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ABSTRACT

In social Hymenoptera with no morphological caste, a dominant female
becomes an egg layer, whereas subordinates become sterile helpers.
The physiological mechanism that links dominance rank and fecundity
is an essential part of the emergence of sterile females, which reflects
the primitive phase of eusociality. Recent studies suggest that
brain biogenic amines are correlated with the ranks in dominance
hierarchy. However, the actual causality between aminergic systems
and phenotype (i.e. fecundity and aggressiveness) is largely unknown
due to the pleiotropic functions of amines (e.g. age-dependent
polyethism) and the scarcity of manipulation experiments. To clarify
the causality among dominance ranks, amine levels and phenotypes,
we examined the dynamics of the aminergic system during the
ontogeny of dominance hierarchy in the queenless ant Diacamma
sp., which undergoes rapid physiological differentiation based on
dominance interactions. Brain dopamine levels differed between
dominants and subordinates at day 7 after eclosion, although they did
not differ at day 1, reflecting fecundity but not aggressiveness. Topical
applications of dopamine to the subordinate workers induced oocyte
growth but did notinduce aggressiveness, suggesting the gonadotropic
effect of dopamine. Additionally, dopamine receptor transcripts (dopr1
and dopr2) were elevated in the gaster fat body of dominant females,
suggesting that the fat body is a potential target of neurohormonal
dopamine. Based on this evidence, we suggest that brain dopamine
levels are elevated in dominants as a result of hierarchy formation, and
differences in dopamine levels cause the reproductive differentiation,
probably via stimulation of the fat body.

KEY WORDS: Biogenic amine, Reproductive dominance,
Primitively eusocial, Ponerine ant, Diacamma

INTRODUCTION

Many animal societies consist of a few breeders and many helpers;
thus, individuals often struggle for reproductive opportunities
(Sherman et al., 1995). The repeated agonistic interactions among
group members can result in the appearance of consistent winners
(i.e. dominants or high-rankers) and losers (i.e. subordinates or
low-rankers). In this dominance hierarchy, the reproductive
opportunity is often skewed to high-rankers (Drews, 1993; Monnin
and Ratnieks, 1999). Such a dominance-mediated reproductive skew
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(i.e. the unequal sharing of reproductive opportunity) is widespread
in various animal taxa (Sherman et al., 1995; birds, Emlen and
Wrege, 1992; mammals, Jarvis, 1981; Keane et al., 1994; Nievergelt
et al.,, 2000). In extreme cases, it can result in the reproductive
division of labor, such as in social insects and naked mole rats
(Wilson, 1971; Sherman et al., 1995; Reeve and Keller, 2001).

In highly eusocial insects (honeybees, most ants and termites),
developmental differentiation of morphological caste is the basis of
social organization (Wilson, 1971). By contrast, there are
morphologically casteless social insects (some wasps, bumblebees
and queenless ants) in which the dominance hierarchy plays a central
role in division of labor. In these species, physical aggression among
nestmates results in the production of a dominant female that retains
aggressiveness towards nest mates and of subordinates that lose
aggressiveness (Premnath et al.,, 1996; Peeters and Tsuji, 1993;
Monnin and Peeters, 1999; Liebig et al., 2000). Thereafter, the
dominant becomes an egg-layer, whereas the subordinates become
sterile workers (Fletcher and Ross, 1985; Ito and Higashi, 1991;
Peeters, 1991; Turillazzi and West-Eberhard, 1996). This means that
dominance ranks that are defined by aggressiveness coincide with
reproductive roles (Drews, 1993). Such reproductive differentiation
based on a dominance hierarchy is thought to reflect a primitive phase
of'eusociality (West-Eberhard, 1979, 1981; Gadagkar, 1991; Turillazzi
and West-Eberhard, 1996). Despite evolutionary importance, the
physiological mechanisms regulating the aggressiveness and fecundity
during hierarchy formation remain largely unknown.

Biogenic amines are thought to be involved in dominance hierarchy
formation by affecting various behaviors and physiology in both
vertebrates and invertebrates (vertebrates, Winberg and Nilssen, 1993;
Nelson, 2006; invertebrates, Kravitz and Huber, 2003; Roeder, 2005).
Several studies have shown the correlation between brain amine levels
and dominant status in social insects. In Polistes paper wasps and the
worker-totipotent ant Harpegnathos saltator, brain dopamine levels
are elevated in dominant individuals (Sasaki et al., 2007; Penick et al.,
2014), whereas brain octopamine levels are known to be elevated in
dominants in bumblebee (Bloch et al., 2000) and the queenless ant
Streblognathus (Cuvillier-Hot and Lenoir, 2006). In addition to
aggressiveness, the positive correlation between dopamine levels and
ovarian activity is observed in bees, wasps and ants (Sasaki et al., 2007,
Bloch et al., 2000; Harris and Woodring, 1995; Penick et al., 2014).
Besides dominance hierarchy, biogenic amines are also an important
mediator of the age-dependent division of labor (Shultz and Robinson,
1999; Kahmi and Traniello, 2013). For example, brain octopamine
levels are elevated in old honeybee workers to trigger foraging behavior
(Shultz and Robinson, 2001). The age-dependent changes in brain
amine levels are also observed in ants, implying that age-dependent
transition of amine levels commonly occur in social Hymenoptera
(Seid and Traniello, 2005; Seid et al., 2008; Wnuk et al., 2011).

Although correlational evidence is accumulating, the causal
relationship between amines and the dominance-dependent pheno-
types (i.e. fecundity and aggressiveness) has yet to be elucidated. One
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reason for this is a scarcity of empirical studies that show actual
physiological effects of amines on fecundity and aggressiveness.
Examples are limited to a few studies: oral administration of
dopamine stimulates reproduction in honeybee queenless workers
(Dombroski et al., 2003) and paper wasp workers (Sasaki et al.,
2009). Another difficulty comes from the pleiotropic functions of
biogenic amines. Brain amine levels are also associated with worker
division of labor and amine levels tend to be age dependent (Schultz
and Robinson, 1999, 2001; Seid and Traniello, 2005; Seid et al.,
2008; Wnuk et al., 2011). As age is also a major determinant of
dominance rank (Strassmann and Meyer, 1983; Higashi et al., 1994;
Monnin and Ratnieks, 1999; Tsuji and Tsuji, 2005), brain amine
levels may be under complex regulation by age and dominance rank
(Cuvillier-Hot and Lenoir, 2006). For these reasons, the causality of
aminergic signaling and dominance-based physiological changes
remain to be tested. Here, we have used the queenless ants Diacamma
sp. (the only Diacamma species from Japan) as a model system to
clarify the aminergic basis of reproductive differentiation, by
controlling age and dominant status altogether, and by testing the
amine functions through topical application.

The ant genus Diacamma is a morphologically casteless
‘queenless’ ant. Extant ants generally have distinct morphological
queen castes as a synapomorphy, but queenless ponerine ants have
secondarily lost the morphological queen to recapitulate the
primitively eusocial state (Peeters, 1993; Monnin and Ratnieks,
1999). Diacamma have a clear reproductive division of labor that
arises from a unique dominance interaction. All eclosed females have
wing vestiges called ‘gemmae’ and they possess reproductive
potential at eclosion. In each colony, the only female that retains
her gemmae mates and reproduces as a functional queen known as a
‘gamergate’ (Fukumoto et al., 1989; Peeters and Higashi, 1989). In
this genus, the gemmae-possessing female mutilates the gemmae of
newly eclosed females, and this mutilation is a dominance interaction
that leads the eclosed callows to become subordinate sterile workers
(Fukumoto et al., 1989; Peeters and Higashi, 1989). The callow
females violently resist the mutilation, but as long as the gamergate is
vigorous, the gamergate mutilates the gemmae of callows and the
mutilated females become timid (Peeters and Higashi, 1989). During
this event, nestmate workers support the gamergate by immobilizing
the victim female (see Fukumoto et al., 1989; Peeters and Higashi,
1989), but the most active female is always the gamergate. If a
gamergate is not present in a colony, the callow becomes a new
dominant, i.e. a gamergate, and her ovaries clearly develop within
7 days of eclosion (Okada et al., 2010a). Irrespective of the colony
status (i.e. the presence or absence of gamergate), the unmutilated
callow females always behave aggressively to secure dominant
possession. Therefore, the aggressiveness of callows can be viewed as
a rank-securing dominance behavior in a broad sense. The rapid
changes in aggressiveness and fecundity of Diacamma provide a
model in which physiological changes during dominance hierarchy
formation can be precisely examined (Okada et al., 2010a; Fuchikawa
et al., 2014). Here, we have investigated the ontogenic changes of
aggressiveness, brain amine levels and amine receptor expression
during dominance hierarchy formation. Additionally, topical
applications of dopamine and octopamine were performed to test
the functions of amines in aggressiveness and fecundity.

RESULTS

Behavioral ontogeny

Future gamergates (FGs, prospective dominant egg-layers) showed
strong aggressiveness at eclosion, which lasted for about 7 days
(Fig. 1A). To quantify the effects of age on aggressiveness, Poisson
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Fig. 1. Ontogenic changes of aggressive behavior. Total number of
aggressive attacks per 10 min. (A) Future gamergates (N=13), Fitted line is
depicted by Poisson regression [Number of attacks=exp (1.68—0.32xday)].
(B) Workers (N=14). An arrowhead indicates the timing of gemmae mutilation.
Photo shows a newly eclosed female (a marked ant in the center) having her
gemmae mutilated by nestmates. The photo was taken by Y.O.

regression, a subset of the generalized linear model (GLM), was
performed with age (x) as an explanatory variable and
aggressiveness (y) as a dependent variable. The model was
defined as y=exp (a+bx). GLM revealed a significant negative
effect of age on aggressiveness (b=—0.32, x>=108.4, P<0.001). By
contrast, eclosed females in gamergate-right colonies exhibited a
strong aggressiveness at day 0, but this aggressiveness suddenly
disappeared after the mutilation of gemmae (day 1 to day 7,
Fig. 1B).

Ontogeny of brain biogenic amine level

In general, levels of all biogenic amines exhibited age-dependent
increases [ANOVA, dopamine: F; g;=60.8, P<0.0001; octopamine:
F37,=17.9, P<0.0001; serotonin (5-HT): F359=35.0, P<0.0001].
Thus, the different age categories were analyzed separately by
pairwise comparisons of FGs and workers. Dopamine did not differ
between day-1 workers and FGs (1W and 1FG), but a significant
difference was found between day-7 workers and FGs (7FG and 7W,
Fig. 2A). Octopamine and 5-HT levels exhibited no significant
differences between workers and FGs at day 1 and day 7.

Ontogeny of amine receptor expression in brain, ovary and
fat body

All examined receptors in the brain showed age-dependent
expression dynamics (ANOVA, doprl: F,33=4.6, P<0.017;
dopr2: F,33=3.4, P=0.047; oar: F,35s=21.7, P<0.0001; S5htr:
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Fig. 2. Brain biogenic amine levels.
(A) Dopamine (DA), (B) octopamine (OA)
and (C) serotonin (5-hydroxytryptamine,
5-HT) levels (meansts.e.m.). IC, intact
callow; 1W, day-1 worker; 1FG, day-1
future gamergate; 7W, day-7 worker;
7FG, day-7 future gamergate. Asterisk
indicates a significant difference (t-test,
*P<0.05). Levels of significance for day-1
and day-7 pairwise comparisons were

1

(A) P=0.510and 0.0262, (B) P=0.732 and
0.510 and (C) P=0.226 and 0.293,
respectively. Sample sizes are provided
in parentheses. n.s., not significant.
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F533=69.4, P<0.0001), and therefore the different age categories
were analyzed separately as above. The examined amine receptors
did not show differential expression patterns between FGs and
workers (Fig. 3A-D).

As dopamine was upregulated in FGs at day 7 (Fig. 2) and
dopamine had gonadotropic effects (see Fig. 5A), we focused on
fat bodies and ovaries as target tissues of dopamine. The two
transcripts of dopamine receptors (doprl and dopr2) in these
tissues were quantified in day-7 females. In the fat body, doprl
and dopr2 were highly expressed in FGs (Fig. 4A), whereas

doprl and dopr2 were highly expressed in worker ovaries
(Fig. 4B).

Effect of dopamine and octopamine on ovarian development
and aggressiveness

Topical application of dopamine had significant effects on oocyte
development in young mutilated workers (Fig. 5A). This effect
exhibited a counter dose-dependency (Fig. 5A). In contrast to
dopamine, octopamine did not have a gonadotropic effect (Fig. 5B).
We also evaluated the effects of dopamine and octopamine on

141 A dopr1 B dopr2 Fig. 3. Brain biogenic amine receptor
n.s. n.s. 1.6+ n.s. levels. (A) Dopamine receptor 1 (dopr),
1.2+ - s 1.44 L= — n.s. (B) dopamine receptor 2 (dopr2),
14 1.2 (C) octopamine receptor (oar) and (D)
0.8 14 serotonin receptor (5htr) transcript levels
: 028- relative to gapdh (reference gene) are
0.6 ’ shown (meanzts.e.m.). IC, intact callow; 1W,
0.41 0.61 day-1 worker; 1FG, day-1 future gamergate;
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behavior, but the topical application of dopamine and octopamine
did not increase the aggressiveness in mutilated workers (Fig. 5C,D).

DISCUSSION

Formation of dominant status

The callow females of Diacamma sp. rapidly lost aggressiveness
after mutilation (Fig. 1; Peeters and Higashi, 1989), and this is
interpreted as the completion of subordination. By contrast, the non-
mutilated FGs retained aggressiveness that then declined at day 7
(Fig. 1A). In parallel with the loss of aggressiveness, FGs clearly
developed their ovaries at day 7 (Okada et al., 2010a). In the
congeneric species, Diacamma ceylonense, a similar decline of FG
aggressiveness was also observed after ovarian development

Fig. 4. Dopamine receptor levels in fat body and ovary. dopr1
(A,C) and dopr2 (B,D) levels in fat body (A,B) and ovary (C,D).
Transcript levels relative to gapdh (reference gene) are shown
(meansts.e.m.). 7W, day-7 worker; 7FG, day-7 future gamergate.
Asterisks indicate significant differences (t-test, **P<0.01,
***P<0.001, (A) P=0.0018, (B) P=0.0061, (C) P<0.0001,

(D) P=0.0001). Sample sizes are provided in parentheses.

7FG

©

7FG

©

(Cuvillier-Hot et al., 2002). This has been interpreted as
indicating that the chemical signals specific to the egg-layer (FG-
specific cuticular hydrocarbon profiles; Cuvillier-Hot et al., 2002)
have replaced the physical aggression by chemical communication
after attaining the egg-laying phase (Cuvillier-Hot et al., 2001,
2002; Liebig et al., 2000; Monnin, 2006). Instead of physical
aggression, a mature gamergate actively antennates nestmates and
the nestmate workers respond to the gamergate’s contact by a
submissive ‘crouching’ behavior (Tsuji et al., 1998, 1999; Kikuchi
etal., 2008, 2010). Atday 7, FGs showed antennation behaviors and
workers responded by crouching (Y.O., personal observations).
These features suggest that the physiology of day-7 FGs may be
similar to that of mature gamergates, except for mating status.

n.s. Fig. 5. Effect of biogenic amines on fecundity
A P=0.054 B and aggressiveness. Effects of dopamine (DA)
0.35- ‘ 0.35 and octopamine (OA) on fecundity (A,B) and
| n.s. aggressiveness (C,D). Mean number of
€ 0.31 0.3 aggressive workers per 10 treated workers in
g 0.25- 0.25 each focal colony are shown (+s.e.m.) after
° 0.21 0.2 (C) dopamine treatment (N=9 colonies) and
g (D) octopamine treatment (N=8 colonies).
Q 0.15; 0.15 Asterisks indicate a significant difference
§ 0.14 0.1 (Dunnett’s test for multiple comparisons,
O .05/ 0.05 **P<0.01). Levels of significances against DMF
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Dominance-dependent changes of aminergic signaling

Brain dopamine levels were found to be higher in FGs than in
workers at day 7 but not at day 1 (Fig. 2A). At day 7, ovarian size
differed clearly between workers and FGs (Okada et al., 2010a), and
aggressiveness calmed down in FGs (Fig. 1A). Eclosed females
were highly aggressive at day 0 and this aggressiveness declined at
day 1 and later (Fig. 1B). Despite the strong aggressiveness of day-0
females (intact callows, ICs) and the distinct difference of
aggressiveness between FGs and workers at day 1, ICs had low
dopamine levels and day-1 FGs and workers had similar levels of
dopamine (Fig. 2A). Considering the temporal dynamics of
aggressiveness, ovarian development and dopamine levels
altogether, the dopamine levels seemed to correspond with
ovarian activity but not with aggressiveness. Together with the
fact that the topical application of dopamine did not induce
aggressiveness (Fig. 5C), we conclude that the elevated brain
dopamine levels at day-7 FGs are a result of the established egg-
laying status, not because of the aggressive dominance behavior.
Similar dominance-dependent changes of dopamine were also
observed in the ponerine ant Harpegnathos saltator; the brain
dopamine levels of the prospective high-rankers are reduced by an
aggression towards them (i.e. policing, Penick et al., 2014). These
studies indicate that brain dopamine is modified as a result of the
dominance interaction.

Although biogenic amines often cause aggressiveness in
invertebrates (Huber et al., 1997, Adamo et al., 1995; Hoyer
et al., 2008) and vertebrates (Winberg and Nilsson, 1992, 1993;
Miczek et al., 2002), our analyses of amine levels, receptor
expression and topical application did not support the amine-
mediated aggression in Diacamma sp. The rapid decline of
aggressiveness in mutilated workers may be mediated by a non-
aminergic system. Alternatively, it is also possible that the potential
behavioral effects dopamine were not detected in this study due to
the small sample sizes or unknown factors. These issues are open to
debate in future studies.

Gonadotropic effect of dopamine

Topical application of dopamine had a significant effect on oocyte
growth, whereas octopamine did not have such effect (Fig. 5A,B).
Together with the brain dopamine difference at day 7, we suggest
that brain dopamine somehow has a gonadotropic function. Brain
biogenic amines can be transferred to distant tissues via hemolymph
(‘neurohormones’, Evans, 1980; Blenau and Baumann, 2001). In
honeybees, it has been shown that dopamine synthesis mainly
occurs in the brain, and levels of both hemolymphal and brain
dopamine are higher in queens than in workers (Sasaki et al., 2012).
Because insect ovarian development is caused by activity of the
ovary itself (Okada et al., 2010a) and by vitellogenin synthesis by
the fat body (Heming, 2003), the ovary and fat body can be
candidate targets of dopamine. Receptor expression analysis
revealed that doprl and dopr2 were highly expressed in the fat
body of day-7 FGs (Fig. 4), suggesting that the fat body is a potential
target of dopamine. A plausible scenario in Diacamma is that
synthesis of dopamine is elevated in the brain of future gamergate,
and dopamine is delivered to the fat body via hemolymph as a
neurohormone to cause oocyte development. In contrast to the fat
body, doprl and dopr2 were elevated in worker ovaries. The reason
for worker-specific dopamine receptor transcription in ovaries
remains unknown, but the worker-specific elevation of dopamine
receptor transcripts is also observed in the ponerine ant H. saltator
(dopl and dop3, Penick et al., 2014) and in the honeybee (dop3,
Vergoz et al., 2012), suggesting a shared mechanism in social

Hymenoptera. One hypothetical mechanism is that dopamine has a
suppressive effect on ovarian growth, probably via induction of
apoptosis (Vergoz et al., 2012) or via inhibition of vitellogenin
uptake. The gonadotropic effects of dopamine exhibited counter
dose-dependence (Fig. 5). The brain dopamine level showed a
strong age-dependent increase, resulting in the highest levels in
foragers (Fig. 2A). We speculate that an excessive dose of dopamine
may cause a forager-like physiology that suppresses oocyte growth.

Age dependence and pleiotropic roles of biogenic amines
Age-dependent increases of brain amine levels have been reported in
workers of various social insects, implying strong links between
biogenic amine and age-dependent worker polyethism (Schultz and
Robinson, 1999, 2001; Seid and Traniello, 2005; Seid et al., 2008; but
see Wnuk et al., 2011). In Diacamma, workers specialize in inside-
nest tasks for 1-2 months after eclosion (Nakata, 1995); thus, day-7
workers are still nurses. Nevertheless, the fact that the levels of brain
amines (dopamine, octopamine and 5-HT) and their receptors (dop 1,
oar and 5htr) increase only within 7 days is noteworthy, emphasizing
the importance of age in the interpretation of amine dynamics. In
social Hymenoptera, the individual age is a major determinant of
dominant status (Strassmann and Meyer, 1983; Higashi et al., 1994,
Monnin and Ratnieks, 1999; Tsuji and Tsuji, 2005). Thus, age- and
dominance-dependent changes should be combined to result in
complex amine dynamics that may potentially provide pseudo-
correlations. By controlling age, aggressiveness and fecundity, our
study in Diacamma concludes that dominance interactions cause a
difference in dopamine levels and lead to reproductive differentiation.
Unfortunately, the ontogeny of the amine levels of established
gamergates were not investigated in this study. The lower dopamine
levels in FGs compared with sterile foragers imply that heightened
dopamine may function during the early stages of reproductive
differentiation rather than in its maintenance at older stages. How
gamergate physiology follows the age-dependent dynamics should be
addressed in future studies in order to understand the combined effects
of amines on age- and dominance-based polyethism.

Conserved function of dopamine in reproductive
differentiation

In solitary adult insects, juvenile hormone (JH) generally stimulates
sexual maturity and reproduction (Nijhout, 1998; Hartfelder, 2000;
Raikhel et al., 2005). In adult social Hymenoptera, however,
gonadotropic effects of JH are only supported in ancestral lineages
(bumblebee, Bloch et al., 1996; paper wasp, Barth et al., 1975;
Bohm, 1972) and not in the derived lineages such as honeybees
(Robinson et al., 1991, 1992) and several ant species (Diacamma,
Sommer et al., 1993; Streblognathus, Brent et al., 2006;
Harpegnathos, Penick et al., 2011; Solenopsis, Brent and Vargo,
2003), implying that the gonadotropic function of JH is lost in
derived lineages (Hartfelder, 2000). In contrast to JH, data are
accumulating to support the commonness of positive associations
between brain dopamine and reproductive status across the lineages
(paper wasp, Sasaki et al., 2007; bumblebee, Bloch et al., 2000;
honeybee, Harris and Woodring, 1995; ants, Penick et al., 2014 and
this study). As gonadotropic effects of dopamine are also found in
solitary insects (fruit fly, Neckameyer, 1996; Pendleton et al., 1996;
cockroach, Pastor et al., 1991), we speculate that the gonadotropic
function of dopamine is ancestral. The gonadotropic function of
dopamine may have been recruited to the dominance-based
physiological regulation at the primitive phase of eusocial
evolution, and is now conserved in primitive and derived species
to complement the reproductive function of JH (Sasaki et al., 2007).
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Future comparative studies may reveal the involvement of dopamine
during the social evolution.

MATERIALS AND METHODS

Insects

Colonies of Diacamma sp. (the only species of Diacamma in Japan) were
excavated in Nakijin (Nakijin), Kenmin-no mori (Onna), Hantagawa Park
(Naha) and Sueyoshi Park (Naha) in Okinawa, Japan. Gamergate-right
colonies (the colonies containing a mated gemmae-possessing female)
containing 30-200 workers were kept in plastic artificial nests (9 cm
diameterx1.5 cm height) filled with moistened plaster. The artificial nests
were placed in a plastic arena. The nests were maintained at 25°C under 16 h
light:8 h dark conditions (light: 08:00 h—24:00 h). Reared colonies were fed
chopped mealworms and crickets three times a week.

Induction of reproductives and sterile workers

A newly eclosed female without interaction with nestmates is defined as an
intact callow (IC). An IC can differentiate into a gamergate or a worker,
depending on the colony status. For the brain amine measurements and the
receptor level quantifications of ICs, ICs were obtained by artificially opening
the female cocoons to subsequently obtain the eclosed adults, because
naturally eclosed callows cannot avoid social interactions. Eclosed day-0
females were used as ICs. In an orphan colony (i.e. gamergate-absent colony),
anewly eclosed female retains gemmae and becomes a prospective egg-layer
[future gamergate (FG), Okada et al., 2010a]. The FGs were kept unmated to
equalize the mating status with workers. We created satellite orphan colonies
that consisted of 15 mutilated workers each. A new female naturally eclosed
from the cocoon in each orphan colony was used as the FG. In gamergate-right
colonies, the gemmae of eclosed females were subjected to natural mutilation,
so that they become workers (Fukumoto et al., 1989; Fuchikawa et al., 2014).
Eclosed ants were individually marked, and day-1 and day-7 mutilated workers
(1W, 7W) and future gamergates (1FG, 7FG) were collected for the following
experiments (between 09:00 h and 14:00 h). Mutilated workers aged more
than 2 months that were walking around the arena were defined as foragers.

Observation of aggressiveness

The behavioral ontogenies of newly eclosed females in gamergate-right and
orphan colonies were quantified. Biting and jerking of the appendages of
nestmates (‘bite and jerk’, Peeters and Tsuji, 1993) and stinging behavior
were regarded as aggressive attacks. Total numbers of aggressive attacks
were counted for 10 min every day from day 0 to day 7. This observation is
performed during the daytime (09:00 h—14:00 h) in which their dominance
behavior is known to be active (Fuchikawa et al., 2014). In gamergate-right
colonies, mutilation is completed within a few hours of eclosion (Fuchikawa
et al., 2014). Therefore, to observe the behavior of non-mutilated females
(i.e. day-0 worker), ICs were artificially returned to the original gamergate-
right colony and the behavior before the mutilation was quantified.

Measurement of biogenic amines

Day-0 IC (IC), day-1 W (1W), day-1 FG (1FG), day-7 W (7W), day-7 FG
(7FG) and foragers were obtained as above, and were frozen and stored in
liquid nitrogen immediately after the collection. Each sample corresponded
to an individual ant. Brains (including subesophageal ganglia) were
dissected in ice-cold bee saline (Bailey, 1952) immediately after removal
from the liquid nitrogen and homogenized in 50 pl of ice-cold 0.1 mol 17!
perchloric acid containing 12.5 ng ml~" 3,4-dihydroxyphenylacetic acid
(DHBA) as an internal standard. Then, samples were centrifuged at
20,000 g for 30 min at 0°C and supernatants were used in HPLC-ECD
analysis according to Mezawa et al. (2013) (see below).

The HPLC-ECD system consisted of a solvent-delivery pump, a
refrigerated automatic injector and a C,g reverse-phase column (UG 120,
Shiseido, Japan) maintained at 35°C in a column oven. An electrochemical
detector (ECD-300, EICOM, Japan) with a glassy carbon electrode was set
at 0.82V against an Ag/AgCl reference electrode. Signals from the
electrochemical detector were recorded and integrated using analysis
software PowerChrom (ADInstrument, Australia). The mobile phase
contained 0.18 mol I™! of monochloroacetic acid and 40 pmol 1" of
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Na,EDTA (Wako) adjusted to pH 3.6 with NaOH (Wako). Sodium-1-
octanesulfonate (1.62 mmol I™') (Nacalai Tesque, Kyoto, Japan) and
CH;CN (final concentration 7.4%, v/v, Nacalai) were added to this
solution. A constant flow rate of 0.7 ml min~' was employed. External
standards [octopamine, dopamine, serotonin and DHBA (Sigma, St Louis,
USA)] were used for the chemical identification and quantification. Each
biogenic amine peak was identified by comparing the retention time and
hydrodynamic voltamogram with those of the standards, while uncertain
peaks were eliminated from the analysis. Measurements based on the peak
area of the chromatograms were obtained by calculating the ratio of the peak
area of a substance to the peak area of the external standard.

Receptor gene expression

To quantify the transcript levels of amine receptors, the partial gene
sequences for two dopamine receptors (dopr! and dopr2), one octopamine
receptor (oar) and one serotonin receptor (5htr) were sequenced after PCR
amplification by gene-specific degenerated primers (supplementary
material Table S1). Brain-derived cDNA was used as template and PCR
was performed with Ex taq polymerase (Takara, Shiga, Otsu, Japan) as
follows: 94°C for 30 s, 58.4°C for 30 s and 72°C for 3 min for 35 cycles.
Cloned fragments were sequenced using Big Dye Terminator v3.1 Cycle
Sequencing Kit and ABI Prism 3100 Genetic Analyzer (Applied
Biosystems, Foster City, CA, USA; see Okada et al., 2010b, for cloning
details) and confirmed their homologies to the annotated sequences in
honeybees (4Apis melifera) and jumping ants [Harpegnathos saltator, the
closest relative of Diacamma whose genome has been sequenced (Bonasio
et al., 2010) by blastx (supplementary material Table S1)]. Two dopamine
receptors of Diacamma (doprl and dopr2) were both categorized into
D1-like excitatory receptors.

For RNA extraction, IC, 1W, 1FG, 7W and 7FG were obtained as above,
anesthetized on ice and dissected in ice-cold PBS. Brain, ovaries and fat bodies
from gasters were isolated and mashed in the lysis buffer of the RNA extraction
kit (RNAqueous micro, Life Technologies, Tokyo, Japan) and stored at —80°C
until RNA extraction. Tissues from three individuals were combined as one
sample. Extracted RNA was subjected to DNAse treatment (DNAse I, Life
Technologies) and reverse transcription (High-capacity cDNA Reverse
Transcription kit, Life Technologies). Kapa SYBR Fast qPCR kit (KAPA,
Wilmington, USA) and Thermal Cycler Dice Real Time System II (Takara,
Shiga, Japan) were used in real-time qPCR with the gene-specific primers
(supplementary material Table S1). We used gapdh (glyceraldehyde
3-phosphate dehydrogenase) as an internal control gene because Normfinder
(Andersen et al., 2004) indicated gapdh was the most stable of the five genes
examined (28S ribosomal RNA, 28S ribosomal protein, gapdh and two actin
genes) across the tissues and castes in our samples.

Topical application of biogenic amine
Based on the results showing brain dopamine in FG (see result) and the
potential effect of octopamine on aggressiveness (Adamo et al., 1995;
Hoyer et al., 2008), topical applications of dopamine and octopamine were
performed to confirm the functions of these biogenic amines. We followed
the method described by Barron et al. (2007) in which thoracic topical
applications of biogenic amines dissolved in a carrier solvent,
dimethylformamide (DMF), effectively altered honeybee brain amine
levels within 15-60 min. Dopamine and octopamine were diluted in DMF
at concentrations of 2, 20 and 100 (ug pl™") and 2 pl of solution was
topically applied on the thorax and gaster of ants. We used 2 pug pl~! as the
lowest dose due to its effectiveness in honeybees (Barron et al., 2007).
For the evaluation of gonadotropic effects, mutilated workers, less than
2 months old, were individually isolated from gamergate-right colonies.
Workers originated from three different colonies were randomly allocated to
the above treatments. Ants were isolated in small petri dishes (4 cm diameter
and 1 cm height) and had the amine solution or DMF (control) applied
topically every other day. Isolated ants were made to have free access to food
(chopped mealworms and sugar water). After 9 days of individual rearing,
their ovaries were dissected and oocyte sizes (represented by largest oocyte)
were measured by dissection microscope (Olympus, SZX7, Tokyo, Japan).
Although most mutilated workers are not aggressive (Peeters and Higashi,
1989), gamergate-right colonies sometimes contain a few aggressive
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mutilated workers that contrive to lay eggs (beta, gamma and delta, Nakata
and Tsuji, 1996; Shimoji et al., 2014). These potential high rankers were
identified by 30 min of observation for two consecutive days before the
experiment and were not used.

In the analysis of aggressiveness, 40 mutilated workers (younger than
2 months old and inside-nest workers) were randomly selected from
gamergate-right colonies that consisted of 80—150 workers (high-rankers
were not used as described above). Ten out of 40 workers were treated once
with a 2 pul solution of either of 2, 20 or 100 (mg ml™) dopamine or DMF, as
described above. Treated workers were returned to the colony. After 1 h of
settlement, the behaviors of treated workers were observed for 30 min (N=9
colonies). octopamine treatment (V=8 colonies) was also performed, similar
to the dopamine treatment.
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