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Decreasing methane yield with increasing food intake keeps daily
methane emissions constant in two foregut fermenting
marsupials, the western grey kangaroo and red kangaroo
Catharina Vendl1,2, Marcus Clauss1, Mathew Stewart2, Keith Leggett3, Jürgen Hummel4, Michael Kreuzer5 and
Adam Munn2,3,*

ABSTRACT
Fundamental differences in methane (CH4) production between
macropods (kangaroos) and ruminants have been suggested and
linked to differences in the composition of the forestomach
microbiome. Using six western grey kangaroos (Macropus
fuliginosus) and four red kangaroos (Macropus rufus), we measured
daily absoluteCH4 production in vivo aswell asCH4 yield (CH4 per unit
of intake of dry matter, gross energy or digestible fibre) by open-circuit
respirometry. Two food intake levels were tested using a chopped
lucerne hay (alfalfa) diet. Bodymass-specific absolute CH4 production
resembled values previously reported in wallabies and non-ruminant
herbivores such as horses, and did not differ with food intake level,
although there was no concomitant proportionate decrease in fibre
digestibility with higher food intake. In contrast, CH4 yield decreased
with increasing intake, and was intermediate between values reported
for ruminants and non-ruminant herbivores. These results correspond
to those in ruminants andother non-ruminant specieswhere increased
intake (andhenceashorter digesta retention in thegut) leads toa lower
CH4 yield.Wehypothesize that rather than harbouringa fundamentally
differentmicrobiome in their foregut, themicrobiomeofmacropods is in
a particular metabolic state more tuned towards growth (i.e. biomass
production) rather thanCH4 production. This is due to the short digesta
retention time inmacropodsand the knowndistinct ‘digestawashing’ in
the gut of macropods, where fluids move faster than particles and
hence most likely wash out microbes from the forestomach. Although
our data suggest that kangaroos only produce about 27% of the body
mass-specific volume of CH4 of ruminants, it remains to be modelled
with species-specific growth rates and production conditions whether
or not significantly lower CH4 amounts are emitted per kg of meat in
kangaroo than in beef or mutton production.
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INTRODUCTION
Methane (CH4) is a potent greenhouse gas (GHG), accounting for
16% of total anthropogenic GHG emissions in 2010, second only to

CO2 (IPCC, 2014). From total emissions, 28% originates from
ruminant livestock as the largest source (Klieve, 2009). Enteric CH4

is generated by archaea through reducing hydrogen, which is a by-
product of microbial fermentation of plant material, especially fibre,
in the main fermentation chamber of the forestomach (i.e. the
rumen), and which must be removed in order to maintain efficient
fermentation (Stevens and Hume, 1998). As a consequence of their
high global relevance, enteric CH4 emissions are well studied for
domestic ruminants such as cattle and sheep as well as, on a smaller
scale, for hindgut fermenters such as equids and pigs. Ruminants
produce the highest amounts of CH4 in relation to their body mass
(Franz et al., 2010; Hironaka et al., 1996; McCaughey et al., 1999).
Although other pathways exist for the utilization of enteric hydrogen
(Morvan et al., 1996; Pope et al., 2011), methanogenesis is the main
hydrogen sink in ruminants. However, drivers determining the
dominating type of enteric hydrogen sink are still poorly understood
(Klieve, 2009;Morvan et al., 1996). In this respect, the presence of a
complex foregut such as the reticulorumen may be beneficial for
Archaea. Thus, as they share this anatomical feature, non-
ruminating foregut fermenters such as hippopotamids, peccaries,
sloths, macropods and colobine monkeys are interesting target
species to investigate biological drivers causing the large variation
in CH4 emission found among different groups of herbivores even
when standardized by body mass (Franz et al., 2010, 2011b).

The complex foregut of macropods consists of a colon-like
tubular morphology and is divided into a sacciform and a larger
tubiform region (Hume, 1984; Langer et al., 1980). Microbial
fermentation occurs in both regions (Hume, 1984). Although
several studies suggested that macropods produce very little CH4 in
comparison to ruminants (Dellow et al., 1988; Kempton et al., 1976;
Madsen and Bertelsen, 2012; von Engelhardt et al., 1978), the
variety of the methodologies used complicates comparison of data.

von Engelhardt et al. (1978) and Hume (1999) mainly attributed
the presumably low CH4 emissions of macropods to their
comparably short digesta passage time. Other groups investigated
the foregut microbiome in order to find an explanation. Ouwerkerk
et al. (2005) and Gulino et al. (2013) identified a diverse and
complex bacterial ecosystem consisting of several known, but also
of approximately 50% novel genera with still unknown function.
Ciliate protozoa and fungi were also found in similar density levels
to those in the rumen (Dellow et al., 1988). Reductive acetogens that
reduce hydrogen to acetate were found to be the main hydrogen sink
in macropods, supporting the assumed low CH4 emissions (Gagen
et al., 2010; Godwin et al., 2014; Klieve, 2009; Ouwerkerk et al.,
2009). Methanogenic archaea were also present, but in much lower
density than in the rumen – that is, up to 1000-fold less (Evans et al.,
2009; Klieve et al., 2012). The density of archaea in the foregut
seems to be highly dependent on the individual animal and itsReceived 8 July 2015; Accepted 1 September 2015
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species, withMacropus rufus harbouring densities below detectable
limits (Klieve et al., 2012). Furthermore, the detected archaea
appeared to be novel with some presumably not being
methanogenic, as PCR assays used to target the functional mcrA
gene, known to be associated with methanogenesis in ruminants,
failed (Klieve et al., 2012). However, it appears also possible that
the low CH4 emission of macropods is simply the result of their
generally lower metabolism (McNab, 1986; Munn and Dawson,
2003) and lower food intake (Munn et al., 2008) compared with
ruminants. This phenomenon has been demonstrated before for
animals with a lower metabolic rate and hence lower food intake,
which emit correspondingly less CH4; namely, for tortoises
compared with mammalian hindgut fermenters (Franz et al.,
2011a; with the probable additional effect of a lower body
temperature in the reptiles reducing microbial activity) and for
camelids compared with ruminants (Dittmann et al., 2014a,b).
In order to enlarge the database on macropod methane emission

and to address the open questions, we experimentally investigated
in vivo CH4 production as the target variable and metabolic rate,
food and energy intake and fibre digestibility as explanatory
variables. This was assessed on two levels of food intake and in two
different species. In particular, we expected absolute CH4

production as well as CH4 production per unit food or energy
intake to be within the range of non-ruminant mammals when
corrected for body mass. Additionally, because an increase in food
intake typically reduces the time digesta is retained in the gut and
hence is subjected to microbial digestion, we expected a lower CH4

production per unit food intake at the higher food intake level.

MATERIALS AND METHODS
The experiment was conducted under University of New South Wales
(UNSW) animal care and ethics committee (ACEC) permit no. 11/118A and
14/97B. Studies were undertaken at the UNSWArid Zone Research Station
at Fowlers Gap (31°05′S, 141°43′E), western New South Wales, Australia,
from late June to September 2014 (i.e. austral winter–early spring). Six
mature female western grey kangaroos (Macropus fuliginosus Desmarest
1817) and three mature female and one immature female red kangaroo
(Macropus rufusDesmarest 1822)were used. Five of theM. fuliginosuswere
caught from the wild 4 months in advance to allow them to acclimate to
human handling. OneM. fuliginosus and all fourM. rufus were hand-reared
and thus used to being handled by humans. The kangaroos were kept as a
group in an enclosure of about 4 hectares. Two study animals at a time
were transferred to individual outdoor pens (1.40 m×1.20 m=1.68 m2) for
a 2 week acclimation period. During this period the animals were
fed ad libitum exclusively on chopped lucerne hay. Four days prior
to the measurements, feed allowance was set to a level covering 75%

of maintenance energy requirement (MER) of 385 kJ digestible
energy kg−0.75 day−1 (Munn and Dawson, 2003). Animals had ad libitum
access to drinking water at all times.

After the acclimation period, animals were transferred to indoor
metabolism cages. Before the kangaroos were moved, they were
anaesthetized by an intramuscular injection of a mixture of Zoletil (50%
tiletamine and 50% zolazepam, 100 mg ml−1; used dosage: 1 ml per 20 kg
body mass, Mb; Virbac Animal Health, Milperra, Australia) and Pamlin
(diazepam, 5 mg ml−1; used dosage: 2 ml per 20 kg Mb; Ceva Animal
Health Pty Ltd, Glenorie, Australia). This was also done when transferring
the kangaroos back to their enclosure at the end of the measurements. These
two periods of immobilization were also used for weighing.

Respirometry was conducted in two separate metabolism cages
(dimensions: 3.06 m3 and 2.66 m3) placed in a temperature-regulated
room (25–30°C). The metal mesh cages were sealed with walls consisting of
corrugated plastic panels. The cages were large enough for the animals to lie,
stand and stand upright, and to turn around freely but not to leap. The floor
of the cages consisted of metal mesh covered by a rubber mat with holes of a
diameter of 4.5 cm, allowing urine and faeces to pass through for collection.
Faeces and urine were collected every 12 h from slide trays under each cage.
Faeces were caught on a mesh grid, and urine was collected underneath the
grid in the trays and funnelled to collection tubes. Lucerne hay and fresh
water were provided in food hoppers that could be replenished from the
outside via a lid without opening the whole front of the chambers; the slits
around the lid were sealed with insulation tape after refilling the hoppers.
The respiration chambers were fitted with air inlets of 4 cm diameter on the
bottom front and air outlets on the top to ensure a constant airflow generated
by a pump (Flowkit 100; Flowkit 500, Sable Systems, Las Vegas, NV,
USA). Out-flowing air was ducted via flexible hoses to a gas multiplexer,
which allowed the simultaneous measurement of two individuals and
recording of baseline values from ambient air, at intervals of 600 s per
chamber and 300 s for the baseline data. Gas concentrations were measured
by O2 and CO2 analysers (Foxbox, Sable Systems). Methane was measured
by a CH4 analyser (MA-10, Methane Analyzer, Sable Systems). Data were
adjusted for temperature, air flow rates and barometric pressure. Air flow
rates and barometric pressure were constantly recorded during respirometry
(Foxbox, Sable Systems). The airflow produced by the pumps averaged 45–
50 l. Gas analysers were manually calibrated with calibration gases (pure
nitrogen gas, and a mixture containing 20.90% O2, 0.50% CO2, 0.50% CH4

dissolved in N2) at the beginning of each measurement period. Data
obtained by the respirometry system were analysed with ExpeData software
(Sable Sytems) for O2 consumed and CH4 and CO2 emitted after correcting
for gas input calculated from flow and concentrations of incoming air. The
mean metabolic rate was calculated based on two 23 hmeasurement periods,
therefore accounting for the activity of the animals inside the chamber.
Resting metabolic rate (RMR) of the animals was calculated as the average
of the 20 lowest O2 measurements per individual within the entire
measurement (adapted from Derno et al., 2005). In order to estimate
metabolic rate, we multiplied the amount of O2 consumed (in l h−1) by
20.08 kJ (McNab, 2008). Volume measures of CH4 were transformed into
energy using the conversion factor of 39.57 kJ l−1 (Brouwer, 1965).
Methane production was expressed in absolute values, as body mass-
specific values, and as CH4 yield in relation to dry matter intake (DMI),
gross energy intake (GEI), digestible energy intake (DEI) and intake of
digestible neutral detergent fibre (dNDFi).

Once in the respiratory chamber, each animal was successively fed at two
different food intake levels: 75% of MER and ad libitum. During the 75%
food intake level, the animals were fed at 09:00 h and 19:00 h. During the
period of ad libitum food intake, food hoppers were checked every 2 h and
opened and refilled, if required. Animals were allowed to acclimate to the
cages for 3 days before the start of measurements, and in all cases faecal
output had stabilized prior to the beginning of data collection. This allowed
the animals to return to a normal food intake level despite the unfamiliar
housing conditions, and resulted in a stable faecal output to food intake ratio.
Another 3 days of adaptation were included when switching from the
restricted to the ad libitum food intake level. After each 3 day adaptation,
3 days of measuring food intake and faecal production including two cycles
of 23 h respirometry were performed per food intake level. Although the

List of symbols and abbreviations
ADF acid detergent fibre
ADL acid detergent lignin
BMR basal metabolic rate
DEI digestible energy intake
DMI dry matter intake
dNDFi intake of digestible neutral detergent fibre
GE gross energy
GEI gross energy intake
GHG greenhouse gases
Mb body mass
MER maintenance energy requirement
MRT mean retention time
NDF neutral detergent fibre
rDMI relative dry matter intake
RMR resting metabolic rate
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typical number of days for subsequent measurements of intake and
defaecation is 5 for herbivores, a shorter 3 day period was accepted to reduce
the amount of time animals had to spend in the metabolism cages, and was
considered acceptable because of the comparatively short mean retention
time (MRT) in macropods (e.g. 30 h for particles in adultM. rufus in Munn
and Dawson, 2006). At 09:00 h the measurements were always stopped for a
break of 1 h to allow the opening of the chambers for feeding, collecting
faeces and urine, and removing residual uneaten lucerne hay.

Food intake, faecal and urine output and residual hay were measured on a
daily basis. Samples of chopped lucerne hay, leftovers and faeces were
immediately dried at 60°C and ground to 0.75 mm with a centrifuge mill
(Dayton Electric Manufacturing Co., Niles, IL, USA). Standard nutrient
analyses (AOAC, 1995) were carried out, including the determination of
content of dry matter and total ash (AOAC no. 942.05), crude protein (CP,
AOAC no. 977.02), neutral detergent fibre (NDF, AOAC no. 2002.04), acid
detergent fibre and acid detergent lignin (ADF and ADL, AOAC no.
973.18). For NDF analysis, α-amylase was used. Fibre data were expressed
without residual ash. Gross energy (GE) was determined by bomb
calorimetry (IKA-Calorimeter C4000, Ika, Stauffen, Germany). All
analyses were performed in duplicate. Diet composition and nutrient
intake were calculated from the nutrient composition of the hay offered and
that recovered in the leftovers, and the corresponding amounts offered or
recovered, respectively. The apparent digestibility for dry matter, nutrients
and energy was calculated as the percentage of the respective intake not
eliminated via faeces (Robbins, 1993).

Results were compared between macropod species and intake levels by
two-way ANOVA that always included the interaction between the two
factors (species×intake level). Because there was never a significant
interaction between species and intake level, the corresponding P-values are
not displayed. The significance of simple correlations was tested by
Spearman’s σ. Analyses were performed in SPSS 21.0 (SPSS Inc., Chicago,
IL, USA). The significance level was set to α=0.05, with values of up to 0.10
considered as trends.

RESULTS
The nutrient composition of the lucerne hay as ingested is shown in
Table 1. Hay fed at 75% MER was completely consumed by all
kangaroos except by one. When offered the ad libitum diet (at
amounts where 72±12% of the amount offered was ingested),
kangaroos tended to select lucerne hay particles with lower NDF
concentration (NDF in hay offered: 48.5±0.7% versus NDF in hay
leftover: 50.7±2.3%; Wilcoxon test, P=0.059). When changing
from the restricted food to ad libitum offer, food intake and DEI
were significantly increased in both species to more than 1.5-fold
levels (Table 2). Daily faecal excretion doubled with the increased

feeding level. Faecal dry matter concentration was not significantly
affected by food intake level, consistently accounting for 37–44%
of faecal wet mass. Also, no significant difference in apparent
digestibility of dry matter, crude protein or NDF was noticed
(Table 2). The RMR was higher on the ad libitum intake level, as
was also true for CO2 production and the respiratory quotient
(Table 3).

Macropus fuliginosus had a significantly higher body mass than
M. rufus, but there were no species differences in feed intake and
digestion variables measured (Table 2). In addition, the absolute O2

consumption and CO2 production were significantly higher in
M. fuliginosus than in M. rufus (Table 3).

Examples of diurnal patterns of O2 consumption and CO2 and
CH4 emission in a M. fuliginosus (Fig. 1A,B) and a M. rufus
(Fig. 1C,D) specimen during the ad libitum regimen illustrate the
fluctuations in the level of metabolic energy use and in CH4

production over the day. In some cases, parallel peaks in O2

consumption/CO2 emission and CH4 emission were evident (Fig. 1).
No significant relationship was found between food intake level and
absolute daily CH4 production (Table 3, Fig. 2A). In contrast, there
were significant differences in CH4 yield (CH4 per unit of DMI, GEI
and dNDFi) between intake levels (Table 3), and significant negative
correlations between intake level and CH4 yield expressed as CH4

production either per unit of DMI (σ=−0.48, P=0.032; Fig. 2B) or
per unit of GEI (σ=−0.48, P=0.032). CH4 produced per unit dNDFi,
however, did not differ significantly between intake levels (Table 3),
although there was a trend for a negative correlation between intake
level and CH4 produced per unit dNDFi (σ=−0.42, P=0.064;
Fig. 2C). At ad libitum food intake, CH4 yield of macropods was
similar to that reported for horses (Fig. 2B,C).

Table 1. Mean (±s.d.) nutrient concentrations found in the lucerne hay
as actually ingested for the 75%MERand ad libitum food intake periods

Nutrient 75% MER Ad libitum

Dry matter (g kg−1 as fed) 833±22 832±29
Total ash (g kg−1 DM) 97±2 98±3
Crude protein (g kg−1 DM) 202±8 210±11
Neutral detergent fibre (g kg−1 DM) 503±20 477±15
Acid detergent fibre (g kg−1 DM) 322±7 –

Acid detergent lignin (g kg−1 DM) 83±6 –

Gross energy (kJ g−1 DM) 18.9±0.2 18.8±0.1

MER, maintenance energy requirement; DM, dry matter.

Table 2. Mean (±s.d.) body mass, intake and digestibility of two kangaroo species when subjected to 75% MER and to ad libitum food intake

Macropus fuliginosus Macropus rufus P-level

75% MER Ad lib. 75% MER Ad lib. Species Intake level

Body mass (kg) 21.7±2.9 21.8±3.0 17.3±4.6 17.7±4.6 0.020 n.s.
Dry matter intake
Absolute (g day−1) 239±16 408±16 228±23 385±159 n.s. 0.002
Relative (g kg−0.75 day−1) 24±1 41±10 28±8 44±12 n.s. 0.001

Dry matter excretion
Absolute (g day−1) 92±12 180±46 79±9 165±53 n.s. <0.001
Relative (g kg−0.75 day−1) 9±1 16±4 10±1 19±3 n.s. <0.001

Faecal dry matter (g kg−1) 437±127 372±76 408±131 396±105 n.s. n.s.
Apparent digestibility (%)
Dry matter 61±4 63±8 65±5 56±7 n.s. n.s.
NDF 52±6 53±10 57±9 44±10 n.s. n.s.
Crude protein 74±3 74±5 77±3 72±4 n.s. n.s.

DEI (kJ kg−0.75 day−1) 266±13 458±133 350±136 469±186 n.s. 0.015
MEI (kJ kg−0.75 day−1) 226±11 390±113 297±116 399±158 n.s. 0.015

MER, maintenance energy requirement; NDF, neutral detergent fibre; DEI, digestible energy intake; MEI, metabolizable energy intake (calculated as 0.85 DEI).
Data are for N=6 M. fuliginosus and N=4 Macropus rufus.
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The CH4/CO2 ratios found in M. fuliginosus and M. rufus
(Table 3) were similar to values reported for wallabies (Macropus
rufogriseus) and horses but notably lower than for ruminants and
camelids (Fig. 3A). Additionally, in relation to body mass, the
absolute CH4 production of M. fuliginosus and M. rufus was very
similar to that previously reported for M. rufogriseus and hindgut
fermenting mammals in general. However, CH4 yield of
M. fuliginosus and M. rufus per unit of DMI, GEI and dNDFi as
well as related to body mass shows a different picture (Fig. 4A–C):
the macropod measurements were higher than expected for non-
ruminants but lower than in ruminants.

DISCUSSION
The present study relates in vivo measurements of CH4 production
in two macropod species to their body mass, food intake level and
the intake of energy and fibre digestibility. The results facilitate a
comparison with other herbivores that suggests that CH4 production
in macropods is not fundamentally different from that in other
mammals, but is similarly low to that in, for example, horses when
compared with ruminants, and lead to a hypothetical explanation for

why physiological characteristics of macropods could be
responsible for these low values. Here, we will first compare our
findings on intake, digestion and metabolism with literature data,
and then put our CH4 measurements in a comparative context.

Effect of feeding regimen and kangaroo species on intake,
digestion and metabolic rate
The ad libitum DMI of M. rufus in the present study
(44 g kg−0.75 day−1) was in the range of data reported in the
literature for this species on a lucerne hay diet (35–53 g kg−0.75 day−1)
(Hume, 1974; Munn and Dawson, 2003, 2006). However, the
corresponding DEI of M. rufus was actually higher in the present
study (458 kJ kg−0.75 day−1) than that reported byMunn and Dawson
(2003) (385 kJ kg−0.75 day−1).

The apparent digestibility of dry matter found for M. rufus in the
present study (56% apparent digestibility) closely resembled
literature values (55–57%; Hume, 1974; Munn and Dawson,
2003, 2006). Although we found no statistically significant
differences between the apparent digestibility of dry matter by
M. fuliginosus compared with M. rufus, the somewhat higher

Table 3. Mean(±s.d.) gaseous exchange of two kangaroo species when subjected to 75% MER and to ad libitum food intake

Macropus fuliginosus Macropus rufus P-level

Units 75% MER Ad lib. 75% MER Ad lib. Species Intake level

O2 consumption 1 day−1 192±34 192±24 133±27 162±48 0.010 n.s.
Metabolic rate kJ kg−0.75 day−1 386±63 380±46 316±50 388±69 n.s. n.s.
RMR kJ kg−0.75 day−1 306±32 320±22 252±39 301±44 0.027 0.055
CO2 production 1 day−1 154±25 168±27 94±14 140±38 0.003 0.025
CO2/O2 (RQ) 0.81±0.08 0.88±0.08 0.74±0.05 0.85±0.05 n.s. 0.011
CH4/CO2 ratio 0.02±0.01 0.02±0.01 0.03±0.01 0.02±0.01 n.s. 0.071
CH4 production 1 day−1 3.05±1.38 3.09±1.31 2.98±0.91 2.60±0.61 n.s. n.s.

1 kg−1 day−1 0.14±0.05 0.14±0.05 0.19±0.10 0.16±0.08 n.s. n.s.
1 kg−1 DMI 12.68±4.99 7.54±2.12 12.87±2.91 7.78±3.57 n.s. 0.007
%GEI 2.65±1.02 1.60±0.44 2.70±0.60 1.63±0.76 n.s. 0.007
%DEI 4.54±1.92 2.62±0.51 4.17±0.88 3.04±1.41 n.s. 0.023
1 kg−1 dNDFi 48.8±21.5 30.6±7.3 44.5±8.1 40.9±19.7 n.s. n.s.

RMR, resting metabolic rate; RQ, respiratory quotient; Mb, body mass; DMI, dry matter intake; GEI, gross energy intake; DEI, digestible energy intake; dNDFi,
digestible neutral detergent fibre NDF intake.
Data are for N=6 M. fuliginosus and N=4 Macropus rufus. Bold indicates values considered as trends.
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Fig. 1. Diurnal patterns of gas consumption and emission in Macropus fuliginosus and Macropus rufus. (A,C) O2 consumption and CO2 emission, and
(B,D) CH4 emission data for a M. fuliginosus (A,B) and a M. rufus (C,D) specimen during ad libitum feeding.
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average apparent digestibility of dry matter by M. fuliginosus
(ca. 63%) has been found in other studies (e.g. Munn et al., 2014).
These data add further support to the idea thatM. fuliginosus digests
dry matter more efficiently than M. rufus.
The RMR estimated for M. rufus in the present study

(301 kJ kg−0.75 day−1) is higher than literature data of basal
metabolic rate (BMR) (197 and 210 kJ kg−0.75 day−1; Dawson
and Hulbert, 1970; Dawson et al., 2000) for this species. This could
reflect seasonal effects on the basal metabolism of the species, but
field research on seasonal metabolic changes in large marsupials

generally is lacking. Moreover, BMR data for M. fuliginosus
are lacking. However, M. fuliginosus is closely related to
Macropus giganteus, which shows slightly higher BMR
(233 kJ kg−0.75 day−1; Dawson et al., 2000) than M. rufus; it may
be assumed therefore that the metabolic rate of M. fuliginosus also
exceeds that of M. rufus and our findings support this assumption
(RMR of M. fuliginosus: 320 kJ kg−0.75 day−1; Table 3).

The comparison of metabolizable energy intake (MEI, calculated
as 85% of DEI) andmetabolic rate of the kangaroo species studied at
the 75%MER feeding level confirmed the intended status of energy
deficiency both for M. fuliginosus with 226 kJ kg−0.75 day−1 MEI
versus 386 kJ kg−0.75 day−1 metabolic rate (paired t-test P=0.002)
and for M. rufus with 297 kJ kg−0.75 day−1 MEI versus
316 kJ kg−0.75 day−1 metabolic rate (P=0.719). In line with this,
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the respiratory quotient measured at 75% MER reflects a more
intensive fat metabolism (M. fuliginosus: 0.81; M. rufus: 0.74),
whereas the higher respiratory quotient determined for animals fed

ad libitum indicates that primarily carbohydrate metabolism was
used to fuel metabolic rate (M. fuliginosus: 0.88; M. rufus: 0.85).
During ad libitum feeding, MEI closely corresponded to energy
requirements in both M. fuliginosus (390 kJ kg−0.75 day−1 MEI
versus 380 kJ kg−0.75 day−1 metabolic rate, P=0.843) and M. rufus
(399 kJ kg−0.75 day−1 MEI versus 388 kJ kg−0.75 day−1 metabolic
rate, P=0.901).

Effect of feeding regimen and kangaroo species onmethane
emission
The absolute CH4 production measured in the kangaroos of the
present study confirmed previous findings in wallabies (hay only or
hay with concentrates in Madsen and Bertelsen, 2012; chopped or
pelleted roughage in von Engelhardt et al., 1978), and also
confirmed the general similarity of macropods to roughage-fed
hindgut fermenters like horses as suggested by Franz et al. (2011b).
However, the measurements of CH4 yield, presented here for the
first time for macropods, are intermediate to values measured in
hindgut fermenters and ruminants. Varying DMI had little influence
on absolute CH4 production but influenced CH4 yield, indicating
that DMI – and hence most likely digesta retention time – is an
important factor influencing CH4 production. These relationships
indicate the presence of clear differences in CH4 production
between macropods and ruminants and hypotheses on the origin
of these differences are needed. Although variation in digesta
retention is associated with variation in fibre digestibility in
kangaroos (Munn and Dawson, 2006; Munn et al., 2008), it was
surprising that we found no effect of food intake level on
digestibility measurements.

For a comparative understanding of in vivo CH4 production, a
combined evaluation of the absolute amounts of CH4 emitted and
the CH4 yield (CH4 in relation to parameters like DMI, GEI or
dNDFi) is required. Absolute CH4 production and CH4 yield need
not automatically co-vary in the same direction. In the present study,
absolute CH4 production did not change with increasing DMI,
which means that CH4 yield necessarily decreased. A similar pattern
was observed across ratite species (Frei et al., 2015b), where large
differences in ad libitum DMI and CH4 yield led to comparable
mass-specific absolute daily CH4 production. In a study with two-
toed sloths (Choloepus didactylus), one specimen with an
exceptionally high DMI did not have an outstanding body mass-
corrected absolute daily CH4 emission, but did have a distinctively
lower CH4 yield than its conspecifics (Vendl et al., 2015). By
reviewing 48 studies on CH4 production in ruminants, Blaxter and
Clapperton (1965) found a negative correlation between DMI and
CH4 yield. However, it has to be pointed out that CH4 production
and yield do not always correlate in the same way: even though a
negative correlation between DMI and CH4 yield was displayed by
sheep, absolute CH4 production increased with higher DMI, as is
typical for ruminants (Hammond et al., 2014). Such findings
suggest that, within an organism, a change in DMI can have an
influence on CH4 production and hence the activity of the
microbiome, and that it is the combination of that activity and the
amount of material on which the microbiome can act (the DMI) that
determines absolute CH4.

The most probable explanation for a decrease in CH4 yield with
intake is via the MRT of the digesta in the digestive tract. A number
of studies have demonstrated the negative correlation between DMI
and MRT in ratites (Frei et al., 2015c), sloths (Vendl et al., 2015),
ruminants (Clauss et al., 2007; Hammond et al., 2014) and
macropods (Munn et al., 2008). In essence, a higher food intake
leads to a faster passage of digesta through the digestive tract, mostly
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because of the limited capacity of the gut to expand. A shorter MRT,
in turn, was correlated with a lower CH4 yield in various studies
with sheep (Barnett et al., 2013, 2015; Goopy et al., 2013;
Hammond et al., 2014; Pinares-Patino et al., 2003). Janssen (2010)
summarized these findings, creating a model for the prediction of
CH4 yield that used a range of factors, including MRT.
With respect to this effect of MRT on CH4 production, Shi et al.

(2014) found no difference in microbe counts and the composition
of the microbiome of sheep at different MRT, but a difference in the
expression of methanogenesis pathway genes in rumen Archaea
along with varyingMRT. This indicates that changes in MRTmight
influence microbe species composition or their number less than the
metabolic state of these microbes. A difference in the metabolic state
of microbes might thus lead to differences in the production of CH4.
In vitro studies with inoculum from ruminants indicated that foods
vary in their ‘partitioning factor’, i.e. in the degree to which they
trigger energy transfer into microbial growth or into short-chain

fatty acid and hence also CH4 production (Blümmel et al., 1997;
Moss and Newbold, 2000). As a result, microbial synthesis is
negatively correlated with methane production. By feeding diets of
different concentrations of water-soluble carbohydrates, Moss et al.
(2001) confirmed this finding in sheep in vivo: a low level of water-
soluble carbohydrates resulted in less microbial matter and a higher
CH4 yield, whereas higher levels of water-soluble carbohydrates led
to a parallel increase of microbial biomass and a reduction of CH4

yield. Generally, MRT most likely is one factor that influences the
microbiome’s metabolic state in such a way (Janssen, 2010; Shi
et al., 2014), and hence the generally lower MRT of macropods
compared with ruminants (Munn et al., 2008) may well explain
lower CH4 yields in the former (Fig. 5, top).

Additionally, the MRT that the microbiome is specifically
exposed to might differ from the general MRT of particulate digesta
as a result of a process termed ‘digesta washing’ (Dittmann et al.,
2015;Müller et al., 2011): if fluids move through a gut compartment
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faster than the particles, they ‘wash out’ very fine particles from the
digesta bulk and thus, most particularly, microbes. A high fluid
throughput can thus create conditions of reducedMRT for microbes
while retaining longer MRT for digesta particles. Using
combinations of solute and particulate digesta markers, a very
distinct digesta washing has been demonstrated in macropods
(Dellow, 1982; Munn and Dawson, 2006; Munn et al., 2012;
Schwarm et al., 2009), which probably differ in this characteristic
frommany ruminant species (cf. second row of Fig. 5). In an in vitro
study with rumen inoculum maintained at different dilution rates,
Isaacson et al. (1975) demonstrated that increasing the dilution (i.e.
the ‘wash out’ of microbes) led to a concomitant decrease in CH4

yield and an increase in microbial mass yield (see Fig. 5, bottom).
Hence, we hypothesize that the macropod microbiome, because of a
generally shorter MRT than in ruminants and a distinct digesta
washing, is in a metabolic state that minimizes CH4 losses and
maximizes microbial yield (Fig. 5).
The nevertheless higher-than-expected CH4 yield in macropods

of the present study seemingly contradicts literature findings of
extremely low in vivo CH4 emission (Kempton et al., 1976; Dellow
et al., 1988; Madsen and Bertelsen, 2012; also previously
contradicted by von Engelhardt et al., 1978), very small
populations of foregut Archaea (Evans et al., 2009; Klieve et al.,
2012; Ouwerkerk et al., 2009) and the assumed dominance of
reductive acetogens as hydrogen sinks in macropods (Godwin et al.,
2014). However, as pointed out by Ouwerkerk et al. (2005)
and Gulino et al. (2013), macropods generally seem to harbour
rather unique microbe communities with many as yet undescribed
species. This may explain why it was not possible to sufficiently
detect a resident Archaea population in the kangaroos with
common PCR primers. Furthermore, a lack of detection of enteric
Archaea or of methane production in vitro does not necessarily
prove that species are low or non-producers. Similar to this line of
reasoning in macropods, Fievez et al. (2001) and Miramontes-
Carillo et al. (2008) suggested that ostriches (Struthio camelus)
produce very little or no CH4 based on in vitro measurements and
molecular studies. However, Frei et al. (2015a) nevertheless found
significant amounts of methane produced by ostriches in vivo, at a
magnitude expected for similar-sized non-ruminant mammals.
The site of CH4 production in macropods is under debate.

Kempton et al. (1976) measured CH4 emitted via breathing and
(anally) via flatulence separately, and could only detect anal CH4

emission. These authors therefore suggested that CH4 is only
formed in the hindgut of macropods. Madsen and Bertelsen (2012)
supported this hypothesis based on the daily fluctuations of CH4

emissions they detected during chamber respirometry (similar to the
irregular CH4 emission patterns found in the present study in Fig. 1).
These authors concluded that such fluctuations indicated emission
by flatulence, in contrast to ruminants where 95% of ruminal CH4 is
emitted via breathing or eructation (Murray et al., 1976). However,
two arguments contradict this interpretation in our view. First, CH4

produced in the hindgut may basically also be emitted via breathing,
as evidenced by studies in humans and horses – both species where
CH4 is produced in the hindgut and recovered in the breath via a face
mask (McKay et al., 1985; Sasaki et al., 1999). Second, the daily
CH4 emission pattern can be irregular in ruminants also (Crompton
et al., 2011; Hironaka et al., 1996; Kinsman et al., 1995). Crompton
et al. (2011) demonstrated that CH4 emission peaks concurred with
feeding events in sheep. In animals with access to food in the
respiration chamber, as in the present study and in the study of
Madsen and Bertelsen (2012), irregular CH4 emission peaks might
therefore simply indicate an irregular spacing of feeding bouts of the

experimental animals. For future studies, a parallel recording of
respiration measurements and behavioural observations would
therefore be interesting. While the hindgut cannot be ruled out as
a site of CH4 production in macropods, and the hindgut microbiome
of macropods still remains to be explored, we consider the evidence
currently available not sufficient to assume that CH4 production
does not occur in the macropod forestomach.

Our data suggest that a kangaroo produces about 27% of body
mass-specific volume of CH4 compared with ruminants. This
corresponds to an annual amount of some 1000 l CH4 per kangaroo
of an assumed body mass of 20 kg. According to the Australian
Department of Environment (2011), Australia currently harbours a
wild kangaroo population of about 34 million individuals belonging
to either of the four largest macropod species (M. fuliginosus,
M. giganteus, M. robustus and M. rufus). We assume an average
body mass of 20 kg, aware that estimating a realistic mean body
mass for either of the four mentioned species is challenging and
depends on factors such as sex, regional differences, intensity of
harvest and proportion of juvenile individuals (Grigg, 2002). The
total assumed number of kangaroos is probably an underestimate
because populations of remote areas are not included and no reliable
numbers on smaller macropod species are available. Under these
rough assumptions, the four largemacropod species produce avolume
of about 38 billion litres of CH4 per year. In comparison, according to
the Australian Bureau of Statistics (2013), the domestic ruminant
livestock in Australia includes 29.3 million cattle (mean body mass:
496±155 kg; mean CH4 production: 0.63±0.11 l kg

−1 day−1 and 75.5
million sheep (mean body mass: 59±21 kg; mean CH4 production:
0.49±0.13 l kg−1 day−1 (based on the data collection from Dittmann
et al., 2014b), producing about 4138 billion litres of CH4 per year.
There is also a large population of feral camels consisting of about
1 million individuals (Saalfeld and Edwards, 2010) causing CH4

emissions estimated to account for 66 billion litres per year (Dittmann
et al., 2014b). Therefore, CH4 emissions of 34million kangaroos only
account for less than 1%of that of domestic ruminant livestock and for
about 56% of feral camels. Wilson and Edwards (2008) based their
calculations of the Australian CH4 budget on much lower emission
levels for kangaroos, which were derived fromKempton et al. (1976),
and suggested a change of attitude towards kangaroomeat inAustralia
as a means to reduce meat production-associated GHG emissions.
Evidently, such comparison must be made with caution, and should
consider factors such as growth rates (which are mostly lower in
marsupials than in eutherian mammals; Case, 1978) and then relate
CH4 emitted to units of produced muscle food (emission intensity).

Conclusions
The absolute CH4 emissions of kangaroos in this study were similar
to literature results and closely resembled those of similar-sized
hindgut fermenters. However, their CH4 yield was higher than
expected, being of a magnitude in between that of hindgut
fermenters and ruminants. We suggest that the apparent difference
between macropods and ruminants, resembling that between many
other non-ruminants (such as horses) and ruminants, is not due to a
unique composition of the microbiome but rather to differences in
the metabolic state of this microbiome. In order to confirm this
hypothesis, microbial yield and growth rates should be investigated
with metabolomics and transcriptomics approaches and compared
in relation to differing MRT and DMI levels in macropods versus
those in sheep and other herbivores such as horses. Expectations
linked to transfaunation, i.e. transfer of the macropods’microbiome
to ruminants (Klieve, 2009; Wilson and Edwards, 2008), would
only be realistic if this assumption is wrong, or if it can be
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demonstrated that the effect of this microbiome is stable under the
conditions of DMI, MRT and digesta washing present in the target
ruminants’ forestomach.
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utilizadoras de hidrógeno presentes en el tracto gastrointestinal del avestruz
(Struthio camelus var. domesticus). Av. Invest. Agropec. 12, 43-54.

Morvan, B., Bonnemoy, F., Fonty, G. and Gouet, P. (1996). Quantitative
determination of H2-utilizing acetogenic and sulfate-reducing bacteria and
methanogenic archaea from digestive tract of different mammals. Curr.
Microbiol. 32, 129-133.

Moss, A. R. and Newbold, C. J. (2000). The impact of hexose partitioning on
methane production in vitro. Reprod. Nutr. Dev. 40, 211-212.

Moss, A. R., Newbold, C. J. and Givens, D. I. (2001). The impact of hexose
partitioning in sheep in vivo. Proc. Br. Soc. Anim. Sci., 157. http://www.bsas.org.
uk/wp-content/themes/bsas/proceedings/Pdf2001/157.pdf

Müller, D. W. H., Caton, J., Codron, D., Schwarm, A., Lentle, R., Streich, W. J.,
Hummel, J. and Clauss, M. (2011). Phylogenetic constraints on digesta
separation: variation in fluid throughput in the digestive tract in mammalian
herbivores. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 160, 207-220.

Munn, A. J. and Dawson, T. J. (2003). Energy requirements of the red kangaroo
(Macropus rufus): impacts of age, growth and body size in a large desert-dwelling
herbivore. J. Comp. Physiol. B Biochem. Syst. Environ. Physiol. 173, 575-582.

Munn, A. J. and Dawson, T. J. (2006). Forage fibre digestion, rates of feed passage
and gut fill in juvenile and adult red kangaroos (Macropus rufus): why body size
matters. J. Exp. Biol. 209, 1535-1547.

Munn, A. J., Streich,W. J., Hummel, J. andClauss, M. (2008). Modelling digestive
constraints in non-ruminant and ruminant foregut-fermenting mammals. Comp.
Biochem. Physiol. A Mol. Integr. Physiol. 151, 78-84.

Munn, A. J., Tomlinson, S., Savage, T. and Clauss, M. (2012). Retention of
different-sized particles and derived gut fill estimate in tammar wallabies
(Macropus eugenii): physiological and methodological considerations. Comp.
Biochem. Physiol. A Mol. Integr. Physiol. 161, 243-249.

Munn, A. J., Skeers, P., Kalkman, L., McLeod, S. R. and Dawson, T. J. (2014).
Water use and feeding patterns of the marsupial western grey kangaroo
(Macropus fuliginosus melanops) grazing at the edge of its range in arid
Australia, as compared with the dominant local livestock, the Merino sheep (Ovis
aries). Mamm. Biol. 79, 1-8.

Murray, R. M., Bryant, M. P. and Leng, R. A. (1976). Rates of production of
methane in the rumen and large intestine of sheep. Br. J. Nutr. 36, 1-14.

Ouwerkerk, D., Klieve, A. V., Forster, R. J., Templeton, J. M. and Maguire, A. J.
(2005). Characterization of culturable anaerobic bacteria from the forestomach of
an eastern grey kangaroo, Macropus giganteus. Lett. Appl. Microbiol. 41,
327-333.

Ouwerkerk, D., Maguire, A. J., McMillen, L. and Klieve, A. V. (2009). Hydrogen
utilising bacteria from the forestomach of eastern grey (Macropus giganteus) and
red (Macropus rufus) kangaroos. Anim. Prod. Sci. 49, 1043-1051.

Pinares-Patino, C. S., Ulyatt, M. J., Lassey, K. R., Barry, T. N. and Holmes, C. W.
(2003). Rumen function and digestion parameters associated with differences
between sheep in methane emissions when fed chaffed lucerne hay. J. Agric. Sci.
140, 205-214.

Pope, P. B., Smith, W., Denman, S. E., Tringe, S. G., Barry, K., Hugenholtz, P.,
McSweeney, C. S., McHardy, A. C. and Morrison, M. (2011). Isolation of
Succinivibrionaceae implicated in low methane emissions from Tammar
wallabies. Science 333, 646-648.

Robbins, C. T. (1993). Wildlife Feeding and Nutrition. San Diego: Academic Press.
Saalfeld, W. K. and Edwards, G. P. (2010). Distribution and abundance of the feral

camel (Camelus dromedarius) in Australia. Rangeland J. 32, 1-9.
Sasaki, N., Hobo, S. and Yoshihara, T. (1999). Measurement for breath

concentration of hydrogen and methane in horses. J. Vet. Med. Sci. 61,
1059-1062.

Sauer, F. D., Fellner, V., Kinsman, R., Kramer, J. K., Jackson, H. A., Lee, A. J.
and Chen, S. (1998). Methane output and lactation response in Holstein cattle
with monensin or unsaturated fat added to the diet. J. Anim. Sci. 76, 906-914.

Schwarm, A., Ortmann, S., Wolf, C., Streich, W. J. and Clauss, M. (2009).
Passage marker excretion in red kangaroo (Macropus rufus), collared peccary
(Pecari tajacu) and colobine monkeys (Colobus angolensis, C. polykomos,
Trachypithecus johnii). J. Exp. Zool. A Ecol. Genet. Physiol. 311A, 647-661.

Shi, W., Moon, C. D., Leahy, S. C., Kang, D., Froula, J., Kittelmann, S., Fan, C.,
Deutsch, S., Gagic, D., Seedorf, H. et al. (2014). Methane yield phenotypes
linked to differential gene expression in the sheep rumen microbiome. Genome
Res. 24, 1517-1525.

Stevens, C. E. and Hume, I. D. (1998). Contributions of microbes in vertebrate
gastrointestinal tract to production and conservation of nutrients. Physiol. Rev. 78,
393-427.

Vendl, C., Frei, S., Dittmann, M. T., Furrer, S., Osmann, C., Ortmann, S., Munn,
A., Kreuzer, M. and Clauss, M. (2015). Digestive physiology, metabolism and
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