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Evolutionary adaptations for the temporal processing of natural
sounds by the anuran peripheral auditory system
Katrina M. Schrode1,*,‡ and Mark A. Bee1,2

ABSTRACT
Sensory systems function most efficiently when processing natural
stimuli, such as vocalizations, and it is thought that this reflects
evolutionary adaptation. Among the best-described examples of
evolutionary adaptation in the auditory system are the frequent
matches between spectral tuning in both the peripheral and central
auditory systems of anurans (frogs and toads) and the frequency
spectra of conspecific calls. Tuning to the temporal properties of
conspecific calls is less well established, and in anurans has so far
been documented only in the central auditory system. Using auditory-
evoked potentials, we asked whether there are species-specific or
sex-specific adaptations of the auditory systems of gray treefrogs
(Hyla chrysoscelis) and green treefrogs (H. cinerea) to the temporal
modulations present in conspecific calls. Modulation rate transfer
functions (MRTFs) constructed from auditory steady-state responses
revealed that each species was more sensitive than the other to the
modulation rates typical of conspecific advertisement calls. In
addition, auditory brainstem responses (ABRs) to paired clicks
indicated relatively better temporal resolution in green treefrogs,
which could represent an adaptation to the faster modulation rates
present in the calls of this species. MRTFs and recovery of ABRs to
paired clicks were generally similar between the sexes, and we found
no evidence that males were more sensitive than females to the
temporal modulation patterns characteristic of the aggressive calls
used in male–male competition. Together, our results suggest that
efficient processing of the temporal properties of behaviorally relevant
sounds begins at potentially very early stages of the anuran auditory
system that include the periphery.

KEY WORDS: Auditory-evoked potentials, Communication, Green
treefrog, Gray treefrog, Hearing, Temporal processing

INTRODUCTION
A prominent hypothesis in systems neuroscience is that sensory
systems are most efficient when processing natural stimuli (Atick,
1992; Barlow, 1961; van Hateren, 1992; Laughlin, 1981;
Simoncelli and Olshausen, 2001). This efficiency reduces energy
and resource expenditure associated with sensory processing.
Auditory systems appear well adapted to process the spectral and
temporal features of natural sounds, such as speech and other
communication signals (Rieke et al., 1995; Singh and Theunissen,
2003; Smith and Lewicki, 2006; Suga, 1989; Woolley et al., 2005).

Often such adaptations manifest as selectivity for behaviorally
relevant sounds, which helps increase detectability of signals
relative to background noise (Machens et al., 2005; Rieke et al.,
1995). For example, the spectro-temporal tuning of neurons in the
midbrain and forebrain of songbirds facilitates discrimination
between conspecific songs, while limiting interference from
modulations inherent in sounds that are less behaviorally relevant
(Woolley et al., 2005).

Research on anuran amphibians (frogs and toads) yielded some
of the first examples of auditory adaptations to natural sounds
(Capranica and Moffat, 1975; Frishkopf et al., 1968; Mudry et al.,
1977; Narins and Capranica, 1976). In most anuran species, males
have repertoires of calls that are used for mate attraction and resource
defense. In the auditory periphery, one or both of the two inner ear
sensory papillae for detecting airborne sound − the amphibian
papilla (AP) and the basilar papilla (BP) − and their afferents are
predominantly tuned to the acoustic frequencies that are emphasized
in conspecific calls (Capranica and Moffat, 1983; Frishkopf et al.,
1968; Narins and Capranica, 1980; Ryan et al., 1992). Neurons in
the central auditory system are also predominantly tuned to acoustic
frequencies in conspecific calls, with some combination-sensitive
neurons firing only when multiple frequencies from conspecific
calls are present (Fuzessery and Feng, 1982, 1983; Hall, 1994;
Megela, 1983; Mudry and Capranica, 1987a,b; Mudry et al., 1977).
This matched spectral filtering (Capranica and Moffat, 1983;
Simmons, 2013) by both the peripheral and central nervous systems
represents an evolutionary adaptation that facilitates coding of the
frequency spectra of vocalizations, which are especially important
natural stimuli for frogs.

In addition to spectral properties, temporal properties of anuran
calls are also crucial for species and call recognition, and for
intraspecific discrimination (Castellano and Rosso, 2006; Gerhardt,
1978; Gerhardt and Doherty, 1988; Rose and Brenowitz, 2002;
Schwartz, 1987; Walkowiak and Brzoska, 1982). There is evidence
for the operation of matched temporal filters in the central auditory
system, but less so in the periphery (Rose and Gooler, 2007;
Simmons, 2013). In the central auditory system, neurons exhibit
preferences for specific temporal properties of calls, such as the rate
of pulses or amplitude modulation (AM) (Diekamp and Gerhardt,
1995; Eggermont, 1990; Gooler and Feng, 1992; Walkowiak,
1984), inter-pulse interval (Alder and Rose, 1998; Edwards et al.,
2002) and duration (Condon et al., 1991; Gooler and Feng, 1992;
Narins and Capranica, 1980; Penna et al., 1997) using rate codes. In
the case of AM, the distributions of AM rates preferred by neurons
in the central auditory system are often centered near the pulse rates
or modulation rates that are characteristic of conspecific calls,
suggesting specialization for the neural encoding of the temporal
patterns present in conspecific signals (Diekamp and Gerhardt,
1995; Penna et al., 2001; Rose and Capranica, 1984, 1985; Rose
et al., 1985). In contrast to the rate code common in central auditory
neurons, auditory nerve fibers encode temporal properties in theReceived 6 October 2014; Accepted 8 January 2015
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timing of their impulses. For example, nerve fibers use a periodicity
code to encode AM by phase-locking, or discharging at a particular
phase of the modulation cycle (Dunia and Narins, 1989; Feng et al.,
1991; Rose and Capranica, 1985). The ability of auditory nerve
fibers to phase-lock to AM tends to decrease as a function of
increasing modulation rate (Dunia and Narins, 1989; Feng et al.,
1991; Rose and Capranica, 1985). Although several studies have
verified the ability of anuran auditory nerve fibers to phase-lock to
temporal modulations in the amplitude envelopes of conspecific
signals (Capranica and Moffat, 1975; Frishkopf et al., 1968; Klump
et al., 2004; Schwartz and Simmons, 1990; Simmons et al., 1992,
1993), there is so far little evidence for enhanced peripheral
selectivity favoring the temporal modulations that are typical of
conspecific calls.
The broad aim of this comparative study was to investigate

features of temporal processing by the peripheral auditory system
that might reflect adaptations for encoding temporal modulations
present in conspecific vocalizations. We conducted our experiments
using two well-studied frogs, Cope’s gray treefrog (Hyla
chrysoscelis) and the green treefrog (H. cinerea) (Bee, 2012,
2015; Gerhardt, 1982, 2001; Gerhardt and Huber, 2002). The
advertisement calls that males of each species produce differ in both
spectral and temporal properties (see Fig. 1). The advertisement call
of gray treefrogs comprises a series of short (e.g. 10 ms), temporally
discrete pulses delivered at species-specific rates of about 40 to 65
pulses s−1 (Ward et al., 2013). Pulses have energy at frequencies of
about 1.25 kHz and 2.5 kHz, with the lower frequency peak
attenuated by about 11 dB relative to the higher peak (Ward et al.,
2013). By contrast, the advertisement call of the green treefrog
consists of a single biphasic note (120–200 ms; Gerhardt, 1974a)
with an initial pulsed phase and pulse rates ranging between about
100 to 200 pulses s−1, followed by an un-pulsed phase with marked
waveform periodicity of about 300 Hz (typically ranging from about
200 to 400 Hz) (Oldham and Gerhardt, 1975). These calls contain
spectral peaks of approximately equivalent amplitude, with one near
0.9 kHz and a second broader peak between about 2.5 and 3.6 kHz
(Gerhardt, 1974a).
In addition to advertisement calls, males of both species also use

aggressive calls in disputes with other males over possession of
calling sites. The aggressive calls of gray treefrogs exhibit AM in the
range of 50 to 100 Hz, though they typically lack the distinct
pulsatile structure of advertisement calls (M. S. Reichert, personal
communication; Reichert and Gerhardt, 2014). The aggressive calls
of green treefrogs are similar to their advertisement calls, but are
pulsed throughout at rates near 50 pulses s−1 (ranging between 39
and 56 pulses s−1) (Oldham and Gerhardt, 1975). Female treefrogs

strongly prefer advertisement calls to aggressive calls (Brenowitz
and Rose, 1999; Marshall et al., 2003; Oldham and Gerhardt, 1975;
Schwartz, 1986, 1987; Wells and Bard, 1987). Given their
importance in male–male competition for calling sites, aggressive
calls are likely more behaviorally salient to males than females.

We investigated temporal processing using auditory evoked
potentials (AEPs). AEPs measure neural activity from the auditory
nerve and brainstem in response to acoustic stimuli, and they are a
common tool for studying auditory processing in humans and other
animals (Brittan-Powell et al., 2010a,b; Gall et al., 2013; Hall, 2007;
Henry and Lucas, 2008; Higgs et al., 2002; Katbamna et al., 1992;
Kenyon et al., 1998; Ladich and Fay, 2013; Popov and Supin, 1990;
Supin et al., 1993). We used two well-established AEP techniques
that have been used previously to investigate temporal processing:
the auditory steady-state response (ASSR) evoked by AM tones and
the auditory brainstem response (ABR) evoked by paired acoustic
clicks (Burkard and Deegan, 1984; Dolphin and Mountain, 1992;
Gall et al., 2013; Henry and Lucas, 2008; Mann et al., 2005; Purcell
et al., 2004; Wysocki and Ladich, 2005). The magnitude of the
ASSR reflects the degree of neural synchronization to AM in the
signal, and thus the ASSR measures the ability of the auditory
system to track temporal fluctuations in amplitude (Dolphin and
Mountain, 1992; Gall et al., 2012; Mann et al., 2005). ASSR
magnitude can be plotted as a function of AM to generate
modulation rate transfer functions (MRTFs) (Fig. 2). MRTFs
typically have an overall low-pass shape consistent with phase-
locking in the auditory nerve (Dolphin and Mountain, 1992;
Dolphin et al., 1994, 1995; Finneran et al., 2007; Gall et al., 2012).
In the present study, we recorded ASSRs in response to tones of
three different carrier frequencies modulated at AM rates between
12.5 Hz and 800 Hz (in one-octave steps). For each species, the
specific carrier frequencies (denoted low, middle or high, in
reference to their relative frequencies) were selected based on the
species-specific tuning of the AP and BP in our two study species.
We recorded ABRs in response to paired clicks, in which the time
between the clicks (inter-click interval, ICI) varied between trials
(Fig. 3). This double-click procedure measures the ability of the
auditory system to resolve two sounds in close temporal proximity
(Burkard and Deegan, 1984; Henry et al., 2011; Supin and Popov,
1995a; Wysocki and Ladich, 2002). We focused these analyses on
the first peak of the ABR (P1; Fig. 4), which is thought to be
generated by the auditory nerve (Achor and Starr, 1980; Buchwald
and Huang, 1975; Seaman, 1991). Performance was measured in
terms of percentage recovery, which we calculated as the amplitude
(as in Fig. 4) of the response to the second click in a pair as a
percentage of the amplitude of the response to a single click.

A B

C D

100 ms

Gray treefrog Green treefrog Fig. 1. Examples of communication calls of gray
treefrogs and green treefrogs. (A,B) Waveforms of
advertisement call are shown for (A) gray treefrogs and
(B) green treefrogs. (C,D)Waveforms of aggressive calls for
gray treefrogs (C) and green treefrogs (D). Scale bar in
D applies to all panels. Aggressive call in C courtesy of
M. S. Reichert.
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Additionally, we calculated the minimum resolvable ICI at which a
response to the second click could be detected.
We used data from ASSR and ABR recordings to test two

hypotheses related to the temporal processing of natural sounds. The
species-specific adaptation hypothesis holds that the auditory
system is specialized to process temporal features characteristic of
conspecific advertisement calls compared with those more typical
of heterospecific calls. We based this hypothesis on species-
differences between advertisement calls for two reasons.
Advertisement calls are by far the most common vocalization
produced by males of both species. These signals are used in both
mate attraction and call site defense and, thus, are behaviorally
relevant to both sexes (Garton and Brandon, 1975; Ritke and
Semlitsch, 1991; Wells, 1977). Our comparative approach allowed
us to make the following prediction: gray treefrogs should have
relatively larger ASSRs than green treefrogs at the relatively slower
modulation rates (e.g. between 25 and 100 Hz) near the pulse rates
of gray treefrog advertisement calls, whereas green treefrogs should
have relatively larger ASSRs than gray treefrogs to stimuli with
relatively faster modulation rates close to those typical of the faster
modulations present in green treefrog advertisement calls (e.g.
between 100 and 400 Hz). These species differences should be
reflected in a species×modulation rate interaction in analyses of
MRTFs. We also predicted that, in ABRs evoked by paired clicks,
green treefrogs would show faster recovery of responses to the
second click and shorter minimum resolvable ICIs than gray
treefrogs, because tracking the faster modulation rates in the green
treefrog advertisement call should require greater temporal
resolution.

The sex-specific adaptation hypothesis holds that males should
exhibit greater selectivity than females for the temporal features of
conspecific aggressive calls. This hypothesis follows from the
inference that aggressive calls, which are used in male–male
interactions, are more behaviorally salient to males than females.
According to this hypothesis, we predicted that a species×
sex×modulation rate interaction would influence the shape of
MRTFs. In gray treefrogs, the temporal modulations present in
aggressive calls (50–100 pulses s−1) are slightly faster than those in
advertisement calls (40–65 pulses s−1); therefore, we predicted
MRTFs for male gray treefrogs would be skewed toward faster
modulation rates than those of conspecific females (i.e. relatively
larger ASSRs between 50 and 100 Hz inmales). In response to paired
clicks, we also predicted that male gray treefrogs, compared with
conspecific females, would have faster ABR recovery and shorter
minimum resolvable ICIs. In green treefrogs, aggressive calls exhibit
temporalmodulations at rates between 39 and 56 pulses s−1; therefore,
we predicted male green treefrogs would have greater ASSRs than
conspecific females at modulation rates near 50 Hz. Given that the
modulations in advertisement calls of green treefrogs are actually
faster than those inmale–male aggressive calls, we predicted either no
sex difference or relatively faster ABR recovery and shorter minimum
resolvable ICIs in females than males in this species.

RESULTS
Species-specific adaptation hypothesis
As in many other animals, the MRTFs for both treefrog species
decreased as modulation rate increased (Fig. 5). The effect of
modulation rate was significant, and it also had a large effect size
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Fig. 2. Examples of amplitude-modulated stimuli and
auditory steady-state responses (ASSRs).
(A-C) ASSRs (alternatively known as envelope-following
responses or amplitude modulation-following responses)
were recorded in response to AM tones of three different
carrier frequencies for each of the two species. The
example stimuli shown (top panels) were used with green
treefrogs, and had a modulation frequency of 100 Hz and
carrier frequencies of (A) 0.9 kHz, (B) 1.6 kHz or
(C) 2.7 kHz. Examples of neural responses from a green
treefrog to each stimulus are plotted separately in the time
(left panels) and frequency (right panels) domains. During
recording, signals were notch filtered at 60 Hz and low-
pass filtered at 3 kHz (roll off: 6 dB per octave). In this
figure, responses in the time domain have been high-pass
filtered (cut off: 25 Hz, 48 dB per octave) to reveal the
periodicity in the trace. Note the peak in the frequency
spectrum of the response that matches the 100 Hz
modulation rate of the stimulus. The magnitude of this
peak is indicative of how well the auditory system followed
the AM fluctuation in the envelope of the tone and was
used to generate the modulation rate transfer functions
(MRTFs) depicted in Figs 5 and 7.
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compared with the other effects (Table 1). There was no significant
main effect of species; however, the species×modulation rate
interaction was significant (Table 1). The effects of this interaction
can be seen in that each species had larger ASSRs than the other at
modulation rates typical of conspecific calls, a result consistent with
our predictions. For example, at modulation rates of 25–100 Hz,
gray treefrogs had significantly larger responses than green treefrogs
when stimuli had the highest carrier frequency (Table 2; Fig. 5). By
contrast, green treefrogs had larger ASSRs than gray treefrogs at

higher modulation rates (e.g. 200 and 400 Hz) for most carrier
frequencies (Fig. 5). The difference was significant for responses to
modulation rates of 200 Hz at all carrier frequencies (Table 2).

Recovery increased as a function of increasing ICI (Table 3), and
these functions were overall very similar in shape between the two
species (Fig. 6A). There was no significant effect of species on
recovery, nor were there significant effects of any of the interactions
involving species (Table 3). This result was inconsistent with our
predictions. On average, however, green treefrogs were able to
resolve slightly shorter ICIs than gray treefrogs (F1,61=5.7,P=0.020,
partial η2=0.09), a result that was consistent with our prediction. The
average minimum resolvable ICI was (mean±s.e.m.) 1.6±0.1 ms for
green treefrogs and 2.0±0.1 ms for gray treefrogs.

Sex-specific adaptation hypothesis
Overall, MRTFs were similar between the sexes in both gray
treefrogs (Fig. 7A) and green treefrogs (Fig. 7B). In contrast to our
predictions, the species×sex×modulation rate interaction was not
significant (Table 1). Hence, there was no evidence of larger
responses in male gray treefrogs than female gray treefrogs at
modulation rates of 50 and 100 Hz, nor did male green treefrogs
have larger responses than conspecific females at modulation rates
of 50 Hz. There was, however, a significant sex×modulation
rate×carrier frequency interaction (Table 1). In response to the
middle carrier frequency, females of both species consistently had
larger ASSRs than males, a difference that reached significance in
response to stimuli with modulation rates between 50 and 400 Hz
(Table 2; Fig. 7). Responses to stimuli at the middle carrier
frequency overall tended to be larger for females and smaller for
males than corresponding responses to stimuli with the low or high
carrier frequency.

Inconsistent with our predictions, recovery functions differed
little between the two sexes (Fig. 6B). Subject sex did not have a
significant effect on percentage recovery, and the interaction of sex
with ICI was also not significant (Table 3). There was no sex
difference in minimum resolvable ICI (F1,61=0.5, P=0.469, partial
η2=0.01), nor was there an interaction between species and sex
(F1,61=0.2, P=0.666, partial η

2<0.01).

DISCUSSION
Our results provide robust support for the species-specific
adaptation hypothesis, and no support for the sex-specific
adaptation hypothesis. The key to uncovering evidence supporting
the species-specific adaptation hypothesis was our comparisons of
two species that have calls with quite different temporal structures
(see Fig. 1). Cope’s gray treefrogs have pulsatile advertisement
calls, with pulse rates ranging between 40 and 65 pulses s−1,
whereas the advertisement calls of green treefrogs exhibit temporal
modulation at higher rates between 100 pulses s−1 and 400 cycles s−1.
Although the aggressive calls of gray treefrogs are modulated at
faster rates than their advertisement calls, these modulations are
slower than the fastest rates in the advertisement and aggressive calls
of green treefrogs. At low modulation rates (e.g. near 50 Hz), gray
treefrogs tended to have relatively larger ASSRs than green
treefrogs, especially in response to stimuli with the highest carrier
frequency. In contrast to gray treefrogs, green treefrogs tended to
have relatively larger ASSRs at higher modulation rates (e.g.
200 Hz), a result consistent across carrier frequencies. Green
treefrogs also had relatively shorter minimum resolvable ICIs
compared with gray treefrogs. Together, these results based on
ASSRs and ABRs suggest that gray treefrogs are adapted to process
the relatively slower modulation rates found in their calls, whereas
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A B C

Fig. 3. Examples of paired-click stimuli and auditory brainstem
responses (ABRs). Subjects were tested with pairs of acoustic clicks that
varied in inter-click interval (ICI). (A) Examples of paired-click stimuli with ICIs
ranging between 0.25 ms and 8 ms. (B) Examples of ABRs from a green
treefrog to the stimuli in A. (C) To disambiguate responses to paired clicks with
short ICIs, residual ABRs in responses to the second click of each click pair in A
were derived by point-to-point subtraction of the ABR elicited by a single click
(not shown) from that elicited by the paired clicks in B.

2.5 ms

0.25 µV

P1

Fig. 4. Amplitude of the ABR response to double clicks. The amplitude of
each residual ABR (see Fig. 3) to a paired-click stimulus and each response
to a single click were measured as the peak-to-peak amplitude from the top
of P1 (×) to the subsequent trough (−). The example shown here is the
residual ABR to a paired click with an ICI of 8 ms. Arrows indicate times of
the first and second click presentations.
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green treefrogs are adapted to tracking the relatively faster pulse
rates and periodicities in their calls.
Species differences in ASSR amplitudes depended on carrier

frequency in gray treefrogs, but not in green treefrogs, as indicated
by the species×modulation rate×carrier frequency interaction. This
finding is noteworthy, as it suggests that specializations in temporal
processing are related to differences in how the spectral properties of
the vocalizations of the two species are transduced. Recall that in
both species, each of the two spectral peaks in the advertisement call
is primarily transduced by one of the two inner ear sensory papillae
(the AP or the BP) (Buerkle et al., 2014; Capranica and Moffat,
1983; Gerhardt, 1974c; Hillery, 1984; Schrode et al., 2014). In gray
treefrog advertisement calls, the relative amplitude of the high
spectral peak (2.5 kHz) is approximately 11 dB greater than the low
spectral peak (1.25 kHz; Ward et al., 2013). Hence, the majority of
the acoustic energy in gray treefrog calls falls in the frequency range

of the BP. This is relevant because gray treefrogs were better than
green treefrogs at processing the slower modulation rates typical of
gray treefrog advertisement calls only at the high carrier frequencies
transduced primarily by the BP. In contrast to gray treefrogs, the low
and high spectral peaks of green treefrog calls have comparable
relative amplitudes; therefore, both the AP and the BP transduce
prominent spectral peaks in green treefrog calls. Green treefrogs
were relatively better than gray treefrogs at processing the faster
modulation rates typical of green treefrog advertisement calls at both
the low and the high carrier frequencies transduced primarily by the
AP and BP, respectively. Our data, therefore, suggest that species-
specific adaptations in temporal processing may be closely tied to
potential species differences in the roles of the two sensory papillae
in processing spectral information in conspecific vocalizations. At
present, the specific mechanism underlying the species×modulation
rate×carrier frequency interaction remains unknown and should be
investigated further in future studies.

The species-specific adaptations identified in the present study
are consistent with the idea that sensory systems are specially
adapted to process the temporal patterns of common or behaviorally
important natural stimuli. Adaptation of sensory systems to salient
stimuli can improve efficiency and accuracy of neural processing
(Atick, 1992; Barlow, 1961; van Hateren, 1992; Laughlin, 1981;
Simoncelli and Olshausen, 2001). In the case of treefrogs
communicating acoustically in cacophonous breeding choruses,
adaptation of the auditory systems to process the temporal patterns
present in conspecific calls could improve the neural encoding of
these signals, while reducing masking and acoustic interference
by the calls of syntopically breeding heterospecifics. These
improvements could facilitate detection of and discrimination
between conspecific calls, impacting both mate choice decisions
by females and disputes between males over calling sites.

Species-specific adaptations of temporal processing in the
auditory system have been recently identified in songbirds,
another group of vocal animals. The responses of neurons in the
auditory midbrains of zebra finches (Taeniopygia guttata) were
found to synchronize to the temporal envelopes of SAM noise
across a range of modulation rates that closely match the
modulations in conspecific songs (Woolley and Casseday, 2005).
The tuning of cells in the midbrain to the temporal properties of
sounds is also context dependent. Temporal tuning tended to be
sharper in response to conspecific song stimuli compared with
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Fig. 5. Modulation rate transfer functions (MRTFs) for each species. An ASSR was measured from each recording as the magnitude of the peak in the
frequency domain at the frequency equivalent to the modulation rate of the stimulus. Responses are plotted separately for each species across the three carrier
frequencies tested. Inequalities depict the predicted direction of responses for the species-specific adaptation hypothesis; the shaded regions indicate the range
over which differences were predicted, with overlap in the ranges indicated by diagonal striping. The ‘low’, ‘middle’ and ‘high’ carrier frequencies were,
respectively, 1.25 kHz, 1.625 kHz and 2.5 kHz for gray treefrogs and 0.9 kHz, 1.6 kHz and 2.7 kHz for green treefrogs. All error bars represent the s.e.m.

Table 1. Results of the linear mixed model used to assess effects of
species and sex on ASSRs

Term d.f. F P value
Effect size
(partial η2)

Intercept 1,62 3910.6 <0.001 0.98
Species 1,62 0.2 0.629 0.00
Sex 1,62 5.5 0.022 0.08
Modulation rate 6,768 215.6 <0.001 0.63
Carrier frequency 2,766 0.2 0.811 0.00
Species×modulation
rate

6,768 18.4 <0.001 0.13

Species×carrier
frequency

2,767 9.3 <0.001 0.02

Sex×modulation rate 6,768 1.4 0.198 0.01
Sex×carrier frequency 2,766 19.0 <0.001 0.05
Species×sex 1,61 0.7 0.421 0.01
Modulation rate×carrier
frequency

12,764 6.3 <0.001 0.09

Species×modulation
rate×carrier frequency

12,764 2.6 0.003 0.04

Sex×modulation
rate×carrier frequency

12,764 2.7 0.001 0.04

Species×sex×modulation
rate

6,768 1.3 0.243 0.01

Species×sex×carrier
frequency

2,765 2.1 0.127 0.01

Bold indicates significant terms.
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behaviorally neutral noise stimuli, even when the modulations
contained in the stimuli were similar (Woolley et al., 2006). Woolley
et al. (2005) identified a mismatch between the best temporal tuning
of neurons in both the auditorymidbrain and forebrain areas, and the
typical modulation rates in conspecific songs. When considering

the average response of neurons in the auditory midbrain and also
forebrain areas, the strength of temporal tuning increased as a
function of modulation rate, whereas the power of the modulations
occurring in conspecific song decreased as a function of modulation
rate (Woolley et al., 2005). This pattern of tuning has the effect of
attenuating common modulations and amplifying modulations that
vary between conspecific songs, potentially increasing the
discriminability of songs (Woolley et al., 2005).

An important implication of the results of the present study is that
species-specific adaptations in temporal processing might occur as
early as the auditory periphery in frogs. In both gray treefrogs and
green treefrogs, MRTFs based on ASSR magnitudes were nearly
log-linear with respect to modulation rate, with responses
decreasing as a function of increasing modulation rate. The ASSR
is a measure of neural synchronization, with a strong component
originating in auditory nerve fibers (Henry and Lucas, 2008; Supin
and Popov, 1995b). The shapes of MRTFs in this study are
consistent with previous studies of auditory nerve fibers in frogs,
which have also reported decreasing neural synchronization as a

Table 2. Results of Tukey post hoc contrasts

Contrast
Carrier
frequency

Modulation
rate Δ Estimate s.e. d.f. t P value

Effect size
(Cohen’s d )

Species Low 12.5 Hz Hch>Hcin 5.3 2.4 764.2 2.2 0.026 0.16
25 Hz 3.1 1.7 561.7 1.8 0.070 0.15
50 Hz −0.2 1.6 473.4 −0.1 0.892 0.01
100 Hz 1.3 1.4 353.1 1.0 0.337 0.10
200 Hz Hcin>Hch −5.5 1.5 406.5 −3.7 <0.001 0.37
400 Hz −2.7 1.4 373.0 −1.9 0.061 0.19
800 Hz 1.0 1.6 504.0 0.6 0.533 0.06

Middle 12.5 Hz 3.4 2.4 765.8 1.4 0.153 0.10
25 Hz Hch>Hcin 3.7 1.7 523.8 2.2 0.027 0.19
50 Hz 1.4 1.7 529.1 0.9 0.386 0.08
100 Hz −0.4 1.5 412.0 −0.3 0.798 0.03
200 Hz Hcin>Hch −5.6 1.5 412.0 −3.8 0.000 0.37
400 Hz −2.3 1.4 359.1 −1.6 0.103 0.17
800 Hz Hcin>Hch −9.3 1.8 609.9 −5.1 <0.001 0.41

High 12.5 Hz 3.3 2.1 701.3 1.6 0.111 0.12
25 Hz Hch>Hcin 5.2 1.6 493.3 3.2 0.001 0.29
50 Hz Hch>Hcin 5.9 1.6 467.1 3.8 <0.001 0.35
100 Hz Hch>Hcin 6.2 1.4 340.1 4.5 <0.001 0.48
200 Hz Hcin>Hch −3.4 1.4 352.3 −2.4 0.016 0.26
400 Hz 0.7 1.4 340.1 0.5 0.598 0.06
800 Hz −1.7 2.8 796.8 −0.6 0.550 0.04

Sex Low 12.5 Hz 0.0 2.4 764.2 0.0 0.989 0.00
25 Hz −0.2 1.7 561.7 −0.1 0.916 0.01
50 Hz −0.3 1.6 473.4 −0.2 0.837 0.02
100 Hz 0.2 1.4 353.1 0.2 0.869 0.02
200 Hz 0.7 1.5 406.5 0.5 0.647 0.05
400 Hz F>M 5.3 1.4 373.0 3.7 <0.001 0.39
800 Hz 2.3 1.6 504.0 1.4 0.159 0.13

Middle 12.5 Hz 2.6 2.4 765.8 1.1 0.272 0.08
25 Hz 2.2 1.7 523.8 1.3 0.186 0.12
50 Hz F>M 4.3 1.7 529.1 2.6 0.011 0.22
100 Hz F>M 8.6 1.5 412.0 5.8 <0.001 0.57
200 Hz F>M 7.5 1.5 412.0 5.0 <0.001 0.50
400 Hz F>M 6.4 1.4 359.1 4.5 <0.001 0.48
800 Hz 2.5 1.8 609.9 1.4 0.169 0.11

High 12.5 Hz 0.1 2.1 701.3 0.0 0.965 0.00
25 Hz 0.4 1.6 493.3 0.2 0.825 0.02
50 Hz −0.2 1.6 467.1 −0.1 0.898 0.01
100 Hz −1.4 1.4 340.1 −1.0 0.326 0.11
200 Hz 0.2 1.4 352.3 0.1 0.883 0.02
400 Hz −1.8 1.4 340.1 −1.3 0.194 0.14
800 Hz 2.9 2.8 796.8 1.1 0.294 0.07

Bold indicates significant terms. Abbreviations: F, female; Hch, H. chrysoscelis; Hcin, H. cinerea; M, male.

Table 3. Results of the ANOVA used to assess effects of species and
sex on responses to paired clicks

Term d.f. F P value
Effect size
(partial η2)

Intercept 1,60 1109.8 <0.001 0.95
ICI 9,540 46.1 <0.001 0.43
Species 1,60 0.0 0.985 0.00
Sex 1,60 0.8 0.377 0.01
Species×ICI 9,540 1.3 0.267 0.02
Species×sex 1,60 1.3 0.264 0.02
Sex×ICI 9,540 0.8 0.490 0.01
Species×sex×ICI 9,540 1.7 0.170 0.03

Bold indicates significant terms.
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function of increasing modulation rate (Dunia and Narins, 1989;
Feng et al., 1991; Rose and Capranica, 1985). Our data on ABRs in
response to double-click stimuli also support the idea that species
differences in temporal processing might arise as early as the
auditory periphery. The primary generator of the first peak (P1) in
the ABRs of all animals studied to date is the auditory nerve (Achor
and Starr, 1980; Brown-Borg et al., 1987; Buchwald and Huang,
1975; Lev and Sohmer, 1972; Seaman, 1991). The timing of P1 of
the ABR in both gray and green treefrogs corresponds well to the
expected latencies of anuran auditory nerve fibers (Buerkle et al.,
2014; Schrode et al., 2014). In support of this view, the minimum
resolvable ICIs of between 1.5 and 2.0 ms measured in the present
study are comparable with the average gap detection times of
between 1.2 and 2.2 ms reported previously for anuran auditory
nerve fibers (Feng et al., 1994). Our results, therefore, support the

hypothesis that the well-known adaptations of the frog peripheral
auditory system for processing natural sounds in the spectral domain
may also extend to processing in the temporal domain.

It is potentially surprising that species-specific adaptations in
temporal processing might arise in the periphery, because the
peripheral auditory system is generally considered to function as a
low-pass envelope filter (Carney, 1993; Dau et al., 1996; Dolphin
et al., 1995; Frisina, 2001). However, adaptations of the peripheral
auditory system for particular modulation rates have been identified
in at least one previous study. In a comparison of three species of
songbirds, Henry and Lucas (2008) found that the two species
whose vocalizations contained the fastest modulations also
exhibited larger ASSRs than the third species, particularly at rates
faster than 950 Hz. These results suggested co-evolution of temporal
resolution and temporal modulations in conspecific vocalizations.
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BA Fig. 6. Paired-click recovery functions. (A,B) Recovery was
calculated as the ratio of the peak-to-peak amplitude (as calculated in
Fig. 4) of the residual ABR to the peak-to-peak amplitude of the ABR
elicited by a single click and expressed as a percentage. Recovery is
plotted separately for (A) each species and (B) each sex, as a function
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We believe the current study presents the first evidence in favor of
species-specific adaptations for processing temporal patterns in
conspecific signals at the level of the auditory periphery in anurans.
Future comparative work using electrophysiological recordings
from single auditory nerve fibers in both gray treefrogs and green
treefrogs will be required to confirm this hypothesis.
Our demonstration of species differences in temporal processing

also sheds important light on potential auditory mechanisms related
to the so-called ‘cocktail party problem’ (McDermott, 2009). In
both humans and frogs, the background noise levels characteristic of
large social aggregations fluctuate in amplitude. Human listeners
can take advantage of brief ‘dips’ in noise levels to catch acoustic
glimpses of target signals of interest (Bacon et al., 1998; Cooke,
2006; Füllgrabe et al., 2006; Vestergaard et al., 2011). This ability is
known as ‘dip listening’, and it is thought to be dependent on having
auditory temporal resolution sufficient to resolve the fluctuations in
the background noise (Festen, 1993; Qin and Oxenham, 2003).
Recent comparative psychophysical studies of gray and green
treefrogs uncovered a species difference in their abilities to
recognize conspecific advertisement calls in the presence of
temporally fluctuating noise (Vélez and Bee, 2010, 2011, 2013;
Vélez et al., 2012). Gray treefrogs, but not green treefrogs, were able
to listen in dips to achieve a release from auditory masking by
chorus-like noises that fluctuated in amplitude over time. Based on
this behavioral difference between the two species, we would have
expected gray treefrogs to have better temporal resolution than green
treefrogs. However, our results do not support this conclusion and
possibly suggest precisely the opposite pattern. A relatively larger
ASSR indicates greater synchrony of neural responses, an important
component of temporal resolution. Across the modulation rates
tested, for each species there where instances when it had larger
ASSRs than the other species. However, several factors suggest that
green treefrogs have better temporal resolution than gray treefrogs.
Green treefrogs had larger ASSRs than gray treefrogs in response to
far more stimulus conditions, and furthermore, they tended to have
larger ASSRs at faster modulation rates, indicating an ability to
synchronize to and to resolve faster modulation rates. Green
treefrogs also had shorter minimum resolvable ICIs based on ABRs
than gray treefrogs. Thus, the species differences in temporal
processing that might exist at the level of the auditory periphery
reported in the present study appear poorly suited to explain the
differences in dip listening abilities previously described for these
two species. The present study, therefore, highlights the potentially
important role of central auditory processes in solving cocktail-
party-like communication problems.
A final important result from this study is that it failed to uncover

evidence for sex differences in temporal processing. We saw no
evidence that males had relatively larger ASSRs than females at
modulation rates typical of conspecific aggressive calls, nor was
there evidence for a sex difference in percentage recovery functions
based on ABRs. Instead, we observed frequency-dependent sex
differences in which females tended to have relatively larger ASSRs
than males at the middle carrier frequency. Previous behavioral
studies (Gerhardt, 2005) and recordings of AEPs (Buerkle et al.,
2014; Schrode et al., 2014) in treefrogs indicate that sound
frequencies between the two spectral peaks of advertisement calls,
and correspondingly between the two frequency regions of greatest
auditory sensitivity, are able to stimulate simultaneously both
auditory papillae in the anuran inner ear. The observation of larger
ASSRs in females suggests better recruitment of nerve fibers across
the two papillae in females than in males. This result is consistent
with previous results from recordings of AEPs in these species

(Buerkle et al., 2014; Schrode et al., 2014). In those studies, the
amplitudes of P1 of tone-evoked ABRs were larger in females than
males when tones had intermediate frequencies (1.5 to 2.0 kHz). At
present, it remains unclear whether this frequency-dependent sex
difference in responses is indicative of an evolutionary adaptation
related to some aspect of spectral or temporal processing.

MATERIALS AND METHODS
Subjects
Subjects were 68 gray treefrogs (35 female) and 59 green treefrogs (30
female). Gray treefrogs were collected from Carver Park Reserve (Carver
County, MN, USA), Crow-Hassan Park Reserve (Hennepin County, MN,
USA) or Lake Maria State Park (Wright County, MN, USA). Green
treefrogs were collected from the East Texas Conservation Center (Jasper
County, TX, USA). All frogs were collected in amplexus during their
respective breeding seasons in either 2011 or 2012. Female gray treefrogs
(mean±s.d.: mass=5.2±1.0 g; SVL=39.3±2.7 mm) tended to be larger than
male gray treefrogs (4.2±0.8 g; 35.8±1.9 mm). In green treefrogs, females
(7.4±1.5 g; 49.4±3.0 mm) and males (7.2±1.4 g; 48.0±3.2 mm) were
similar in size. After collection, frogs were transported to the laboratory,
where they were housed in terraria on a 12 h:12 h light:dark cycle at ambient
room temperature (20±2°C). We supplied frogs with fresh water and a
regular diet of vitamin-dusted crickets. We tested each subject within
3 weeks of collection. All animals were collected with permission from the
Minnesota Department of Natural Resources (permits 17892 and 19061)
and Texas Parks and Wildlife (permit SPR-0410-054), and treated
according to protocols approved by the Institutional Animal Care and Use
Committee of the University of Minnesota (1103A97192).

General procedures
Equipment and procedures for recording AEPs have been described
previously (Buerkle et al., 2014; Schrode et al., 2014). Briefly, we generated
all digital stimuli (50 kHz sampling rate, 16-bit) in TDT SigGenRP software
(Tucker Davis Technologies, Alachua, FL, USA). TDT BioSigRP software
coordinated stimulus output and neural recording through TDT System 3
hardware. Stimuli were broadcast through an Orb Mod 1 speaker (Orb
Audio, New York, NY, USA), which was driven by a Crown XLS 202
amplifier (Crown Audio, Elkhart, IN, USA).

Recordings were made inside a MAC-3 radio-shielded mini-acoustical
chamber (W×D×H: 81.3×61×61 cm; Industrial Acoustics Company, Bronx,
NY, USA). For recordings, we first immobilized subjects with an intra-
muscular injection of D-tubocurarine chloride (3–12 µg g−1 body weight).
Subjects were loosely wrapped in a thin piece ofmoistened gauze to facilitate
cutaneous respiration and seated in a natural position on an acoustically
transparent platform, facing the speaker. Temperature was monitored via a
Miller & Weber quick-reading thermometer placed against the subject’s
body wall and ranged between 18 and 20°C across recording sessions. We
have observed gray treefrogs in amplexus at temperatures between 14 and 23°
C, and green treefrogs in amplexus at temperatures between 17 and 26°C.We
placed subjects so that the rostral edges of their tympanawere 30 cm from the
face of the speaker. We applied a topical anesthetic (2.5% lidocaine HCl) to
the scalp of the subject prior to inserting the tips of three subcutaneous
electrodes (1–5 kΩ) under the skin. The recording electrode was located
between the eyes and the ground and inverting electrodes were placed
adjacent to the two tympana. Neural signalswere sampled at a rate of 25 kHz,
digitized and amplified before being transmitted via optic fiber cable to a
TDTRZ5processor and stored foroffline analysis.On the rare occasion that a
recording was contaminated with an obvious artifact (e.g. due to infrequent
buccal pumping motion), that recording was repeated.

Auditory steady-state responses (ASSRs) to modulated tones
We generated AM tones by multiplying two sinusoids, one serving as the
modulator (100% modulation depth) and the second serving as the carrier
signal. Tones were modulated in one-octave steps at rates of 12.5, 25, 50,
100, 200, 400 and 800 Hz, and were of a sufficient duration to ensure that
subjects heard at least 10 modulation cycles at each modulation rate. Tones
with modulation rates of 12.5 Hz had a duration of 800 ms. All other tones
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had durations of 400 ms.We used three different carrier frequencies for each
species (1.25, 1.625 and 2.5 kHz for gray treefrogs; 0.9, 1.6 and 2.7 kHz for
green treefrogs). The low and high carrier frequencies for each species
corresponded to frequencies prominent in conspecific advertisement calls
(Gerhardt, 1974a,b; Schrode et al., 2012), and both species tend to be most
sensitive to these two frequencies (Buerkle et al., 2014; Hillery, 1984;
Lombard and Straughan, 1974; Miranda andWilczynski, 2009; Penna et al.,
1992; Schrode et al., 2014). The middle carrier frequency for each species
was chosen because it simultaneously excites the AP and BP at high signal
levels (Buerkle et al., 2014; Gerhardt, 2005; Schrode et al., 2014). In Fig. 2
we show six cycles of example stimuli used to elicit ASSRs from green
treefrogs.

Calibration of signal level was a two-step process. We first calibrated 1 s
(unmodulated) tones with frequencies matching the carrier frequencies of
the AM tones to 70 dB SPL (re. 20 µPa, C-weighted, fast RMS), using the
microphone of a Larson Davis System 824 sound level meter (Larson Davis,
Depew, NY, USA) placed at the approximate location of the frog’s head and
facing the speaker. We then matched the peak-to-peak amplitudes of each
AM tone to that of the calibrated, unmodulated tone of corresponding
frequency. The frequency response of the speaker was flat (±1 dB) across
the range of frequencies tested.

We recorded two ASSRs to each stimulus from 30 gray treefrogs (15
females) and 30 green treefrogs (15 females); examples from a green
treefrog are shown in Fig. 2. Each ASSR consisted of the average of the
responses to 400 presentations of the stimulus. We randomized carrier
frequencies and modulation rates of 25–800 Hz for each subject. Because of
their long duration, tones modulated at a rate of 12.5 Hz were presented in a
separate block prior to or following tones modulated at other rates. The
timing of the 12.5 Hz block (either before or after the other recordings) and
the carrier frequency of tones within the block, were randomized for each
subject. Recordings of responses to stimuli were notch filtered at 60 Hz (roll
off: 18 dB per octave) to reduce electrical noise and low-pass filtered at
3 kHz (roll off: 6 dB per octave). The notch filter was wide enough to
attenuate the amplitudes of recorded responses to stimuli with modulation
rates of 50 Hz, but it did so equally for both species and both sexes.

In our statistical tests of the species-specific and sex-specific adaptation
hypotheses, we considered evoked responses to occur only when the peak of
the frequency spectrum of the response at the modulation rate of the stimulus
was significantly higher than background noise. We accomplished this as
follows. First, we determined the frequency spectrum of each ASSR (Fig. 2)
by averaging over the two replicate responses to a given stimulus and then
performing an FFT analysis (8192 point) over the first 400 ms of the
response. The duration of this analysis window was chosen to achieve a
frequency resolution suitable for the modulation rates tested, and it ensured
inclusion of a whole number of cycles of the modulation stimulus, which is
important for avoiding errors in the calculated frequency spectrum
(Herdman and Stapells, 2001; John and Picton, 2000; Nachtigall et al.,
2007; Supin and Popov, 1995b). Next, we computed an F ratio comparing
the power at the modulation rate of the stimulus (e.g. 100 Hz in Fig. 2) with
the average power in the 16 FFT bins adjacent to the modulation rate of the
stimulus (Cone-Wesson et al., 2002; Dobie and Wilson, 1996; Gorga et al.,
2004; Hall, 2007; Herdman and Stapells, 2001; Korczak et al., 2012; Picton
et al., 2003; Purcell et al., 2004; Valdes et al., 1997; van der Reijden et al.,
2005). Bins were approximately 3 Hz in width, so the background noise was
estimated for a range of about 48 Hz surrounding the modulation rate of
the stimulus. An evoked ASSR was considered to have occurred if the
corresponding F ratio exceeded the critical value of F2,32 at α=0.05 (where
the degrees of freedom in the numerator and denominator are twice the
number of frequency bins used to estimate the signal and noise magnitudes,
respectively). We repeated this analysis using time windows that included a
fixed number of cycles of each amplitude modulation (10 cycles), rather
than fixed time windows (in ms). The same pattern of results noted in the
text was present in the results following this alternative analysis method, so
we present only the results of the analysis with a fixed time window.

We investigated the effects of species, sex, modulation rate and carrier
frequencyon evokedASSRsusing a linearmixedmodel inR (RDevelopment
Core Team, 2014), whichwe fitted using the lme4 (Bates et al., 2014) and afex
(Singmann,2014)packages.Ourmodel included species, sex,modulation rate

and carrier frequency as fixed factors, all two-way interactions, and the three-
way interactions of modulation rate×carrier frequency with both species and
sex. We performed Tukey post hoc contrasts using the lsmeans package
(Lenth, 2014) to compare between levels of different factors in the model.
A significance criterion of α=0.05 was used for all analyses.

Auditory brainstem responses (ABRs) to paired clicks
Click stimuli (0.1 ms duration) output through our setup had a broadband
spectrum, with a center frequency of approximately 1.6 kHz and 6 dB down
points of approximately 0.345 and 2.8 kHz. Paired clicks consisted of two
acoustic clicks, separated by a specified ICI. Examples are illustrated in
Fig. 3A. We tested ICIs of 0.25 ms, 0.5 ms, 0.75 ms and 1–10 ms in 1 ms
steps, with presentation order randomized between subjects. Each
presentation of a paired-click stimulus was followed by at least 40 ms of
silence and then a single-click stimulus. We recorded two replicate ABRs to
the paired-click and single-click stimuli, with each replicate consisting of the
average response to 1200 presentations of the stimulus. There was a silent
interval of at least 40 ms between the single click and the onset of the next
stimulus presentation. Click polarity was constant for all three clicks within
a presentation, but alternated between each presentation to reduce the
microphonic potential. Clicks were calibrated to 80 dB by matching
the peak-to-peak amplitude of each click to that of a calibrated 1 s tone with
a frequency of 1000 Hz.

We recorded ABRs to paired clicks from 38 gray treefrogs (20 females)
and 29 green treefrogs (15 females) (see Fig. 3B). At relatively long ICIs
(e.g. 8 ms), separate ABRs to each of the clicks in the paired-click stimuli
were usually evident (Fig. 3B,C). However, at shorter ICIs, the ABRs
evoked by the first and second clicks overlapped in time. To disambiguate
these overlapping ABRs, we derived the response to the second click by
aligning the responses to the single-and paired clicks at stimulus onset, and
then subtracting, point-by-point, the first 25 ms of the average response to
the single click from the average response to the paired click. This
subtraction effectively removed any ABR evoked by the first click of the
pair, leaving only the residual ABR evoked by the second click (Fig. 3C).
Using a custom-written, cursor-based program in Matlab, we measured the
amplitude of all residual ABRs and ABRs evoked by single clicks as the
peak-to-peak amplitude from the top of the first peak (P1) to the bottom of
the subsequent trough (see Fig. 4) (Buerkle et al., 2014; Schrode et al.,
2014). If a peak was not visible, we considered the amplitude to be 0 µV.
These values were used to calculate the percentage recovery as the ratio of
the amplitude of a residual ABR to the amplitude of the ABR evoked by the
corresponding single click. For each subject, we also measured the shortest
resolvable ICI. After plotting residual ABRs as a function of ICI (as in
Fig. 3C), we selected the minimum resolvable ICI as the shortest ICI for
which an evoked residual ABRwas visually detectable. We used a repeated-
measures ANOVA to investigate the effects of species and sex on percentage
recovery. We tested for significant differences in minimum resolvable ICI
using a two-way ANOVA. Species and subject sex were included as fixed
factors. We used a significance criterion of α=0.05 for both analyses and
report P values corrected based on the Greenhouse–Geisser method
(Greenhouse and Geisser, 1959) where applicable.
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Vélez, A. and Bee, M. A. (2011). Dip listening and the cocktail party problem in grey
treefrogs: signal recognition in temporally fluctuating noise. Anim. Behav. 82,
1319-1327.
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