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Automated detection of feeding strikes by larval fish using
continuous high-speed digital video: a novel method to extract
quantitative data from fast, sparse kinematic events
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ABSTRACT
Using videography to extract quantitative data on animal movement
and kinematics constitutes a major tool in biomechanics and
behavioral ecology. Advanced recording technologies now enable
acquisition of long video sequences encompassing sparse and
unpredictable events. Although such events may be ecologically
important, analysis of sparse data can be extremely time-consuming
and potentially biased; data quality is often strongly dependent on the
training level of the observer and subject to contamination by
observer-dependent biases. These constraints often limit our ability
to study animal performance and fitness. Using long videos of
foraging fish larvae, we provide a framework for the automated
detection of prey acquisition strikes, a behavior that is infrequent yet
critical for larval survival. We compared the performance of four video
descriptors and their combinations against manually identified
feeding events. For our data, the best single descriptor provided a
classification accuracy of 77–95% and detection accuracy of 88–
98%, depending on fish species and size. Using a combination of
descriptors improved the accuracy of classification by ∼2%, but did
not improve detection accuracy. Our results indicate that the effort
required by an expert to manually label videos can be greatly reduced
to examining only the potential feeding detections in order to filter
false detections. Thus, using automated descriptors reduces the
amount of manual work needed to identify events of interest from
weeks to hours, enabling the assembly of an unbiased large dataset
of ecologically relevant behaviors.

KEY WORDS: Automated classification, Feeding kinematics,
High-speed video, Machine learning

INTRODUCTION
Quantitative analysis of animal movements constitutes a major tool
in understanding the relationship between animal form and
function, and how animals perform tasks that affect their chances
of survival (Alexander, 1992; Dickinson et al., 2000; Marey, 1874).
This discipline benefited greatly when filming technology enabled
the freezing of fast movements and determination of the sequence of

events that occur when animals move. Stroboscopic filming and
multiple cameras, first used in the early 1900s, have evolved to
designated 16 mm movie cameras capable of filming at hundreds of
frames per second. In the last decades, digital high-speed
videography has enabled the collection of detailed kinematics of
animal motion. Because of technological and practical limitations
such as camera memory and data analysis constraints, analysis is
often focused on short video clips, usually <1 s. Commonly, events
of interest, such as the movement of animals while jumping, landing
or striking prey, are captured on video by manually triggering the
camera at the right time, and saving the relevant range within each
video sequence. The data are then digitized and analyzed to resolve
temporal patterns in the sequence of events, variables such as speed
and acceleration, and other quantitative kinematic data. This
framework has enabled researchers to understand the mechanistic
and behavioral aspects of diverse behaviors such as jumping, flying,
running, gliding, feeding and drinking in many animal species (e.g.
Altshuler et al., 2004; Holzman et al., 2007; James et al., 2007; Reis
et al., 2010; Ribak and Swallow, 2007; Toro et al., 2004 among
many others).

Manually triggering the camera to save short sequences is only
suitable for events that can be easily identified in real time, are easy
to induce, or are repetitive and frequent. For events that do not
adhere to these criteria or that are unpredictable in space and time,
manual triggering and saving short clips limits the possible scope of
research. One example of the latter constraint is suction feeding by
larval fish. Newly hatched fish subsist on a limited supply of yolk
and thus must encounter and successfully capture food before their
energy resources become depleted (Fyhn, 1989; Hunter, 1981). To
capture their prey, larval fish swim towards it and then open their
mouth while expanding the oral cavity. The expansion of the
larvae’s mouth generates a strong inward flow of water, and this
flow is key to successful suction feeding, drawing the prey into the
predator’s mouth (Day et al., 2015; Lauder, 1980, 1985; Westneat,
2006). However, the body of a hatchling larva is a few millimeters
long, and its mouth diameter is as small as 100 µm. The high
magnification optics required to film these minute larvae leads to a
small depth-of-field and limited visualized area. Actively
swimming larvae remain in the visualized area for only a few
seconds. A low feeding rate (especially in the first days post-
hatching) results in a scarcity of feeding attempts in the visualized
area (Holzman et al., 2015). Similar to adults, prey capture in larvae
takes a few tenths of a millisecond (China and Holzman, 2014;
Hernandez, 2000; Holzman et al., 2015), easily missed by the naked
eye or conventional video.

Recently, continuous high-speed photography of long sequences
(∼100,000 frames) has shown that the prey capture success rates of
early-stage larvae are substantially lower than those of their older
counterparts (China and Holzman, 2014; Holzman et al., 2015).Received 28 October 2015; Accepted 6 March 2016
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This method was instrumental in testing the hypothesis that the
hydrodynamic regime of low Reynolds numbers experienced by
small larvae directly impedes the suction feeding mechanism,
possibly leading to larval starvation and mortality (China and
Holzman, 2014). Although these systematic observations of larval
feeding attempts have proven crucial for understanding the feeding
process, they were extremely labor intensive, limiting the
widespread application of this method in larval fish research. For
example, we estimate the data acquisition rate as 0.8–3 strikes h−1

(depending on larval age) when using traditional, burst-type high-
speed cameras. Using continuous high-speed filming can mitigate
some of these shortcomings by providing good spatio-temporal
resolution by integrating over several minutes of feeding and
thereby increase the probability of observing a prey-capturing strike.
Still, the strikes then have to be identified by observing the videos at
speeds 30 to 100-fold slower than the recorded speed, a time-
consuming task. Our goal was therefore to develop a visualization
method by which to computationally characterize rapid, sparse
events in a non-intrusive, quantitative and objective way.
Specifically, we set out to detect and classify prey-capture strikes
from continuous high-speed movies of larval fishes. This procedure
provides an unbiased, high-throughput method to measure feeding
rates, feeding success, prey selectivity and handling time, as well as
swimming speed and strike kinematics.

MATERIALS AND METHODS
Model organisms
We focused on three fish species: Sparus aurata Linnaeus 1758
[two age groups: 13 and 23 days post-hatching (dph); Sparidae,
Perciformes, Actinoperygii], Amatitlania nigrofasciata (Günther
1867) (14–16 dph; Cichlidae, Perciformes, Actinopterygii) and

Hemichromis bimaculatus Gill 1862 (8–15 dph; Cichlidae,
Perciformes, Actinopterygii). Sparus aurata is a marine fish of
high commercial importance, commonly grown in fisheries,
whereas the two cichlid species are freshwater fish that are grown
for the pet trade. Sparus aurata has a life history that is characteristic
of pelagic and coastal fishes, whereas the cichlids provide parental
care to their offspring. Thus, the cichlid larvae hatch at a much
larger size and are more developed (Table 1).

The experiments described below complied with IACUC
approved guidelines for the use and care of animals in research at
Tel Aviv University, Israel.

Experimental set-up
During experiments, the larvae were placed in a small rectangular
experimental chamber (26×76×5 mm). Depending on fish age and
size, five to 20 larvae were placed in the chamber and were allowed
several minutes to acclimate before video-recording began. Larval
density was adjusted so that at least one larvawould be present in the
field of view throughout most of the imaging period. Typical
feeding sessions lasted 5–10 min. Rotifers (Brachionus
rotundiformis; ∼160 µm in length) were used as prey for all fish
species as they are widely used as the standard first-feeding food in
the mariculture industry.

Visualization of feeding larvae was done using a continuous
high-speed digital video system (Vieworks VC-4MC-M/C180),
operating at 240 frames s−1 with a resolution of 2048×1024 pixels
(Holzman et al., 2015). The camera was connected to a PC, and
controlled by Streampix 5 video acquisition software (Norpix,
Montréal, Canada). A 25 mm f/1.4 C-mount lens (Avenir CCTV
lens, Seiko Optical, Mong Kok, Hong Kong) was mounted on an
8 mm extension tube, providing a field of view of 15×28×3 mm
(height×width×depth) at f=5.6. We used backlit illumination, using
an array of 16 white LEDs (∼280 lumens) with a white plastic
diffuser. The original videos were used for our core algorithm to
capture every image detail; however, for the pre-processing stage
the original videos were rescaled to 1024×512 pixels per frame to
increase computation efficiency. This size was empirically
determined to accelerate pre-processing computations while
having a minimal impact on the final accuracy.

Manual identification of feeding strikes
Following recording, videos were played back at reduced speed
(10 frames s−1) to manually identify feeding attempts (Fig. 1). We
defined feeding attempts as instances in which the mouth was
opened at a time when a prey item was present at a distance of less
than one-fifth of a body length in front of the larvae, while it was
swimming towards the prey. Feeding attempts can be visually
distinguished from breathing based on the size of the mouth opening

Table 1. Life-history traits for the species used in the present study

Sparus
aurata

Amatitlania
nigrofasciata

Hemichromis
bimaculatus

Egg diameter at
hatching (mm)

∼1 ∼1.3 ∼1.3

Length of hatched
larvae (mm)

3.5 5.0 4.9

Age at filming (days
post-hatch)

13, 23 8, 11, 15 8, 14, 16

Length at filming (mm) 4.5, 6.5 5.6–6.1 5.5–5.9
Number of events
used for
classification

300 ∼150 ∼150

List of symbols and abbreviations
ACC accuracy
AUC area under the curve
Bk blob (segment) number k
fdesc(Vk) feature descriptor of Vk

I(k,i)x horizontal gradient of pixel i at blob k
I(k,i)y vertical gradient of pixel i at blob k
MBH dense trajectories and motion boundary histogram

descriptor
MIP motion interchange patterns descriptor
RBF radial basis function
ROC receiver operator curve
STIP space–time interest points descriptor
SVM support vector machine
Tcirc minimum allowed eigenvalue ratio that keeps out shapes

that are too circular
Telong maximum allowed eigenvalue ratio that keeps out shapes

that are too elongated
Tmax maximum number of pixels for a fish blob
Tmin minimum number of pixels for a fish blob
TN true negative
TP true positive
TSobel gradient magnitude threshold
Ttxt texture threshold
VIF violent flows descriptor
Vk space–time volume number k (short video clip of fish

head)
λmax maximum eigenvalue of a blob
λmin minimum eigenvalue of a blob
∇Bk,i gradient of pixel i at blob k
||∇Bk,i|| gradient magnitude
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and the opening speed. During a feeding attempt, the mouth opens
fast and wide, typically >70% of its maximal diameter, whereas
breathing is characterized by a slower and smaller mouth opening
(<30%) (Brainerd and Ferry-Graham, 2006; Westneat, 2006).
Overall, we obtained ∼75 feeding events for each of the four
groups used in this study (Table 1; two S. aurata age groups, A.
nigrofasciata and H. bimaculatus).

Classification of feeding strikes
In addition to the 75 feeding events identified for each group, short
clips sampled at random space–time points were used to generate 75

non-feeding events. Each of these non-feeding events was viewed to
verify the lack of feeding activity. These 600 clips were used as the
underlying database for the machine learning classification
algorithms (Table 1). The database was divided into database A,
which comprised A. nigrofasciata andH. bimaculatus, and database
B, which comprised the two age groups of S. aurata. Each database
was analyzed separately.

A diagram describing the detection process of feeding events is
provided in Fig. 2. Key to the process was the separation into two
stages of the classification process. First, fish detection and pose
normalization, i.e. adjusting the frame of view so that the larva

0 ms 20 ms 40 ms 60 ms

80 ms 100 ms 120 ms

Fig. 1. Extracted spatio-temporal volume in
canonical views (horizontal, right-facing views) of a
feeding fish. The prey is marked by a red circle, and
enters themouth at 60 ms. Themouth closes at 120 ms.

Fish shape and location

Location of the mouth

Short clips each centered on a 
fish’s mouth

Description of the action 
in each clip

Larva–prey 
interaction events 

detected

Video pre-processing and fish localization  
Using contrast to create ‘blobs’ and distinguish
between fish and non-fish blobs by size, shape
and texture.

Orientation normalization and mouth detection
Once the fish is located, the eye is then recognised,
and according to its position, the mouth is located.
The fish is then orientated to a horizontal position,
with the mouth facing to the right.

Clip extraction
The full film is divided into small clips that are each 
spatially centered around the mouth of a fish, with
each containing a small number of frames (20 or 40).
In the clips, all larvae are oriented in the same way.  
Together the clips contain all the potential prey–larva
interactions.

Video representation by action descriptors
Different action recognition algorithms are applied to
the clips transfer the information from visual to
descriptive.

Classification
Machine learning algorithm then determines for each
clip regardless of whether it contains larva–prey
interaction.

Fig. 2. Five main blocks of the classification
algorithm (left) and their outputs (right).
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would always be oriented in the same way. Second, classification of
the local spatio-temporal regions, and the determination of either
feeding or non-feeding events. We began by pre-processing the
entire video to detect individual fish, discriminating between them
and their background and other noise and artifacts in the video
(Fig. 2; Stage A, below). Following this step, the shape of the
detected fish was analyzed to determine the location of its mouth
and to rotate it to a roughly horizontal position to provide orientation
invariance (Stage B). These steps (detection andmouth localization)
used the compressed 1024×512 pixel videos to locate spatio-
temporal volumes (‘clips’) around each mouth. Clips were 21
frames, 121×121 pixels for database A, and 41 frames,
241×241 pixels for database B (∼1 body length in both cases).
Clips were extracted and represented using robust video descriptors
(Stage C), using the original high-resolution 2048×1024 pixel
videos. Finally, classification into feeding/non-feeding was
performed using a radial basis function (RBF) support vector
machine (SVM) classifier (Stage D).
Because of the high ratio between frame rate (240 frames s−1) and

the duration of feeding attempts (usually <60 ms), the classification
processing did not need to be applied for every frame to reliably

identify feeding attempts. We therefore empirically set the system
to process 21 frame volumes only every 10th frame for
A. nigrofasciata and H. bimaculatus or 41 frame volumes only
every 20th frame for the slower feeding S. aurata. Extracted
volumes overlapped by 11 and 21 for databases A and B,
respectively. Because the duration of our clips was twice as long
as the gap between the center frames, no framewas left unprocessed.
Each larva was monitored for the entire duration in the field of view
with every potential feeding event captured by at least two clips, as
the extracted volumes overlapped. In the following sections we
describe each of these steps in detail.

Stage A: video pre-processing and fish localization
In our data, typical video frames contained measurement noise,
resulting from floating food particles, light/shadow speckles and
dirt on the bottom of the chamber (Fig. 3A, Movie 1). Our
processing thus began by attempting to remove much of this clutter.
We first applied a standard image segmentation technique (Otsu,
1975), which provides a binary separation of the video to
foreground/background pixels, used to separate the background
from noise and fish blobs (Fig. 3A,B, Fig. S1).

A

BC1

D1

E1

C2

D2

E2

F

Fish recognition
according to their
contrast, size and
shape

Recognition 
of the head 
and rotation 
to a horizontal 
position

Identification of the
mouth according to
the position of the
head

Fig. 3. Video processing to identify fish and determine mouth location (first two stages in Fig. 2, Movie 1). (A) An image is selected from the video (here,
23 days post-hatch Sparus aurata). (B) Binary separation of the foreground and background is followed by blob extraction (blue and brown insets in B). (C) Blobs
qualified by an eigenvalue ratio test (having appropriate length/width ratios) are maintained, while small blobs are removed. (D) Gradient analysis is used to
identify textured elements (fish) from non-textured ones (noise). (E) Pose normalization is applied to the blobs. The fish head is located by examining the radius of
the maximum bounded circle. (F) The main axis of the fish body and the head are visualized, and projected onto the original image: green circles point to fish
mouths, and red lines represent fish bodies’ main (long) axis.
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The fish species in our videos were of similar size and length-to-
height (maximal dorso-lateral distance) ratio, making them
geometrically different than most of the other shapes in the video.
We therefore removed foreground blobs having less than a set
minimum threshold number of pixels Tmin or having more than a set
maximum threshold number of pixels Tmax. Non fish-shaped blobs
were then removed by considering the ratio between the two
eigenvalues λmin and λmax of each foreground segment (i.e. the
length along the longest and shortest axis of an equivalent ellipsoid).
A blob Bk was removed if the following condition did not hold:

Tcirc ,
lmin

lmax
, Telong: ð1Þ

The value for Tmin was set to 350 pixels for 13 dph S. aurata and
800 pixels for the other groups. The value for Tmax was set to
10,000 pixels. Telong and Tcirc were set to 100 and 1, respectively,
where Tcirc reflects the minimum allowed eigenvalue ratio that keeps
out shapes that are too circular, whereas Telong reflects the maximum
allowed eigenvalue ratio that keeps out shapes that are too
elongated. These values were determined by experimenting with
several arbitrarily selected images, and remained unchanged
throughout our experiments.
The above process eliminated most of the non-fish foreground

blobs (Fig. 3C), but some blobs may still share the same size or
shape of these fish. These blobs were identified by considering the
texture within each blob (Fig. 3D, Fig. S1); blobs produced by noise
typically present flat appearances compared with the textured fish
bodies. Specifically, we evaluated the following expression for each
foreground blob: X

i[Bk

f ðk rBk;i kÞ , Ttxt; ð2Þ

where:

f ðxÞ ¼ x . TSobel 1
else 0

:

�
ð3Þ

Here, k rBk;i k¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Iðk; iÞ2x þ Iðk; iÞ2y

q
, where Ix is the horizontal

image gradient and Iy the vertical gradient, both at the ith pixel of the
kth blob and both approximated using standard 3×3 Sobel filters.
The values for TSobel and Ttxt (the gradient magnitude and texture
thresholds, respectively) were set to 120 and 140, respectively, and
used throughout our experiments. These steps are visualized in
Fig. 3.

Stage B: orientation normalization
As the fish swim freely in their tank, their heads may be oriented in
any direction. This is quite different from standard action
recognition applications, in which actions are typically performed
oriented in the same manner: a video of a human actor walking
would typically have the motion of the legs appearing at the bottom
of the frame, below the rest of the body. Representations used to
capture and discriminate between human actions are therefore not
designed to be invariant to the rotational differences exhibited by our
fish. Here, this invariance is introduced prior to feature extraction by
rotating all fish-head spatio-temporal blobs to a canonical position,
in a manner similar to that employed by low-level descriptors such
as Scale Invariant Feature Transform (Lowe, 2004). Specifically, at
the particular larval developmental stage considered here, the head is
substantially bigger than any other part of the fish’s anatomy. The
head can therefore be detected simply by locating the max-bounded
circle of the fish segment. The spatio-temporal volume around each

head region is then rotated to align the x-axis of the entire fish blob
with the frame’s horizontal axis (Fig. 3) using standard principal
components analysis. Additional invariance to reflection is then
introduced by reflecting all spatio-temporal volumes to produce
horizontally aligned, right-facing fish.

The two steps of detecting fish mouths and rotating the segments
are visualized in Fig. 3 (see also Fig. S1). The result of this stage,
mouth detection, is a defined area around each detected mouth
(Movie 1). For dataset A (A. nigrofasciata and H. bimaculatus), we
extracted 121×121 pixels centered on the mouth’s central pixel for
21 frames, extracted from the compressed 1024×512 pixel video (10
frames before and after the central frame). For dataset B (S. aurata),
we extracted 241×241 pixels centered on the mouth’s central pixel
for 41 frames (20 frames before and after the central frame),
extracted from the original high-resolution 2048×1024 pixel video
(Fig. 1). Extracted clips overlapped by 50% of their length. This
choice of spatial dimensions allowed coverage of the entire head
along with sufficient margins for possible food floating around the
fish. The temporal dimension was empirically determined to be long
enough to span feeding. Note that fish could appear in the frame for
longer time frames. In such cases, several 41-frame-long clips
would be generated and analyzed for each fish (i.e. long sequences
were divided with overlapping between divisions, not trimmed).

Stage C: video representation
The pose-normalized video clips produced in the previous step are
next converted to robust representations (descriptors), whose function
is to represent actions appearing in videos as a set of floating point
numbers (in our case 96–512 numbers). Each descriptor is produced
by an algorithm that represents (describes) a video clip based on
features of the image sequence (e.g. spatial or temporal derivatives or
integral across the image sequence). Effectively, going from video to
feature descriptor representations (i.e. a set of floating point numbers)
allowed us to reduce the dimensionality of the analysis problem at
hand. It further allowed us to represent videos in a manner that is
invariant to confounding appearance variations (e.g. changes in
illumination, imaging noise, etc.) yet varies with relevant appearance
variations (e.g. is assigned with different values for feeding versus
non-feeding events). In general, three low-level representation
schemes have been central in action recognition systems. These are
the local descriptors, optical flow and dynamic-texture based
representation schemes. Local descriptors locate ‘interesting points’
in space–time and extract representations only for these points and
their immediate surroundings. An entire video is represented by
pooling these points in various manners (e.g. by counting how many
times different representations appear in a video). Optical flow
methods compute the per-pixel flow (the motion at that pixel, from
one frame to the next) and represent a video by analyzing this motion.
Finally, dynamic-texture-based methods apply low-level, space–time
filters to the entire video (to all pixel locations in all frames) and
represent videos by statistics of these filter responses. Because
detection of larval feeding strikes is an unexplored computer vision
problem, we felt it necessary to evaluate all three of these
representation schemes (see below).

We used representations that are known and tested algorithms that
have been designed to capture and recognize different actions by
extracting discriminative information unique to each action, but
remain robust to small differences in how each action is performed,
the actor performing it, the viewing conditions, and more. We
experimented with a number of recent video representations,
previously shown to provide excellent action recognition
performance, and chose three descriptors – the best performed

1612

METHODS & TECHNIQUES Journal of Experimental Biology (2016) 219, 1608-1617 doi:10.1242/jeb.133751

Jo
u
rn
al

o
f
Ex

p
er
im

en
ta
lB

io
lo
g
y

http://jeb.biologists.org/lookup/suppl/doi:10.1242/jeb.133751/-/DC1
http://jeb.biologists.org/lookup/suppl/doi:10.1242/jeb.133751/-/DC1
http://jeb.biologists.org/lookup/suppl/doi:10.1242/jeb.133751/-/DC1


descriptors from each scheme. Thus, each pose-normalized clip of a
larva’s mouth was encoded using the following action descriptors:
(1) space–time interest points (STIP), a local descriptor (Laptev,
2005); (2) motion interchange patterns (MIP), a dynamic-texture
based descriptor (Kliper-Gross et al., 2012); (3) dense trajectories
and motion boundary histogram (MBH), an optical-flow-based
descriptor presented in Wang et al. (2011); and (4) violent flows
(VIF), developed to particularly identify violent action (Hassner
et al., 2012). The first three have been shown to provide excellent
action classification performance on videos of humans performing a
wide range of actions. Because feeding strikes could easily be
categorized as violent action, it is but natural to check this VIF
descriptor as well. All four have been shown in the past to be
complementary of each other (e.g. Kliper-Gross et al., 2012). As we
later show, combining these representations indeed substantially
elevated detection accuracy. We note that there are other, more
elaborate methods of comparing video representations (e.g. Kliper-
Gross et al., 2011); however, we found their substantial
computational overhead to be unnecessary for our purposes.

Stage D: classification
Binary classification of each clip, Vk, as representing either
interaction or non-interaction with prey, was performed by first
extracting feature descriptors fdesc(Vk), where the subscript ‘desc’
represents STIP, MIP, MBH or VIF, and then classifying these
feature vectors using standard SVMs with RBF kernels (Cortes and
Vapnik, 1995). SVM was directly applied to discriminate between
descriptors fdesc(Vk) extracted from each clip. In addition, we
performed tests with stacking SVM classifiers – of these descriptors
– a machine learning paradigm in which multiple learners (of the
four descriptors mentioned in our case: MIP, STIP, VIF and MBH)
are combined to solve the same problem (classification as feeding or
non-feeding). Multiple descriptors were evaluated by stacking SVM
classifiers (Wolpert, 1992) as stacking SVM has been proven to
outperform the single SVM. Specifically, decision values of SVM
classifiers applied separately to each representation were collected
in a single vector. These vectors of decision values were then
classified using an additional linear SVM.
The final output of our analysis is a list of frame numbers and in-

frame x–y locations, where larva–prey interaction occurs.

Evaluation
We conducted a two-step evaluation of our method. In the first step,
we tested the classification scheme, which is the core of our
identification method. In the second step, we tested our overall
identification method. Classification tests of the first step were
conducted to learn and evaluate the classification models while
seeking to classify clips as feeding or as non-feeding events. The
best models were kept and later used as the classification’s core
algorithm. Classification tests assess the probability of the classifier
to make a correct classification of a clip; the accuracy it reports
should be compared with a random guess of whether the clip shows
a feeding or non-feeding event, which provides a baseline accuracy
of 50% in our benchmark. Classification tests are the standard way
to evaluate the performance of a classifier in the computer science
machine learning literature (Hassner, 2013; Hassner et al., 2012;
Kliper-Gross et al., 2012, 2011). Detection tests were performed in
the second step to evaluate the entire pipeline, by testing the
detection correctness of feeding/non-feeding events in the original
videos. These tests demonstrate how the entire framework performs
on a typical use case, where unseen new videos are provided for
analysis. It is a different metric, which reflects the ability of the

framework to detect relevant instances of an event in a movie. This
is the practical implementation of the whole system, because it is
related to the quality of results that the end user (who is interested in
the organism) would want to evaluate. The detection tests used the
models learned previously during the classification tests. Note that
these models need to be learned only once, whereas they can be used
multiple times. In both classification and detection, our tests were
applied separately to the faster feeding fish, A. nigrofasciata and H.
bimaculatus, and to the slower S. aurata.

Classification tests
Our classification benchmarks include clips that were extracted
using the process described in Fig. 2. We measured binary
classification rates for larva–prey interaction versus larva–prey
non-interaction events. We then compared our system’s
performance versus manually labeled ground-truthing. We note
that testing the classification in this manner is standard practice in
evaluating action recognition systems (Hassner, 2013), particularly
when positive events are very rare, as they are here.

This benchmark contains two databases. Database A contained
150 videos of feeding events and 150 videos of non-feeding events
of A. nigrofasciata and H. bimaculatus. Both species have similar
morphology and strike kinematics, and consequently were treated
collectively in the same database. Database B contained 150 videos
of feeding events and 150 videos of non-feeding events of S. aurata.
We used a leave-one-out, six-fold, cross-validation test protocol.
For each set of six clips, we took five as the training set used by the
algorithm and employed the sixth event to test the algorithm. Each
fold contained 50 video-exclusive clips; that is, a clip only belongs
to one fold, thereby preventing biases from crossing over from
training to testing. In total, for each of the six tests, the database is
divided into two: one division contains 250 volumes and is used to
train the SVM classifiers, and the second division contains 50
volumes and is used for testing. In each test division, half of the
volumes portray feeding events and half portray non-feeding events.

We report the mean±s.e.m. accuracy (ACC) computed over all six
divisions. Here, mean accuracy is the average number of times our
system predicted a feeding versus non-feeding event on our sets of
volumes. Standard error was measured across the six test divisions.
We also provide the overall area under the curve (AUC) – the area
under the receiver operator curve (ROC) – as well as the sensitivity
(true positive/positives) and specificity (true negative/negative).
ROC is a graphical plot that illustrates the performance of a binary
classifier system, and the AUC is generally used as a statistic for
model comparison (Metz, 1978).

Detection tests
We next measured the rate at which our workflow correctly detected
feeding events in videos. Our tests were performed on a video with
6000 frames of H. bimaculatus, which included 14 manually
labeled feeding events. Our pipeline decomposed this video into a
total of 535 potential clips. Separate tests were performed on a video
of 4200 frames depicting S. aurata larvae. Here, only five feeding
events were manually labeled, compared with a total of 451
potential clips automatically extracted by our system.

In our detection tests, reported in the results, we provide the
following performance measures for each video: true positive (TP)
and true negative (TN), which are the number of times a larva–prey
interaction and a larva–prey non-interaction were detected as such,
respectively. Accuracy was defined as the percentage of clips
correctly detected as either positive or negative. We also provide the
confusion matrices for each test, showing the detection rates (in
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percentages) of predicted positive and negative events versus actual
labels for each event. Here too, as with our classification tests, we
report performance for all descriptors and their combinations.
Our tests were conducted on a standardWin7, 1 core Intel i7 4770

CPU 64 bit 3.4 GHz processor, 16 GB RAM machine. Table 2
provides a breakdown of the times required for each of the steps in
our workflow.

RESULTS
In general, our classification and detection tests demonstrated our
ability to automatically classify time–space visual information with
fuzzy definitions (Tables 3–6). In terms of efficiency, out of all the
action description algorithms incorporated, the major bottleneck is
the MIP representation. This is because only a non-optimized
MATLAB code exists for this descriptor. As we later show, the
accuracy of the two fastest descriptors, MBH and VIF, is nearly as
high as the accuracy obtained by combining all descriptors. These
two descriptors may therefore be used on their own whenever
computational costs must be considered.

Classification benchmark
Our benchmark results for A. nigrofasciata and H. bimaculatus
are presented in Table 3. The highest performance was obtained

by combining all the representations, with high accuracy of
92.7±1.4%, high AUC values (0.97; see also Fig. S2), high
sensitivity (96.0) and high specificity (89.3). The fastest descriptor,
MBH, performed almost as well on its own (ΔACC=1.7;
ΔAUC=0.01; Δsensitivity=1.3; Δspecificity=2), making it an
attractive option whenever computational resources are limited
(Table 3, Fig. S2).

Our benchmark results for Sparus aurata are reported in Table 4.
These slower-feeding fish were harder to classify, as the differences
in the descriptor encodings are more subtle. This was most evident
in the VIF descriptor, originally designed to capture fast, violent
actions, and which performed much better on the other sets
(Table 4). The best performance was obtained by a combination of
descriptors with an accuracy of 72.7±2.1%, AUC of 0.81 (see also
Fig. S2), sensitivity of 75.3 and specificity of 70.0. Again, the
fastest descriptor, MBH, had only marginally inferior performance
(ΔACC=1.7; ΔAUC=0.05; Δsensitivity=3.3; Δspecificity=0;
Table 3, Fig. S2).

Detection results
Detection results are provided in Table 5 for H. bimaculatus and in
Table 6 for S. aurata. In both cases, MBH was the best
representation compared with other representations and even
representation combinations. For both cases, our system gave no
false positives (upper right cells of confusion matrix) and very low
rates of false negatives (lower left cells) of 5% and 25% for H.
bimaculatus and S. aurata, respectively.

Our results indicate that no true larva–prey interaction events
were missed, and only a negligible number of false detections (false
negatives) are left over to examine and manually filter. The effort
required by an expert to manually label videos is estimated at
∼20 min per 10,000 frames (40 s of raw video) for a well-trained
individual, depending on the number of larvae in the frame and the
number of feeding events. Thus, that effort can be reduced to
examining only a few potential feeding detections, a process taking
less than 1 min per feeding event.

DISCUSSION
Visualization of larval feeding is challenging because of size, time
scale and rarity of feeding events at the early larval stages. However,
visualization is essential for measuring the rate of feeding attempts
and failed attempts. Here, we present a novel method that can be
used to automatically identify and classify prey acquisition strikes in
larval fishes, facilitating the acquisition of large datasets from swift,

Table 3. Classification benchmark results for Amatitlania nigrofasciata
and Hemichromis bimaculatus

Descriptor type ACC (%) AUC Sensitivity Specificity

STIP 69.7±3.9 0.81 69.3 70.0
MIP 86.0±2.1 0.93 75.3 66.7
MBH 91.0±1.1 0.98 94.7 87.3
VIF 74.7±2.3 0.78 71.3 78.0
MBH+VIF 91.0±1.2 0.96 94.0 88.0
STIP+MIP+MBH 90.0±2.0 0.97 94.0 86.0
MIP+MBH+VIF 92.0±1.0 0.97 96.0 88.0
STIP+MIP+MBH+VIF 92.7±1.4 0.97 96.0 89.3

Classification tests were conducted to evaluate the classification models while
seeking to classify clips as feeding or as non-feeding events. The best models
were kept and later used as the classification’s core algorithm. Data shown are
classification accuracy (ACC; mean±s.e.m.), area under the receiver operating
characteristic curve (AUC), and sensitivity and specificity of each of the tested
methods. Shaded row indicates the best result. MBH, dense trajectories and
motion boundary histogram descriptor; MIP, motion interchange patterns
descriptor; STIP, space–time interest points descriptor.

Table 2. Breakdown of the time required for each of the components of
our system

Step Time (s)

Per frame
Compression 0.042
Fish head detection 1.07

Per volume
Pose normalization (rotation and mirroring) 0.21
STIP encoding 7.35
MIP encoding 7.01
MBH encoding 1.02
VIF encoding 4.01
SVM classification 0.01

All steps of our method were implemented in MATLAB except STIP and MBH
encodings and the SVM classification, which were available as (much faster)
pre-compiled code. The only element that performs differently in the learning
(0.01 s) versus execution (<0.001 s) is the SVM classifier. Manual detection of
feeding events took ∼20 min per 10,000 frames for a well-trained individual.
MBH, dense trajectories and motion boundary histogram descriptor; MIP,
motion interchange patterns descriptor; STIP, space–time interest points
descriptor; SVM, support vector machine.

Table 4. Classification benchmark results for Sparus aurata

Descriptor type ACC (%) AUC Sensitivity Specificity

STIP 68.3±2.3 0.75 63.3 74.0
MIP 66.3±1.9 0.77 66.7 66.0
MBH 71.0±2.6 0.77 72.0 70.0
VIF 62.0±1.1 0.66 64.0 60.0
MBH+VIF 70.0±1.1 0.77 70.0 70.0
STIP+MIP+MBH 70.7±2.1 0.81 74.0 67.3
MIP+MBH+VIF 70.7±2.3 0.80 72.0 69.3
STIP+MIP+MBH+VIF 72.7±2.1 0.82 75.3 70.0

Classification tests were conducted to evaluate the classification models while
seeking to classify clips as feeding or as non-feeding events. The best models
were kept and later used as the classification’s core algorithm. Data shown are
classification accuracy (ACC; mean±s.e.m.), area under the receiver operating
characteristic curve (AUC), and sensitivity and specificity of each of the tested
methods. Shaded row indicates the best result. MBH, dense trajectories and
motion boundary histogram descriptor; MIP, motion interchange patterns
descriptor; STIP, space–time interest points descriptor.
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sparse events. This method can be used to facilitate the assessment
of feeding rates and success, and to determine the fate of food
particles during the feeding cycle. Following automatic
identification, detailed kinematic analysis of prey acquisition
strikes can be carried out. For example, the spatial resolution and
frame rate reported here enable (manual) frame-by-frame
digitization of landmarks on the fish’s body to extract larval
swimming speed during foraging and during prey acquisition
strikes, determination of mouth size during prey acquisition strikes,
and the distance between prey and predator during the strike
(Holzman et al., 2015). Clearly, the frame rate we used
(250 frames s−1) may limit the resolution and accuracy of these
measurements; however, better (already commercially available)
hardware should now allow filming at 500–1000 frames s−1 at
megapixel resolution for extended time periods and will improve the
accuracy of such measurements.

The method we developed combines complex algorithms to
classify time–space visual information with fuzzy definitions of the
event for the post-manual review by human observers. This
approach is therefore not limited to fish, and can be applied to any
model system where specific tasks cannot be easily actuated. This
could be especially important in studies of natural behaviors in field
conditions, or when considering infrequent events. In bats, for
example, the movement of the ears is fast and unpredictable, and is
of special importance because of the bats’ superior localization
ability. Researchers have previously used high-speed video to
capture this movement (Gao et al., 2011), but have not benefited
from automated detection of events. Similarly, the method can be
used to analyze interactions between cleaner fish and their clients
(Bshary and Grutter, 2002; Bshary and Würth, 2001), which
hitherto required laborious processing of videos andmay be strongly
biased by the subjectivity of the observer. In that system, important

Table 5. Detection results for a video of Hemichromis bimaculatus

Descriptor

Confusion matrix (%)

TP (%) TN (%) ACC (%)Predicted feeding Predicted non-feeding

STIP Feeding 100.0 0.0 100 66 83
Non-feeding 34.2 65.8

MIP Feeding 92.8 7.14 93 83 88
Non-feeding 17.2 82.77

MBH Feeding 100.0 0.00 100 95 98
Non-feeding 5.5 95.0

VIF Feeding 92.9 7.1 93 70 81
Non-feeding 30.3 69.7

MBH+VIF Feeding 100.0 0.00 100 91 95
Non-feeding 9.0 91.0

STIP+MIP+MBH Feeding 100.0 0.0 100 86 93
Non-feeding 13.5 86.5

MIP+MBH+VIF Feeding 100.0 0.0 100 89 94
Non-feeding 11.4 88.6

STIP+MIP+MBH+VIF Feeding 100.0 0.0 100 83 92
Non-feeding 16.6 83.4

Detection tests evaluate the entire pipeline by evaluating how it performs on unseen new videos, reflecting the ability of the framework to detect a relevant event
from a movie. Each row provides detection performance using a different video representation. Results include the confusion matrix for true versus predicted
feeding and non-feeding events (shaded cells), true positive rate (TP), true negative rate (TN) and accuracy (ACC). MBH, dense trajectories andmotion boundary
histogram descriptor; MIP, motion interchange patterns descriptor; STIP, space–time interest points descriptor.

Table 6. Detection results for a video of Sparus aurata

Descriptor

Confusion matrix (%)

TP (%) TN (%) ACC (%)Predicted feeding Predicted non-feeding

STIP Feeding 100.0 0.0 100 63 82
Non-feeding 37.0 63.0

MIP Feeding 100.0 0.0 100 70 85
Non-feeding 30.0 70.0

MBH Feeding 100.0 0.0 100 75 88
Non-feeding 24.6 75.3

VIF Feeding 100.0 0.0 100 60 80
Non-feeding 39.7 60.3

MBH+VIF Feeding 60.0 40.0 60 75 68
Non-feeding 24.9 75.1

STIP+MIP+MBH Feeding 100.0 0.0 100 74 87
Non-feeding 25.6 74.4

MIP+MBH+VIF Feeding 100.0 0.0 100 75 88
Non-feeding 24.8 75.2

STIP+MIP+MBH+VIF Feeding 100.0 0.0 100 74 87
Non-feeding 25.6 74.4

Detection tests evaluate the entire pipeline by evaluating how it performs on unseen new videos, reflecting the ability of the framework to detect a relevant event
from a movie. Each row provides detection performance using a different video representation. Results include the confusion matrix for true versus predicted
feeding and non-feeding events (shaded cells), true positive rate (TP), true negative rate (TN) and accuracy (ACC). MBH, dense trajectories andmotion boundary
histogram descriptor; MIP, motion interchange patterns descriptor; STIP, space–time interest points descriptor.

1615

METHODS & TECHNIQUES Journal of Experimental Biology (2016) 219, 1608-1617 doi:10.1242/jeb.133751

Jo
u
rn
al

o
f
Ex

p
er
im

en
ta
lB

io
lo
g
y



parameters such as interaction time, frequency of interactions and
identity of the initiator and terminator can be automated and save
many humanworking hours. Ourmethod can also be used for purely
physical processes. For example, the resuspension of particles from
the bottom by turbulent flows is a strongly stochastic process
(Shnapp and Liberzon, 2015; Traugott et al., 2011), and therefore it
is impossible to predict where and when particles dislodge from the
surface. Yet, an understanding of the physical mechanism that leads
to the event of dislodgement requires high spatial and temporal
resolution to quantify the fluid field near the particle and solve the
component forces that are exerted on it. Thus, it is necessary to
visualize the close proximity of the particle and its own motion at
high spatial (mm) and temporal (ms) resolution. Traditionally,
enormous manual labor is needed to select all the relevant events
from the videos that document them (Shnapp and Liberzon, 2015;
Traugott et al., 2011). Automatic image processingmethods, such as
those presented here, can be designed to identify the first moment of
particle movement, and mark the event for later processing. A very
similar case is the development of a crack in solid surfaces in
response to stress (Matsuyama et al., 2010), which is a highly non-
linear and unpredictable physical process that should benefit from an
automatic marking of the events for the consequent analysis of, for
instance, initial crack size, its location and its speed of propagation.
High-speed cameras are a common tool in the study of feeding

kinematics (Ferry-Graham et al., 2002; Oufiero et al., 2012;
Wainwright and Bellwood, 2002; Wainwright et al., 2007, 2001;
Westphal and O’Malley, 2013); they are often used to record short
videos (lasting a few seconds) and the analysis is usually focused on
feeding kinematics and prey response. Here, we use a digital video-
recording system that is geared to collect continuous high-speed
videos and facilitate the unbiased identification and isolation of
behavioral events in the field of view. Combined with further
analysis of strike kinematics performed on the isolated clips, our
method will help provide a better understanding of how kinematics
affects the larval feeding performance (a possible proxy of fitness).
We believe that our approach can advance computational work for
the modeling of larval feeding, leading to a better understanding of
the specific larval failure mechanisms in the feeding process. Our
method can be employed in a wide range of studies on larval
feeding: the effect of inter- and intra-specific competition, food
preferences and feeding selectivity, prey escape response and
predator–prey co-evolution. All of these represent some of the
enormous potential our approach can offer. Automatic software
identification of feeding attempts will eliminate the current
bottleneck when acquiring data. Identifying feeding attempts by
means of the human eye is a time-consuming process; by
automating this process, we will not only ensure objectivity but
also enable data acquisition on a larger scale than obtained to date in
the field of larval feeding.
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