig. 9A,B.

The role of Hb isoform switching in hypoxia adaptation
In principle, regulatory changes in the expression of Hb isoforms
with different oxygenation properties could provide an effective
means of reversibly modulating blood–O2 affinity in response to
changes in O2 availability or metabolic demand. This regulatory
mechanism could potentially complement genetically based
changes in the O2 affinity of individual isoforms. Due to
differences in the nature of isoform differentiation in birds and
mammals, I will discuss relevant data for each of these taxa in turn.

In birds, consistent differences in O2 affinity between HbA and
HbD suggest that an increased blood–O2 affinity could be achieved
by up-regulating HbD (Hiebl et al., 1988; Weber et al., 1988a;
Grispo et al., 2012; Opazo et al., 2015). A comparison involving 26
closely related pairs of high- and low-altitude taxa revealed that
regulatory changes in Hb isoform abundance do not represent an
important general mechanism of adaptation to chronic hypoxia
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Fig. 7. There is no evidence for a significant elevational trend in the Hb–
O2 affinities of mammals. The plot shows measures of Hb–O2 affinity in the
presence of anionic effectors [P50(KCl+IHP) (±s.e.m.)] for sevenmatched pairs of
high- and low-altitude taxa. Data points that fall below the diagonal (x=y)
denote cases in which the high-altitude member of a given taxon pair
possesses a higher Hb–O2 affinity (lower P50). The paired-lineage design
ensures that all data points are statistically independent (see text for details).
Filled symbols denote comparisons between species, whereas the open
symbol denotes a comparison between high- versus low-altitude populations
of the same species (P. maniculatus).
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Fig. 6. O2 affinities of purified Hbs from representative pairs of high- and low-altitude mammals. O2 equilibria were measured at pH 7.40, 37°C, in the
presence and absence of allosteric effectors ([Cl−], 0.10 mol l−1; [Hepes], 0.1 mol l−1; DPG:tetrameric Hb ratio, 2.0: [heme], 0.2–0.3 mmol l−1). For each taxon,
P50 values (±s.e.m.) are reported for strippedHbs in the absence of added anions, in the presence of Cl− alone (added as KCl), in the presence of DPG alone, and
in the presence of both anions combined. This latter ‘KCl+DPG’ treatment is most relevant to in vivo conditions in mammalian red blood cells, but measurements
of O2 affinity under each of the four standardized treatments can provide insights into the functional mechanism responsible for observed differences in
P50(KCl+DPG). (A) Comparison between Hb variants of high- and low-altitude deer mice, Peromyscus maniculatus, from the Rocky Mountains and Great Plains,
respectively [data from Natarajan et al., 2015a; for additional details, see Storz et al. (2009, 2010a); Jensen et al. (2016)]. (B) Comparison between Hbs of the
high-altitude American pika (Ochotona princeps) and the low-altitude collared pika (O. collaris) (data from Tufts et al., 2015). (C) Comparison between Hbs of the
high-altitude yellow-bellied marmot (Marmota flaviventris) and the low-altitude hoary marmot (M. caligata) (data from Revsbech et al., 2013). (D) Comparison
between Hbs of the high-altitude snow leopard (Panthera uncia) and the low-altitude African lion (P. leo) (data from Janecka et al., 2015). For both cat species,P50

is shown as the mean value for two co-expressed isoforms, HbA and HbB, which are present at roughly equimolar concentrations (Janecka et al., 2015).
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(Fig. 10) (Natarajan et al., 2016). It remains to be seen whether
isoform switching plays a role in the seasonal acclimatization to
acute hypoxia, for example in species that undergo trans-Himalayan
migratory flights like bar-headed geese, ruddy shelducks (Tadoma
ferruginea) and demoiselle cranes (Anthropoides virgo).
In contrast to birds and other sauropsid taxa, most mammals do

not co-express functionally distinct Hb isoforms during postnatal
life. Since prenatally expressed Hb isoforms often have higher O2

affinities than normal adult Hbs, it is possible that the continued
expression of such isoforms into postnatal life could contribute to an
enhanced blood–O2 affinity in response to environmental hypoxia
(a form of biochemical paedomorphosis). Among eutherian
mammals, stage-specific expression of fetal Hb isoforms evolved
independently in simian primates (NewWorld monkeys, Old World
monkeys, apes and humans) and in bovid artiodactyls (cattle,
antelope, sheep and goats) (Storz, 2016b). In humans, retention of
fetal Hb expression into adulthood is known to ameliorate the
pathological effects of sickle-cell anaemia (Akinsheye et al., 2011;
Pack-Mabien and Imran, 2013), but there is no evidence for the
existence of a similar expression pattern in indigenous high-altitude
populations. In yaks, high-affinity fetal Hb isoforms are expressed at
high levels in one-month-old calves (Weber et al., 1988b), but it is

not known whether high expression is retained into adulthood.
There is one dubious report claiming that fetal Hb accounts for 55%
of total Hb in adult alpacas (Vicugna pacos) that were acclimatized
at an elevation of 4200 m (Reynafarje et al., 1975). In this study, the
putative fetal Hb isoform was identified as such only because it
exhibited a resistance to alkaline denaturation similar to that of
human fetal Hb (HbF). Thus, identification of the isoform as ‘fetal
Hb’ was based on functional analogy rather than true homology.
Moreover, there is no evidence that camelids express a true fetal Hb
isoform in the first place. Comparative genomic data indicate that
alpacas and other camelids do not share orthologues of the fetally
expressed β-type globin gene in bovid artiodactyls [the bovid-
specific duplication event that gave rise to the fetally expressed
β-globin gene occurred long after the ancestors of bovids split from
the ancestors of camelids (Gaudry et al., 2014)].

In summary, there is currently no compelling evidence to suggest
that Hb isoform switching represents an important mechanism of
physiological acclimatization to hypoxia in mammals or birds
(Storz, 2016b). However, aside from recent studies of Andean birds
(Natarajan et al., 2015b, 2016), it is also true that hypoxia-induced
isoform switching has not been systematically investigated as a
mechanism of phenotypic plasticity in terrestrial vertebrates.
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Maladaptive plasticity and hypoxia acclimatization
I have reviewed theoretical and experimental evidence suggesting
that an increased Hb–O2 affinity is beneficial under severe hypoxia,
and I have synthesized available comparative data which suggest
that natural selection has favoured increased Hb–O2 affinities in
numerous high-altitude mammals and birds. It therefore seems
paradoxical that the acclimatization response to environmental
hypoxia in humans and other lowland mammals typically involves a
reduction in blood–O2 affinity (Mairbäurl et al., 1993; Mairbäurl,
1994; Samaja et al., 2003; Storz et al., 2010b). This is largely
attributable to an increase in red cell DPG concentration (Torrance
et al., 1970/71; Lenfant et al., 1971; Mairbäurl et al., 1986, 1993;
Mairbäurl, 1994), or –more specifically – an increase in the relative
concentration of Hb liganded with DPG and other anions that
make smaller contributions. The increased concentration of DPG-
liganded Hb at high altitude is largely attributable to a hypoxia-
induced increase in ventilation; the resultant respiratory alkalosis
stimulates red cell glycolytic activity which, in turn, increases DPG

synthesis (Rapoport et al., 1977). At the whole-blood level, the
hypoxia-induced increase in [DPG] is also attributable to the
stimulation of erythropoiesis because this produces a downward
shift in the mean age of circulating red blood cells, and newly
produced red cells have higher [DPG] than older cells (Mairbäurl,
1994; Samaja et al., 2003). A number of previous authors
interpreted the hypoxia-induced increase in red cell [DPG] (and
the associated reduction in blood O2 affinity) as an adaptive
response (Aste-Salazar and Hurtado, 1944; Lenfant et al., 1968,
1969, 1971; Eaton et al., 1969; Frisancho, 1975). The theoretical
and empirical results reviewed above suggest that such a response
may be beneficial under moderate hypoxia. However, in humans
and other mammals, the hypoxia-induced increase in red cell [DPG]
continues at elevations well above the threshold at which further
reductions in Hb–O2 affinity become counterproductive due to
arterial desaturation (Winslow et al., 1984; Samaja et al., 2003).
Even when all Hb is fully liganded with DPG (at a DPG:Hb ratio of
≥2–3), further increases in [DPG] continue to indirectly reduce
Hb–O2 affinity because the increased erythrocytic concentration of
non-diffusible anions reduces cellular pH, thereby reducing Hb–O2

affinity via the Bohr effect (Duhm, 1971; Samaja and Winslow,
1979; Mairbäurl, 1994). Consequently, the increase in plasma pH
caused by respiratory alkalosis has offsetting effects in mammalian
red cells: the Bohr effect promotes an increased Hb–O2 affinity, but
this is counterbalanced by the increase in intracellular [DPG]
(Winslow et al., 1984; Samaja et al., 1997).

In mammals that have acclimatized to chronic hypoxia, the
seemingly maladaptive increase in red cell [DPG] may represent a
miscued response to environmental hypoxia in species whose
ancestors evolved in a lowland environment (Storz et al., 2010b;
Tufts et al., 2013). In contrast to mammals, teleost fishes typically
respond to environmental hypoxia by reducing red cell
concentrations of nucleotide triphosphates such as ATP and GTP,
thereby increasing Hb–O2 affinity to enhance O2 uptake in the gills
(Weber, 1996; Jensen et al., 1998; Val, 2000; Nikinmaa, 2001).
Whereas the enucleated red cells of mammals rely on ametabolite of
anaerobic glycolysis to regulate Hb–O2 affinity, the aerobically
metabolizing red cells of fish contain high levels of ATP, so the
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synthesis of allosteric effectors that reduce Hb–O2 affinity is directly
dependent on blood PO2

, providing a means of positive feedback
control. In mammalian red cells, DPG is a far more potent allosteric
regulator of Hb–O2 affinity than ATP, partly because ATP is ∼90%
complexed with Mg2+ (Bunn, 1971; Mairbäurl, 1994). It remains to
be seen whether birds and other terrestrial vertebrates with nucleated
red cells acclimatize to environmental hypoxia via changes in red
cell organic phosphate concentrations, but available evidence
indicates that [IPP] in avian red cells is highly constant and is
unresponsive to changes in temperature or PO2

(Jaeger andMcGrath,
1974; Lutz, 1980).

Conclusions
Theoretical results indicate that it is generally beneficial to have an
increased Hb–O2 affinity under conditions of severe hypoxia. This
prediction is supported by experimental studies of survival and
whole-animal physiological performance and by ex vivo studies of
microvascular O2 transport and tissue perfusion. A number of
detailed case studies involving mammals and birds have provided
evidence for adaptive increases in Hb–O2 affinity in high-altitude
natives. Evolutionary changes in Hb–O2 affinity involve a variety of
functional mechanisms. In mammals, evolved increases in Hb–O2

affinity in high-altitude populations or species involve changes in
the intrinsic O2 affinity of Hb and, in some cases, suppressed
sensitivities to anionic effectors. In birds, evolved increases in Hb–
O2 affinity are consistently attributable to changes in intrinsic
affinity that do not compromise allosteric regulatory capacity
(Natarajan et al., 2015b, 2016). Available evidence suggests that
regulatory changes in Hb isoform composition do not play a general
role in adaptation to high-altitude hypoxia in birds or mammals.
In mammals, the evidence for a positive relationship between

Hb–O2 affinity and native elevation is equivocal. In birds, by
contrast, there is a remarkably strong positive relationship between
Hb–O2 affinity and native elevation. In fact, the data for high-
altitude birds provide one of the most compelling examples of
convergent biochemical adaptation in vertebrates. An important
question for future work concerns the reason for this apparent
difference between mammals and birds, two amniote lineages that
independently evolved endothermy and which diversified in parallel
during periods of increasing atmospheric O2 in the late Mesozoic
Era. In comparisons within and among different vertebrate groups, it
will also be important to determine whether it is possible to predict
the threshold values of PaO2

at which it becomes beneficial to have
an increased or decreased Hb–O2 affinity.
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Arch. 376, 201-207.

Val, A. L. (2000). Organic phosphates in the red blood cells of fish.Comp. Biochem.
Physiol. A Mol. Integr. Physiol. 125, 417-435.

Weber, R. E. (1990). Functional significance and structural basis of multiple
hemoglobins with special reference to ectothermic vertebrates. InAnimal Nutrition
and Transport Processes, Vol. 6 (ed. J.-P. Truchot and B. Lahlou), pp. 58-75.
Basel, Switzerland: S. Karger.

Weber, R. E. (1995). Hemoglobin adaptations to hypoxia and altitude - the
phylogenetic perspective. In Hypoxia and the Brain (ed. J. R. Sutton, C. S.
Houston and G. Coates), pp. 31-44. Burlington, VT: Queen City Printers.

Weber, R. E. (1996). Hemoglobin adaptations in Amazonian and temperate fish with
special reference to hypoxia, allosteric effectors and functional heterogeneity. In
Physiology and Biochemistry of the Fishes of the Amazon (ed. A. L. Val, V. M. F.
Almeida-Val and D. J. Randall), pp. 75-90. Manaus, Brazil: INPA.

Weber, R. E. (2007). High-altitude adaptations in vertebrate hemoglobins. Respir.
Physiol. Neurobiol. 158, 132-142.

Weber, R. E. and Fago, A. (2004). Functional adaptation and its molecular basis in
vertebrate hemoglobins, neuroglobins and cytoglobins. Respir. Physiol.
Neurobiol. 144, 141-159.

Weber, R. E. and Jensen, F. B. (1988). Functional adaptations in hemoglobins from
ectothermic vertebrates. Annu. Rev. Physiol. 50, 161-179.

Weber, R. E., Hiebl, I. and Braunitzer, G. (1988a). High altitude and hemoglobin
function in the vultures Gyps rueppellii and Aegypius monachus. Biol. Chem.
Hoppe Seyler 369, 233-240.

Weber, R. E., Lalthantluanga, R. and Braunitzer, G. (1988b). Functional
characterization of fetal and adult yak hemoglobins: an oxygen binding cascade
and its molecular basis. Arch. Biochem. Biophys. 263, 199-203.

West, J. B. andWagner, P. D. (1980). Predicted gas exchange on the summit of Mt.
Everest. Respir. Physiol. 42, 1-16.

Willford, D. C., Hill, E. P. and Moores, W. Y. (1982). Theoretical analysis of optimal
P50. J. Appl. Physiol. 52, 1043-1048.

Winslow, R. M., Samaja, M. and West, J. B. (1984). Red cell function at extreme
altitudes on Mount Everest. J. Appl. Physiol. 56, 109-116.

Woodson, R. D. (1988). Evidence that changes in blood oxygen affinity modulate
oxygen delivery: implications for control of tissue PO2 gradients. Adv. Exp. Med.
Biol. 215, 309-313.

Yalcin, O. and Cabrales, P. (2012). Increased hemoglobin O2 affinity protects
during acute hypoxia. Am. J. Physiol. Heart Circ. Physiol. 303, H271-H281.

Yonetani, T. and Tsuneshige, A. (2003). The global allostery model of hemoglobin:
an allosteric mechanism involving homotropic and heterotropic interactions.
C. R. Biol. 326, 523-532.

3203

REVIEW Journal of Experimental Biology (2016) 219, 3190-3203 doi:10.1242/jeb.127134

Jo
u
rn
al

o
f
Ex

p
er
im

en
ta
lB

io
lo
g
y

http://dx.doi.org/10.1146/annurev.bi.48.070179.001551
http://dx.doi.org/10.1146/annurev.bi.48.070179.001551
http://dx.doi.org/10.1101/SQB.1987.052.01.063
http://dx.doi.org/10.1101/SQB.1987.052.01.063
http://dx.doi.org/10.1101/SQB.1987.052.01.063
http://dx.doi.org/10.1073/pnas.1315456110
http://dx.doi.org/10.1073/pnas.1315456110
http://dx.doi.org/10.1073/pnas.1315456110
http://dx.doi.org/10.1073/pnas.1315456110
http://dx.doi.org/10.1111/j.1432-1033.1977.tb11333.x
http://dx.doi.org/10.1111/j.1432-1033.1977.tb11333.x
http://dx.doi.org/10.1111/j.1432-1033.1977.tb11333.x
http://dx.doi.org/10.1242/jeb.091397
http://dx.doi.org/10.1242/jeb.091397
http://dx.doi.org/10.1242/jeb.091397
http://dx.doi.org/10.1242/jeb.091397
http://dx.doi.org/10.1093/molbev/msp165
http://dx.doi.org/10.1093/molbev/msp165
http://dx.doi.org/10.1093/molbev/msp165
http://dx.doi.org/10.1534/genetics.109.113506
http://dx.doi.org/10.1534/genetics.109.113506
http://dx.doi.org/10.1534/genetics.109.113506
http://dx.doi.org/10.1111/j.1365-2141.1979.tb05870.x
http://dx.doi.org/10.1111/j.1365-2141.1979.tb05870.x
http://dx.doi.org/10.1111/j.1365-2141.1979.tb05870.x
http://dx.doi.org/10.1016/0034-5687(86)90041-1
http://dx.doi.org/10.1016/0034-5687(86)90041-1
http://dx.doi.org/10.1046/j.1365-201X.1997.574342000.x
http://dx.doi.org/10.1046/j.1365-201X.1997.574342000.x
http://dx.doi.org/10.1046/j.1365-201X.1997.574342000.x
http://dx.doi.org/10.1007/s00421-003-0954-8
http://dx.doi.org/10.1007/s00421-003-0954-8
http://dx.doi.org/10.1007/s00421-003-0954-8
http://dx.doi.org/10.1007/s00421-003-0954-8
http://dx.doi.org/10.1242/jeb.052548
http://dx.doi.org/10.1242/jeb.052548
http://dx.doi.org/10.1016/j.resp.2006.02.012
http://dx.doi.org/10.1016/j.resp.2006.02.012
http://dx.doi.org/10.1016/j.resp.2006.02.012
http://dx.doi.org/10.1016/0034-5687(82)90052-4
http://dx.doi.org/10.1016/0034-5687(82)90052-4
http://dx.doi.org/10.1644/06-MAMM-S-199R1.1
http://dx.doi.org/10.1644/06-MAMM-S-199R1.1
http://dx.doi.org/10.1038/nrg.2016.11
http://dx.doi.org/10.1038/nrg.2016.11
http://dx.doi.org/10.1152/physiol.00060.2015
http://dx.doi.org/10.1152/physiol.00060.2015
http://dx.doi.org/10.1089/ham.2007.1079
http://dx.doi.org/10.1089/ham.2007.1079
http://dx.doi.org/10.1534/genetics.107.078550
http://dx.doi.org/10.1534/genetics.107.078550
http://dx.doi.org/10.1534/genetics.107.078550
http://dx.doi.org/10.1073/pnas.0905224106
http://dx.doi.org/10.1073/pnas.0905224106
http://dx.doi.org/10.1073/pnas.0905224106
http://dx.doi.org/10.1073/pnas.0905224106
http://dx.doi.org/10.1242/jeb.042598
http://dx.doi.org/10.1242/jeb.042598
http://dx.doi.org/10.1242/jeb.042598
http://dx.doi.org/10.1242/jeb.048181
http://dx.doi.org/10.1242/jeb.048181
http://dx.doi.org/10.1242/jeb.048181
http://dx.doi.org/10.1242/jeb.050443
http://dx.doi.org/10.1242/jeb.050443
http://dx.doi.org/10.1242/jeb.050443
http://dx.doi.org/10.1002/iub.482
http://dx.doi.org/10.1002/iub.482
http://dx.doi.org/10.1016/j.ympev.2012.07.013
http://dx.doi.org/10.1016/j.ympev.2012.07.013
http://dx.doi.org/10.1016/j.ympev.2012.07.013
http://dx.doi.org/10.1152/ajpregu.00100.2015
http://dx.doi.org/10.1152/ajpregu.00100.2015
http://dx.doi.org/10.1152/ajpregu.00100.2015
http://dx.doi.org/10.1152/ajpregu.00327.2015
http://dx.doi.org/10.1152/ajpregu.00327.2015
http://dx.doi.org/10.1152/ajpregu.00327.2015
http://dx.doi.org/10.1152/ajpregu.00327.2015
http://dx.doi.org/10.1016/0034-5687(70)90098-8
http://dx.doi.org/10.1016/0034-5687(70)90098-8
http://dx.doi.org/10.1242/jeb.079848
http://dx.doi.org/10.1242/jeb.079848
http://dx.doi.org/10.1242/jeb.079848
http://dx.doi.org/10.1093/molbev/msu311
http://dx.doi.org/10.1093/molbev/msu311
http://dx.doi.org/10.1093/molbev/msu311
http://dx.doi.org/10.1093/molbev/msu311
http://dx.doi.org/10.1007/BF00591367
http://dx.doi.org/10.1007/BF00591367
http://dx.doi.org/10.1007/BF00591367
http://dx.doi.org/10.1007/BF00585241
http://dx.doi.org/10.1007/BF00585241
http://dx.doi.org/10.1007/BF00585241
http://dx.doi.org/10.1007/BF00584951
http://dx.doi.org/10.1007/BF00584951
http://dx.doi.org/10.1007/BF00584951
http://dx.doi.org/10.1007/BF00584951
http://dx.doi.org/10.1007/BF00584951
http://dx.doi.org/10.1016/S1095-6433(00)00184-7
http://dx.doi.org/10.1016/S1095-6433(00)00184-7
http://dx.doi.org/10.1016/j.resp.2007.05.001
http://dx.doi.org/10.1016/j.resp.2007.05.001
http://dx.doi.org/10.1016/j.resp.2004.04.018
http://dx.doi.org/10.1016/j.resp.2004.04.018
http://dx.doi.org/10.1016/j.resp.2004.04.018
http://dx.doi.org/10.1146/annurev.ph.50.030188.001113
http://dx.doi.org/10.1146/annurev.ph.50.030188.001113
http://dx.doi.org/10.1515/bchm3.1988.369.1.233
http://dx.doi.org/10.1515/bchm3.1988.369.1.233
http://dx.doi.org/10.1515/bchm3.1988.369.1.233
http://dx.doi.org/10.1016/0003-9861(88)90628-5
http://dx.doi.org/10.1016/0003-9861(88)90628-5
http://dx.doi.org/10.1016/0003-9861(88)90628-5
http://dx.doi.org/10.1016/0034-5687(80)90100-0
http://dx.doi.org/10.1016/0034-5687(80)90100-0
http://dx.doi.org/10.1007/978-1-4615-9510-6_36
http://dx.doi.org/10.1007/978-1-4615-9510-6_36
http://dx.doi.org/10.1007/978-1-4615-9510-6_36
http://dx.doi.org/10.1007/978-1-4615-9510-6_36
http://dx.doi.org/10.1152/ajpheart.00078.2012
http://dx.doi.org/10.1152/ajpheart.00078.2012
http://dx.doi.org/10.1152/ajpheart.00078.2012
http://dx.doi.org/10.1016/S1631-0691(03)00150-1
http://dx.doi.org/10.1016/S1631-0691(03)00150-1
http://dx.doi.org/10.1016/S1631-0691(03)00150-1


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage false
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 200
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.32000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.32000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError false
  /PDFXTrimBoxToMediaBoxOffset [
    34.69606
    34.27087
    34.69606
    34.27087
  ]
  /PDFXSetBleedBoxToMediaBox false
  /PDFXBleedBoxToTrimBoxOffset [
    8.50394
    8.50394
    8.50394
    8.50394
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


