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ABSTRACT
Cockroaches are remarkably stable runners, exhibiting rapid recovery
from external perturbations. To uncover the mechanisms behind this
important behavioral trait, we recorded leg kinematics of freely
running animals in both undisturbed and perturbed trials. Functional
coupling underlying inter-leg coordination was monitored before and
during localized perturbations, which were applied to single legs via
magnetic impulses. The resulting transient effects on all legs and the
recovery times to normal pre-perturbation kinematics were studied.
We estimated coupling architecture and strength by fitting
experimental data to a six-leg-unit phase oscillator model. Using
maximum-likelihood techniques, we found that a network with
nearest-neighbor inter-leg coupling best fitted the data and that,
although coupling strengths vary among preparations, the overall
inputs entering each leg are approximately balanced and consistent.
Simulations of models with different coupling strengths encountering
perturbations suggest that the coupling schemes estimated from our
experiments allow animals relatively fast and uniform recoveries from
perturbations.

KEY WORDS: Central pattern generator, Intersegmental
coordination, Locomotion, Leg perturbation, Phase oscillators

INTRODUCTION
Cockroaches are renowned for their ability to maintain dynamic
stability when running over uneven terrain. Their rapid recovery
from unexpected perturbations results from both passive mechanical
properties of their musculoskeletal structures and interactions among
central and local sensorimotor circuits controlling legs, and hence
body dynamics (Jindrich and Full, 2002; Dudek and Full, 2006;
Dudek and Full, 2007; Sponberg and Full, 2008; Sponberg et al.,
2011a; Sponberg et al., 2011b). These interactions collectively
contribute to produce robust coordinated gaits with the flexibility to
dynamically adapt leg movement when encountering disturbances.
A critical challenge is to discover and understand the inter-leg
coupling structure and strengths responsible for this behavior.

Inter-leg coordination during locomotion may be achieved by
connections between central pattern generator (CPG) networks
controlling each leg, by inter-leg afferent signals, and by mechanical
coupling among legs during stance. Inter-leg couplings are likely to
differ among species, and may depend on locomotive context (Dürr
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et al., 2004; Dürr, 2005). Experimental studies of crustaceans and
stick insects suggest that each limb has its own inherent stepping
rhythm and is only weakly coupled to neighboring legs (Chasserat
and Clarac, 1980; Büschges, 2005; Ludwar et al., 2005; Borgmann
et al., 2007; Borgmann et al., 2009). This is supported by behavioral
observations that suggest sets of reflex-based rules by which
information about leg states and positions passes to neighboring legs
to time successive steps (Cruse, 1990). In contrast, gait coordination
in fast-moving cockroaches is expected to rely as much or more on
pre-programmed patterns transmitted from the CPG in a feed-
forward manner, than on sensory feedback (Wilson, 1966; Pearson,
1972; for a review, see Ayali et al., 2015).

This was previously investigated by recording from motoneurons
in deafferented cockroach preparations (Fuchs et al., 2011; Fuchs et
al., 2012), showing that intersegmental coupling among thoracic
hemisegments can produce the animal’s predominant double tripod
gait (Delcomyn, 1971; Pearson and Iles, 1973) and that, while
contralateral coupling is symmetric, ipsilateral coupling from rostral
units is stronger than from caudal units (Fuchs et al., 2011).
Moreover, sensory information from a single stepping leg can
reinforce central coupling to achieve tighter coordination (Fuchs et
al., 2012). Similar segment-specific effects of sensory feedback on
centrally generated motor patterns were observed in semi-intact stick
insect preparations (Borgmann et al., 2007, 2009), and phase-
response curves (PRCs) that quantify information transfer among
hemisegments have been measured in both species (Borgmann et al.,
2009; Fuchs et al., 2012).

Mathematical models of hexapedal locomotion have also shown
that CPG-driven feed-forward architectures can produce stable
tripod gaits (Collins and Stewart, 1993; Ghigliazza and Holmes,
2004). Equipped with biophysically realistic muscles and leg
geometries, the models run stably and recover from substantial
perturbations (Kukillaya and Holmes, 2009; Kukillaya et al., 2009).
The CPG model of Ghigliazza and Holmes (Ghigliazza and Holmes,
2004) couples the hemisegmental oscillators in a manner that
preserves equal inputs to all six units. Specifically, because middle
legs receive ipsilateral inputs from both posterior and anterior
directions, ipsilateral connections entering them were set to half the
strength of all other ipsi- and contra-lateral couplings. Interestingly,
a similar ratio was found in coupling between hemisegments
innervating the middle and hind legs in deafferented preparations
(Fuchs et al., 2011). It was, however, unknown whether similar
coupling exists in intact running over a range of speeds, or how
principles observed at the neuronal level are expressed in behaving
animals.

In this paper, we use experiments, mathematical models and
simulations to investigate inter-leg coupling structures, gait
maintenance and recovery from perturbations in freely-running,
intact cockroaches, to complement the deafferented preparations
described above. We hypothesize that PRCs for intact animals will
be similar to those for the preparations of Fuchs et al. (Fuchs et al.,
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2011; Fuchs et al., 2012), but that the influence of sensory feedback
will decrease with running speed.

We apply localized magnetic perturbations to single legs and
monitor the resulting inter-leg phase differences, and use data from
unperturbed trials to estimate coupling strengths and other model
parameters. Phase oscillator models that describe leg coordination
via interactions among six coupled units play a key role in our
analyses. They suggest a thoracic network with nearest-neighbor
coupling that maintain approximately balanced inputs to each unit,
especially at higher speeds. Our methods may be useful in studying
other rhythmic processes, and could assist engineers in designing
legged robots that provide stable coordination and gait flexibility
(Ferrell, 1995; Beer et al., 1997; Quinn et al., 2001; Holmes et al.,
2006; Haynes et al., 2012).

RESULTS
We use both data- and model-based methods, as described in the
Materials and methods. The mathematical model comprises six
phase oscillators that quantify each leg’s state via its progress
through the stance–swing cycle. The model is essential to our data
analyses and in generating simulated data for comparison with
experiments. We employ the following conventions: left and right
legs are named L1, L2, L3 and R1, R2, R3, with 1, 2, 3 respectively
denoting pro-, meso- and meta-thoracic hemisegments. Numerical
indices for the leg phases θi in the oscillator model are R1=1, R2=2,
R3=3, L1=4, L2=5, L3=6 (see below).

Magnetic perturbation experiments
To investigate recovery from localized perturbations, we applied
brief impulses to a micromagnet (mass, 0.0118 g) attached to the
tibia of a single front, middle or hind leg as cockroaches
(Periplaneta americana) passed a Helmholtz coil while running
freely along a tunnel (Fig. 1A). Fig. 1 also shows tarsi trajectories
relative to the body center of mass (Fig. 1B) during a typical trial
with a magnet on the middle right leg. Vertical dashed lines (Fig. 1C,
top) denote the perturbation duration Tmag=50 ms. Leg phases
(Fig. 1C, bottom) were computed via Hilbert transforms of high
speed camera images as described below. Here, tarsi trajectories
during the perturbed cycle show step shortening in the middle right
leg (Fig. 1B, black; cf. unperturbed trajectories in red). Effects
depended on leg phase and position at perturbation onset, and varied
among trials. Step shortening was typically observed when legs

were in anterior positions, while no change or slight lengthening was
observed for perturbations applied in posterior positions.

Average running speeds before and after perturbations were
39±14.81 and 37.95±16.06 cm s−1; speeds reduced during the
perturbed cycle by −1.55±5.75 cm s−1. Corresponding means and
s.d. of body yaw angles with respect to the tunnel were
–0.058±0.120 deg and –0.063±0.118 deg. Paired t-tests showed no
significant speed or yaw changes because of perturbations, and runs
without coil activation confirmed that the magnet alone had no
effect on kinematics. See Appendix for further details.

Effective phase-response curves
As noted above, leg responses depend upon phases at which
perturbations arrive. To study this, we measured effective phase-
response curves (effPRCs) at each perturbed leg and at all ipsi- and
contralateral sites neighboring it. These characterize the sensitivity
of a periodic process to inputs at different phases on its cycle.
Examples appear in Fig. 2, illustrating that perturbations have
relatively small but consistent phase-dependent effects, e.g.
Z(θ)=+0.1 denotes a 10% decrease in cycle duration, compared with
values as high as 0.6 for steps imposed on a single intact leg in a
partially deafferented preparation (Fuchs et al., 2012; Fig. 2).
EffPRCs for self-perturbations peak at θ=0, indicating maximal
responsiveness around touchdown, and have smallest and possibly
negative values at θ=0.5, close to lift-off (Fig. 2A1–A3). See
Appendix and supplementary material Fig. S1 for further details.

In contrast, effPRCs for neighboring perturbations (Fig. 2B1–B6)
peak during stance at θ≈0.35, and show less effect during swing
(θ≈0.5–1). Nonlinear regression analysis comparing the first-order
Fourier series (details in the Materials and methods), revealed no
statistically significant differences between all pairs of effPRCs for
neighboring perturbations, suggesting that the effect of perturbations
spreads in a relatively uniform way, producing similar responses in
all neighboring legs. EffPRCs for self-perturbations also do not
differ significantly among themselves, but they are significantly
different from effPRCs for neighboring legs (P<0.05 between all A
versus B curves in Fig. 2).

Recovery from perturbations
As described in the Materials and methods, we characterized
unperturbed activity by analyzing phase differences between all leg
pairs during running to establish 95% prediction intervals. Tripod-
like gaits were observed in all trials (Fig. 1C), although interleg
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Fig. 1. Experimental set-up and leg kinematics.
(A) The experimental tunnel viewed from below after
image processing to reduce background noise.
Helmholtz coil location is shown by a gray bar and
the optical sensor beam by red dashes. LED at left
indicates an active magnetic field in this frame. (B)
Locations of tarsi relative to body centroid before
(colors) and during (black) magnetic perturbation
applied to the right middle leg (R2). (C) Top panel
shows longitudinal (x)-locations of right tarsi relative
to body centroid; black bars indicate stance periods,
dashed lines show perturbation duration. Bottom
panel shows corresponding phase values.
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phase differences varied though the cycle. Fig. 3 shows two
examples that include data during magnetic perturbations, with red
and black dots indicating significant and insignificant deviations
from unperturbed running. The systematic sinusoidal fluctuations
may be due to imperfect phase estimates from the Hilbert transform
method; similar results were also obtained using the Phaser
algorithm (Revzen and Guckenheimer, 2008).

Fig. 4A illustrates the dependence of recovery times on self-
perturbation strength. These strengths were estimated using effPRCs
(details in the Appendix) evaluated at the perturbed leg, and recovery
times determined as fractions of cycles in which phase differences
deviate from 95% prediction intervals of unperturbed data (red points
in Fig. 3A). Recovery times for different trials and a given leg are
shown in each panel: the approximately linear envelope is consistent
with using perturbation strength to normalize recovery times.

Fig. 4B shows normalized mean recovery times ni,j (Eqn 7) for all
neighboring legs following perturbations in R1, R2 and R3. We
confirmed bilateral symmetry and generally assume it throughout (a
specific example is cited in the following Results section). We

therefore regard this data as describing analogous effects of
perturbations in the left legs. All leg pairs recover within one cycle,
the fastest being the front and hind contralateral pairs R1-L1, R3-L3
and R2-R3. Statistically significant differences were not found
between any adjacent ascending, descending or contralateral pairs
(two-way ANOVA), but diagonal pairs (R1-L2, R2-L1, R2-L3 and
R3-L2) exhibit longer recovery times than adjacent pairs, although
only those of R2-L1 and R3-L2 are significantly different. Assuming
that stronger coupling between a leg pair results in faster recovery,
this finding suggests an architecture with nearest-neighbor
connections rather than one in which the units of each tripod are
connected diagonally. We describe further support for this below.

Intersegmental coupling
Estimates of inter-unit coupling strengths were obtained from
unperturbed runs, as described in the Materials and methods.
Touchdown sequences from seven additional intact preparations,
each traversing the tunnel 8–12 times at a relatively constant speed,
were used in the analysis. We chose a nearest-neighbor coupling
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Fig. 2. Effective phase-response curves versus phase of stimulation onset at the perturbed leg. (A1–A3) Self-perturbations in legs R1, R2 and R3.
(B1–B6) Responses in neighboring legs to perturbations in R1, R2 and R3 (top to bottom). Schematics show where perturbation was applied (gray
hemisegment) and response was measured (red arrow). EffPRCs were fitted to data (dots) using first-order Fourier series (solid curves).
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architecture with only ipsi- and contralateral connections (see
Fig. 5A). Preliminary studies of architectures that also included
diagonal connections showed that fit qualities did not justify the

additional parameters. (See below and Appendix for details;
diagonal connections have been postulated, although we are
unaware of physiological evidence for them). Allowing different
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coupling strengths between each pair of units in both directions,
there are potentially 14 values to estimate, along with the other 13
parameters in the linearized stochastic oscillator model.

To investigate how many independent coupling parameters suffice
to capture the dynamics of touchdown sequences, we computed
maximum-likelihood estimates for models with increasing degrees
of bilateral and rostro-caudal symmetry, using Akaike and Bayes
information criteria (Akaike, 1974; Akaike, 1981). We started with
14 coupling strengths (as above), and then considered 11 (assuming
R–L symmetry in all contralateral connections), nine (partial
bilateral symmetry), seven (full bilateral symmetry), six (full
bilateral and partial rostro-caudal symmetry), four (full bilateral and
rostro-caudal symmetry), three, two and one. Details of specific
constraints for this comparative study are given in the Appendix and
supplementary material Table S1.

We found that seven different strengths were sufficient and
necessary to produce acceptable touchdown sequences, suggesting
that deviations from bilateral symmetry are negligible, in agreement
with our earlier study of deafferented preparations (Fuchs et al.,
2011). Henceforth, we consider only the bilaterally symmetric
architecture of Fig. 5A, with contralateral coupling strengths c1, c2,
c3 and ipsilateral strengths c4, c5, c6, c7. Fig. 5B shows the resulting
values for the seven preparations, along with values averaged over
all preparations. Contralateral coupling between the middle units (c2)
is weaker than that between the hind units (c3) for all preparations
(P<0.05, two-way ANOVA), and weaker than that between the front
units (c1) in most preparations.

Despite substantial differences in absolute coupling strengths
among the preparations, we also found a consistent relationship
between ratios of coupling strengths entering and leaving the middle
units (absolute values are given in supplementary material Tables S2
and S3). Fig. 5C plots ratios between ipsilateral couplings entering
and leaving the middle units (c4+c7)/(c5+c6), versus ratios between

contralateral coupling in the middle and end units 2c2/(c1+c3) for
each preparation. With one exception (the 15.6 Hz case), all
preparations lie close to a regression line in this two-dimensional
space, indicating a trade-off between contralateral and ipsilateral
coupling ratios. This may have implications for stability and control
of locomotion, as discussed below. We also note that absolute
coupling strengths correlate with intrinsic noise levels estimated for
each preparation, and that higher speed runners generally have larger
strengths and higher noise levels (although the 14.59 Hz preparation
is an exception) (see Appendix and supplementary material Fig. S2).

Relationship between coupling strengths and recovery
times
We used the nonlinear oscillator model as described in the Materials
and methods with stochastic terms to simulate the effects of
perturbations. A rectangular step and an exponentially decaying
function were considered as descriptions of the magnetic
perturbation (Eqn 10). We found that the latter produced phase
changes in better agreement with the data, as shown in Fig. 6A1,A2,
and we used it in all computations reported here.

To investigate how nonuniform coupling affects recovery, we
initially set all cj=80, frequency at �=10, and noise levels at σi=1.0,
representative of non-normalized values found above (see
supplementary material Tables S2 and S3). Since recovery times are
expressed in cycle fractions, only the relative magnitudes of these
parameters influence the results. We then varied the outgoing
connections c5 and c6 from R2 to R1 and to R3 (cf. Fig. 5A),
maintaining bilateral symmetry but breaking rostro-caudal symmetry
by setting c6=160−c5. Perturbations of duration Tmag=50 ms were
applied to R2 while recovery times for all other legs were computed
as c5 was raised from 0 to 160 and c6 decreased accordingly.

Fig. 6B shows that the maximally symmetric system, with
c5=c6=80, has the smallest spread and fastest average of recovery
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times (black dashed curve). Also, in agreement with the intuition
that strong coupling promotes rapid recovery, phase differences
between R2’s nearest neighbors R1, R3 and L2 recover more
quickly than those between its diagonal neighbors L1 and L3, two
connections distant from R2. Increasing R2-R1 coupling c5 reduces
recovery times of R1, L1 and L2, but increases them for R3 and L3.
Reducing c5 reverses this effect, showing that symmetry breaking
has a cost in that recovery rates of different leg pairs spread over
wider ranges.

We then ran seven versions of the model with parameters
estimated from the experimental runs described in the
Intersegmental coupling section above, using non-normalized values
of coupling strengths cj along with preferred phase differences ѱij,
frequency �, and noise levels σi for each preparation (cf. Fig. 5B).
Each version was simulated 50 times to obtain leg-pair recovery
times, and these were then averaged over the models to produce
Fig. 7A. We also simulated an ‘average preparation’ by taking the
non-normalized parameter values averaged over all seven
preparations (cf. bottom row of Fig. 5B). These results appear in
Fig. 7B.

Neither these simulations nor the recovery from pertubations
experiments reveal significant differences in recovery times of legs

located anteriorly versus posteriorly to the perturbed leg. However,
in accord with weaker contralateral coupling between the middle
legs, we do observe slower recoveries from perturbations in those
segments compared with contralateral front and hind pairs.
Interestingly, differences among experimental recovery times are
more similar to those obtained from the parameters of each
preparation separately than to those of the averaged preparation (cf.
Fig. 4B with Fig. 7A vs 7B). This is consistent with the variability
in coupling strengths among animals of Fig. 5B.

Recovery performance, speed dependence and distance
from balance
In Fig. 5C we characterized the different preparations in terms of
ratios of ipsilateral and contralateral coupling strengths: (c4+c7)/(c5+c6)
and 2c2/(c1+c3). Fig. 8 displays the same experimental data (black
dots) superimposed on color maps quantifying recovery times (A) and
recovery homogeneity (B) over the parameter space. Recovery times
were generated by simulating models with different coupling values
cj and averaging over all leg pairs, as in Fig. 6, while keeping the sum
of coupling strengths Σ7

j==1cj fixed.
Specifically, we set Σ7

j=1cj/7=80, �=10 and ѱij=0 and 0.5,
consistent with a tripod gait, and sampled the resulting 6-
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dimensional coupling space by choosing ratios of c1/c3, c4/c7 and
c5/c6 as 0.5, 1 or 2. We averaged over the 33=27 parameter sets to
obtain a mean recovery time for each point in a grid on the
[2c2/(c1+c3), (c4+c7)/(c5+c6)] plane. Recovery homogeneity was
defined as the inverse of variance among recovery times in all
neighboring legs following each perturbation. Note that six of the
seven preparations lie within or close to the region of maximal
homogeneity (Fig. 8B) and four of them are close to the minimum
recovery time (Fig. 8A).

We next asked whether the recovery properties displayed in Fig. 8
are related to stepping frequency, and hence to running speed.
Fig. 9A reveals a weak negative correlation with mean recovery
times: with one exception (the 14.59 Hz case), higher frequency
preparations have shorter recovery times. There is also a weak
positive correlation with recovery homogeneity (Fig. 9B). Although
differences between slow and fast preparations are not statistically
significant, these results indicate that faster animals tend to recover
in a smaller fraction of their step cycles and more uniformly than
slower ones. Mean values and error bars in Fig. 9A,B were
computed by simulating 100 models with parameters drawn from
Gaussian distributions with mean values and variances estimated
from the data (see supplementary material Tables S2 and S3).

To discuss Fig. 9C, we must first describe the notion of balanced
inputs. The middle units L2, R2 in Fig. 5A each have three entering
connections; all other units have two. For the net input strengths to
all six units to be equal, the condition:

must hold, defining a balanced subspace Ɓ in the 7-dimensional
space of coupling strengths. In cockroach CPG modeling, before
connection strength data became available, a special case of balance
was assumed: cj=c for j=1,2,3,5,6 and c4=c7=c/2 (Ghigliazza and
Holmes, 2004). This corresponds to the point (1,0.5) on Fig. 5C,
close to the regression line, suggesting that we investigate the more
general case of Eqn 1.

To determine how close the seven preparations are to balance, we
computed Euclidean distances of normalized coupling vectors
shown in Fig. 5B from Ɓ, as described in the Appendix. The results,
shown in Fig. 9C, confirm that all seven are relatively close to Ɓ in
comparison with their spread parallel to Ɓ. Here we plot relative
distances from Ɓ, i.e. ratios of the distance of each coupling vector
c=(c1,…,c7) from Ɓ to the component of its magnitude parallel to Ɓ.
These distances are all below 0.27, and Fig. 9C also shows that the
faster preparations are significantly closer to balanced than slower
ones (P<0.05). Further work is needed to investigate these patterns
during different locomotive tasks and determine how animals
modulate coupling strengths during locomotion in natural
conditions.

c c c c c c c= = , (1)1 5 2 4 7 3 6+ + + +

DISCUSSION
In this paper, we present a stochastic six-oscillator model for
hexapedal locomotion and fit its parameters using data from freely
running cockroaches (Periplaneta americana). The model derives
from previous biophysically based studies (Kukillaya and Holmes,
2009; Kukillaya et al., 2009; Proctor et al., 2010) and represents
each hemisegmental leg unit by a single phase angle, tracking
progress through the stepping cycle (Fig. 1). It is simple enough to
produce estimates of inter-leg coupling architectures and strengths,
preferred phase differences between leg pairs and other parameters.
We use sinusoidal coupling functions to describe each leg units’
phase sensitivity to inputs from other legs. Such functions are
predicted by analyses of bursting neuron CPG models (Ghigliazza
and Holmes, 2004) and further justified by measured phase-response
curves that quantify how inputs at different phases are transferred to
neighboring legs (Fig. 2).

Recovery times, network architecture and coupling strengths
We computed recovery times for transient perturbations applied at
single legs, finding that the tripod gait resumes in less than a stride
in almost all cases (Figs 3, 4). Similar recoveries, shorter than a
stance or swing phase, were previously observed in isolated,
impulsively perturbed cockroach legs and attributed to viscoelastic
exoskeletal joints and muscle properties (Dudek and Full, 2006;
Dudek and Full, 2007). Following lateral perturbations Revzen et al.
(Revzen et al., 2013) observed a delayed decrease in stride
frequency from kinematic leg phases and muscle activity, suggesting
that recovery begins with self-stabilizing mechanical feedback
followed by neural feedback that changes the CPG frequency. We
saw slight, but insignificant, speed reductions.

As in earlier studies, we used intrinsic cycle-to-cycle variability
in long stepping sequences to fit parameters and a maximum-
likelihood method to optimize them (Kiemel and Cohen, 1998;
Kiemel et al., 2003; Fuchs et al., 2011), simplifying the procedure
by fitting a linearized model near a phase-locked solution (cf. Roth
et al., 2014). Our parameter estimates confirm approximate bilateral
symmetry and favor nearest-neighbor coupling. Coupling strengths
vary among different preparations, but exhibit patterns that yield
rapid and uniform recoveries (Figs 5–7).

Interleg coupling strengths in stick insects were previously
estimated from the precision of swing and stance transitions (Dürr,
2005). Stick insects employ varied gaits and exhibit weak
contralateral coupling (Graham, 1972; Dürr, 2005), and their inter-
leg coordination relies mainly on afferent influences (Borgmann et
al., 2012). Central intersegmental coupling is thought to play a
stronger role in cockroaches, which approximately maintain double
tripod gaits when crossing barriers near the height to which their
front tarsi lift (Watson et al., 2002) and traversing obstacles as high
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as their body–coxa joints (Sponberg and Full, 2008). Despite such
differences, similarities in inter-leg coupling in these insects exist,
including weak contralateral connections between the middle legs
and differing strengths between other leg pairs. Both show strong
context dependence, suggesting that coupling strengths may be
modulated for different behaviors (Dürr, 2005).

Possible context- and speed-dependent control
Estimates of coupling strength for our preparations differ in levels
of contralateral vs ipsilateral contributions, as expressed in their
locations on the regression line of Fig. 5C. Simulations of recovery
times and homogeneities over a broad parameter set reveal that most
preparations lie close to the minimum recovery time and maximal
homogeneity region (Fig. 8A,B). Recovery times and homogeneities
are also weakly correlated with leg cycle frequency (Fig. 9A,B),
which may also appear in Fig. 4A. There is a significant correlation
between frequency and distance from the balanced subspace,
indicating that faster animals display greater uniformity in inter-
segmental coupling among all legs (Fig. 9C).

Feedforward and feedback pathways
Our parameter estimates derive from free running and therefore reflect
combined effects of central coupling and direct and indirect sensory
and mechanical feedback. EffPRCs show differences in receptivity
between self- and inter leg perturbations (Fig. 2A vs 2B), suggesting
different roles for sensory feedback at different phases of the stepping
cycle. Maximal responsiveness to inter-leg perturbations during stance
may be due to higher load signals, whereas the perturbed leg itself is
mostly affected near touchdown via stretch and position signals.
EffPRCs for partially deafferented preparations with a single intact leg
also showed maximal responsiveness to step-like perturbations during
stance (Fuchs et al., 2012), although, as noted above, their magnitudes
are larger than those of Fig. 2. Other similarities between deafferented
and intact preparations include bilateral symmetry and stronger
coupling from the meta- to meso-thoracic segments in comparison
with the other direction.

Fictive locomotion is typically slow [1–2 Hz (Fuchs et al., 2011)],
so we cannot compare speed-related differences in intact running, but
we expect that the relative contributions of neural, sensory and
mechanical factors will vary with behavioral context and speed (Full
et al., 2002; Zill et al., 2004; Holmes et al., 2006; Ayali et al., 2015),
especially because neuronal properties themselves are likely to change
with behavioral conditions (Dickinson et al., 2000; Pfeifer et al., 2007;
Roth et al., 2014). For example, genetic manipulations that disrupt
sensory pathways in flies show that deprivation of proprioception has
a greater effect at lower walking speeds (Mendes et al., 2013). This is
consistent with the hypothesis that high-speed coordination relies on
central connections and feedforward pathways, but at lower speeds,
when the need of precision is greater and dynamic stability weaker,
sensory feedback plays a more important role.

Thus, our findings suggest that central coupling is relatively
uniform and that lesser uniformity observed in slower preparations
may be due to stronger leg- or hemisegmental-specific sensory
modalities that are active in slow walking. We hope to address this
in future studies, to determine whether it holds across different
locomotive tasks, and to test whether, and how, coupling schemes
are dynamically modified under more realistic conditions.

MATERIALS AND METHODS
Experimental setup and procedures
Experiments were conducted on adult female cockroaches (Periplaneta
americana Linnaeus 1758) obtained from our colony at Tel-Aviv University.

Animals were kept in dark chambers before being released to run along a
600×70×70 mm Plexiglass tunnel, while a camera placed below the tunnel
(Prosilica GT2000, AVT, Stadtroda, Germany), captured their motion at
350 fps. An array of LEDs covered with an opaque Plexiglass sheet beneath
the tunnel created uniform illumination sufficient for high-speed image
capture.

A 138-mm-diameter Helmholtz coil apparatus with N–S poles transverse to
the tunnel length was placed on the right side of the tunnel, creating a region
of approximately uniform magnetic field across the tunnel along the coil’s
central axis. Similar coils have been used for controlled perturbations of fruit
flies and moths in flight (Ristroph et al., 2010; Dickerson et al., 2014).

To deliver local perturbations on a single cockroach leg, a 1.59 mm
(diameter)×0.79 mm, 0.0118 g, grade N52 magnet (K&J Magnetics, Inc.,
Plumsteadville, PA, USA) was glued to the tibia, oriented to cause a lateral
force on entering the magnetic field. We ensured that the magnet’s weight
had no influence on kinematics, and care was taken to ensure that magnets
were placed at the same position and orientation on all animals. We
established that insects exhibit no significant deviations from bilateral
symmetry, and therefore applied perturbations only to legs on the right side.

An infrared LED bulb opposite a custom-made optical sensor detected
objects interfering with the infrared beam as shown in Fig. 1A. Upon
detecting an animal passing, the sensor triggered a digital stimulator (Master
8, AMPI Inst. Ltd, Jerusalem, Israel), connected via a solid-state rely to a
power generator that delivered precisely timed current pulses to the coils,
activating the magnetic field. Peak fields were ≈2×10−3 Tesla and currents
of 2.5 A and 50 ms duration were used throughout.

In the perturbation experiments, 16 animals traversed the tunnel at
relatively constant speeds (<20% variation during each trial). In five of
these, the magnet was attached to the tibia of the front right leg, in six, to
the middle right and in five, to the hind right. Each animal ran for at least
five trials. We tested for speed and path changes following perturbation
onset and found no significant effects on body kinematics associated with
the perturbations. In addition, seven animals ran through the tunnel without
magnetic perturbations, so that the natural variability of their leg kinematics
could be used to estimate model parameters.

Image processing and digitization of tarsi locations
Images were downloaded and stored on a desktop computer as a sequence
of TIFF frames with 1024×128 pixel resolution and processed using
automatic tracking software developed in Matlab that detects and digitizes
locations of all tarsi tips, the body centroid, and body orientation.

Noise was reduced by subtracting a background image calculated by
averaging over all frames in each movie sequence. Body position and
orientation were determined by detecting the edges of the body contour and
finding its axis of symmetry. Tarsi tips were defined as the points of each leg
most distal from the silhouette of the body’s ellipsoid. This was done manually
on the first image of each sequence and subsequently via predicted regions in
which each leg could be found relative to the body centroid and tarsi locations
on the previous image. During processing, the software allowed monitoring
and interactive error correction by manual clicking on correct tarsi positions.
Tarsi positions were accurately detected in 90% of cases.

The phase-oscillator model
To describe and analyze leg dynamics in both free and perturbed running,
we model the locomotive system as six coupled phase oscillators
(Ghigliazza and Holmes, 2004; Holmes et al., 2006; Kukillaya and Holmes,
2009; Kukillaya et al., 2009; Proctor et al., 2010). We envisage the entire
CPG and locomotive apparatus as a dynamical system: a (large) set of
ordinary differential equations, containing six subunits describing the
thoracic hemisegments and their legs, along with internal neural coupling,
mechanical coupling and sensory feedback. Unlike other studies (Kukillaya
et al., 2009; Proctor et al., 2010), in which interneurons, motoneurons,
muscle complexes and leg dynamics were separately modeled, here, a single
phase oscillator represents the components within each hemisegmental unit.

Phase-reduction theory provides a basis for this extreme simplification
(Malkin, 1956; Winfree, 2001). If each isolated unit possesses a stable limit
cycle (a periodic orbit attracting nearby solutions), then its state can be
approximated by the phase θi(t)ϵ[0,1] describing progress around that cycle.
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The effect of the j-th unit (j≠i) on θi(t) is modulated by a phase-response
curve (PRC) Zi(θi) that quantifies its sensitivity to inputs at different points
on the cycle. Zi(θi) describes the change in phase due to a small delta
function impulse applied at θi and so is sometimes called the instantaneous
PRC (iPRC) (Netoff et al., 2012) [see Chapter 8 in Ermentrout and Terman
(Ermentrout and Terman, 2010), Schultheiss et al. (Schultheiss et al., 2012)
and Holmes (Holmes, 2014) for applications to neuroscience].

The entire system can therefore be reduced to six phase equations:

where ωi is the frequency (Hz) of each uncoupled unit, and the functions fij

describe couplings among them. If inter-unit coupling is weak relative to the
internal dynamics of each unit, it can be proved that Eqn 2 is well
approximated by a system in which the right-hand side is averaged over one
cycle (Ermentrout and Terman, 2010; Holmes, 2014):

in which the PRCs and coupling architecture are encoded in periodic
coupling functions Hij that depend only on phase differences. Self-
interaction terms Hii(0) are absent because each unit’s internal dynamics are
described by �i=ωi.

Generally, coupling functions must be represented by Fourier series, but
diverse ion-channel bursting mechanisms have yielded similar PRCs (e.g.
Prinz et al., 2003a; Prinz et al., 2003b; Ghigliazza and Holmes, 2004; Prinz
et al., 2004) and phase reductions of detailed CPG models (Ghigliazza and
Holmes, 2004; Várkonyi et al., 2008) have produced coupling functions that
resemble sinusoids with preferred inter-unit phase differences ѱij. This
supports our explicit choice

in which αij quantifies coupling strength from unit j to unit i. Similar coupling
terms were used previously to model hemi-segmental units in cockroaches
(Fuchs et al., 2011) and in lamprey CPGs (Kiemel and Cohen, 1998).
Although weak coupling is (presently) necessary for proof of reduction to
Eqns 3, 4, the fact that such models can describe not only networks of bursting
neurons, but also biomechanical oscillators actuated by nonlinear muscles, has
been amply demonstrated [see Proctor and Holmes (Proctor and Holmes,
2010); Proctor et al. (Proctor et al., 2010) for cockroaches].

We now suppose that Eqns 3 have a phase-locked solution in which all
oscillators share the same frequency, θi(t)=�t+�i, with �1=0 and constant
phase differences θj(t)−θi(t)=�j−�i, so that �i=�=ωi+Σ6

j=1Hij(�j−�i).
Linearizing Eqns 3 at this solution, we obtain:

where βij=H′ij(�j−�i) for j≠i is the derivative of the function Hij, evaluated at
�j−�i. Eqn 5 can be written in vector form θ

.
=Bθ+b, where θ=(θ1,…,θ6)T, and

the components Bij=βij for j≠i, Bii=−Σ6
j=1, j≠iβij and bi=�+Σ6

j=1, j≠iβij(�i−�j).
Without loss of generality we can also set �1=0, because only phase
differences appear in Eqn 5. The Jacobian matrix B has eigenvector (1,…,1)T

with neutral eigenvalue 0, corresponding to perturbations that advance all
phases equally. Details of the derivation of Eqn 5 appear in the Appendix.

For Eqn 4, βij=αijcos(�j−�i−ѱij) for j≠i, and therefore βij=αij if the observed
phase differences �j−�i equal the preferred phase differences ѱij. Neglecting
the small (O|θ−�|2) terms, the linearized system (Eqn 5) will be used to
estimate parameters from data obtained in runs without magnetic
perturbations. We add noise terms to accommodate variability in the data,
and assume that the mean phase differences �j−�i≈ѱij.

Data analyses
Sequences describing the longitudinal coordinates xi(t) of tarsi positions
relative to the body centroid were used to create vectors of phase variables
(see Fig. 1B). Each sequence was normalized by subtracting the mean tarsus
position and rescaling xi(t) to have standard deviation 1. Normalized leg
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trajectories were converted into instantaneous phase variables θi(t) by
computing their Hilbert transforms (Huang et al., 1998; Revzen and
Guckenheimer, 2008), and scaled to range from 0 to 1, with θi=0 when the
tarsus is at its anterior extreme position, indicating touchdown (Fig. 1C).

Effective phase-response curves
Unlike the instantaneous PRCs described above, effPRCs arise from
extended perturbations. Similar functions were used to include synaptic
dynamics and reversal potentials in Proctor and Holmes (Proctor and
Holmes, 2010) and to describe effects of induced leg movements in Fuchs
et al. (Fuchs et al., 2012). EffPRCs, like PRCs, describe phase changes as
functions of perturbation phase, and may be found from changes in the step
cycle length containing the perturbation. We estimated the pre-perturbation
period, Tmean, by averaging over the last five cycles preceding perturbation
onset. Perturbation phase θ was determined by the interval S between the
previous touchdown and perturbation onset, and the resulting phase change
by the duration Tp of the cycle containing perturbation onset. The
dimensionless phase θ and the effPRC Z(θ) are then:

To compare effPRCs at different legs, we fit phase change data from all
animals for each leg pair with first order Fourier series, and used F-statistics
(Motulsky, 2004) to calculate the likelihood that each two curves are
different. Fig. 2 shows examples for self- and neighboring-leg perturbations.

Recovery from perturbations
We quantified recovery time in terms of stepping cycles required for phase
differences between each pair of legs to resume their pre-perturbation range,
defined as the 95% prediction interval around a first-order Fourier series that
best fit the pre-perturbation data for pairwise phase differences along the
stepping cycle. Phase differences deviating from these intervals were
designated perturbed and the number (or fraction) of perturbed cycles
computed for each trial.

Recovery time depends on perturbation strength, which depends on the
magnet’s orientation relative to the coil as the insect passes it, and therefore
varies from trial to trial. Perturbation strengths for each pair of legs were
estimated using effPRCs Zi(θi,k) for self-perturbations of leg i, carrying the
magnet, and averaged over all trials k for the leg pair that yielded perturbed
phase differences, to create the normalized mean recovery time for the leg
pair i,j:

Eqn 7, derived in the Appendix, ensures that recovery times reflect inter-
leg connectivity and not responsiveness to perturbations at specific phases.
Expressing recovery times in cycles is convenient when comparing
behaviors at different speeds.

Estimation of intersegmental coupling strengths and other parameters
Stepping sequences from unperturbed runs were used to fit a stochastic
version of the linearized six-oscillator model (Eqn 5) introduced above. We
considered trials in which the animal traversed the tunnel at a relatively
constant speed (±20%) for 120–160 steps, a number found sufficient for
successful model fitting in preliminary studies using simulated sequences of
different lengths.

For each trial, we constructed a sequence of leg indices
k1,k2,…,kmϵ{1,2,…,6} indicating the order of touchdown events, and
corresponding sequences t1≤t2≤…≤tm of touchdown times and d1≤d2≤…≤dm

of cycle indices, with d1=0. These allow us to relate the data to oscillator
phases by assuming that θkj(tj)≈dj for each j. Specifically, we set dj−θkj(tj)=σmηj,
where the ηj are independent normally distributed random variables with mean
0 and variance 1 and σm is the measurement noise, assumed identical for all
oscillators. To account for variability in the locomotive cycle, we modify the
linearized system (Eqn 5) by adding noise to each oscillator:
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where ξi(t) are independent Gaussian processes with intrinsic levels σi, that
are also independent from measurement noise. The number of coupling
strengths αi,j can reach 14, depending on network architecture, and our
model contains 12 additional parameters: �, �2,…,�6, σ1,…,σ6.

Parameters were estimated using a maximum-likelihood method (Harvey,
1990) to fit the linear stochastic system (Eqn 8). Given a vector λ of model
parameters, a function L(λ) describing the likelihood of the data was
computed. Parameter estimates for each trial were optimized by finding the
λ* that maximized log L(λ), using a quasi-Newton method (Dennis and
Schnabel, 1983) as implemented in Matlab’s fminunc function. The initial
estimate of � was calculated as the mean touchdown frequency and other
parameters were randomly assigned. To approximate standard errors of
parameter estimates, we computed the inverse of the Hessian matrix of −log
L(λ) at λ* and took the square roots of its diagonal elements Harvey (Harvey,
1990). Details are given in the Appendix. A similar method was previously
used to fit pairs of nonlinear oscillators (Kiemel and Cohen, 1998; Kiemel
et al., 2003; Fuchs et al., 2011).

Simulation of recovery from perturbations
We simulated a stochastic version of the nonlinear phase oscillator (Eqns 3,
4):

using parameters �, αi,j, σi and ѱij=�j−�i, estimated from the noisy touchdown
data as described above. Thus, for the periodic phase-locked solution that best
approximates the data, we have αi,j= βi,j cf. the phase-oscillator model
described above. To simulate behaviors outside the fitted ranges, we varied
parameters while maintaining ratios similar to estimates from experiments
(Figs 6 and 8). Simulations were done by the Euler–Maruyama method
(Higham, 2001), and recovery times computed as for the experiments.

Although the magnetic field remains constant through its duration Tmag,
its influence on the moving leg most likely varied. To account for this, we
tested two specific perturbations: a rectangular step of constant magnitude
–p1 and duration Tmag, and an exponentially decaying function
–p2exp(−κt/Tmag) that falls to a negligible value at t=Tmag. Values p1, p2 and
κ were chosen such that the integrated functions are equal and therefore
produce similar net phase changes. Specifically, we added a function p(t−t0)
to the phase equation for the perturbed leg in Eqn 9:

where t0 denotes perturbation onset. For all simulations we set Tmag=50 ms
to match the pulse duration in the experiment (as above) and chose p1=3,
p2=30 and κ=10 to produce effects of similar magnitudes to those observed.

APPENDIX
Details of perturbation experiments
Validation that magnets alone do not influence kinematics
To ensure that the magnet’s weight and attachment to a single leg do
not influence body or leg kinematics, we computed body yaw angles
(body axis direction relative to the tunnel) and phase differences
between leg pairs in trials with a magnet glued to a R1, R2 or R3
leg and the magnetic field inactive. Comparing these with analogous
yaw angle and phase differences from trials without magnets, no
differences were observed (P=0.45, two-way analysis of circular
data), suggesting that the magnet alone does not influence leg phases
or kinematics.
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The influence of magnetic perturbations
As noted in the main text, perturbations to single legs had no
significant effects on the speed or path of the animals’ mass centers.
Their influence on path length and cycle duration of the perturbed
leg was relatively short (less than one cycle in all but one case). The
relatively long magnetic pulse duration of 50 ms was chosen to
provide sufficient force to produce observable effects on leg phases.
It corresponds to a stance or swing period at 10 Hz and to a full step
at 20 Hz, but we note that effects were greatest early in the period,
as indicated by the simulations with decaying vs constant magnitude
pulses shown in Fig. 6A.

Effects depended on the phase within the cycle when the
perturbation began, as shown in supplementary material Fig. S1B.
In general, we observed that perturbations applied to legs at anterior
positions in swing or stance resulted in shortened path lengths and
cycle durations, whereas perturbations arriving at legs in posterior
positions had either no effect or caused slight cycle lengthening.
Supplementary material Fig. S1A shows an example of the relation
between a leg’s position along the normalized x-(body) axis and its
resultant phase. In supplementary material Fig. S1B we plot average
values of path change (blue dots) and cycle duration change (green
squares) relative to the x-position of the perturbed leg. Path change
was computed as change in the perimeter of tarsi locations on the x-
and y-axes in comparison with the average path length before
perturbation, whereas cycle changes denote difference in cycle
duration compared with the average pre-perturbation duration.
Values were obtained from all tested animals perturbed at front,
middle or hind legs. Similar information is encoded in the self-
effPRCs (see Fig. 2A1–A3 and Discussion); in both cases, positive
values correspond to step shortening.

Details of the phase oscillator model, normalization of
recovery times and parameter estimation
Derivation of the linearized phase oscillator 
Here, we provide details of the linearization of the phase oscillator
Eqn 3 in the main text. To linearize around the phase-locked solution
θi(t)=�t+�i, with common frequency � and constant phase
differences θj(t)−θi(t)=�j−�i we expand the coupling functions Hij in
Taylor series to obtain:

Here, H′ij(�j−�i) is the derivative of Hij evaluated at �j−�i, O(|θ−θ-|2)
denotes terms of quadratic order in the phase differences that include
second and higher order derivatives, and we use the fact that
�=ωi+Σ6

j=1Hij(�j−�i) in the second step. Finally, we set Hij(�j−�i)=βij

and neglect the O(|θ−θ-|2) terms to obtain Eqn 5 in the main text. The
fact that θi appears in each of the functions Hij(θj−θi) leads to the
expression Bii=−Σ6

j=1, j≠iβij, resulting in the neutral eigenvalue of B
with eigenvector (1,…,1)T, as noted in the main text.

Normalization of recovery times 
Here, we derive the expression for normalized mean recovery
times. As described in main text, let i denote the perturbed leg, j
the other leg of the pair, θi,k the phase at perturbation onset in trial
k, and ni,j,k the number of cycles to recovery. Recall that Zi(θi,k), the
effPRC value at perturbation onset in trial k, is a measure of self-
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perturbation strength. The normalized perturbation strength for
trial k is defined as:

The number of cycles to recovery ni,j,k measured as described in
main text is then divided by Zi(θi,k) to account for perturbation
strength, and the resulting values averaged over all N trials for a
given insect with the magnet on leg i. This yields the normalized
mean recovery time for the leg pair i,j, Eqn 7 in the main text, via
the following step: 

Fig. 4A in the main text plots data points in the form [ni,j,k,|Zi(θi,k)|]
to illustrate the linear trend in recovery time vs perturbation strength
that is implicit in our normalization.

The likelihood computation
The likelihood function used in parameter estimation was computed
using an approach previously used to fit parameters in a nonlinear
model of two coupled phase oscillators (Kiemel and Cohen, 1998;
Kiemel et al., 2003; Fuchs et al., 2011). The present computations
require the fitting of six phase oscillators. However, computations
are simplified because Eqn 8 in the main text is linear (in the narrow
sense that the noise levels σi are constant) (Arnold, 1974), so that all
probability densities are Gaussian and thus characterized by their
means and covariance matrices (see below).

We model variability in the free running data by assuming that the
leg indices kjϵ{1,2,…,6} and touchdown times tj, defined in main
text, are fixed. We take as random variables the phases θ1*,…,θm*
measured at the fixed times tj, where θj*= θkj(tj)+σmηj. Here the ηj are
independent normally distributed random variables with mean 0 and
variance 1 and σm is the measurement noise level, as defined in main
text. This extends the assumption from the main text that θj=0 at
touchdown of leg j by allowing for noise in the measurement of
touchdown times and by tracking absolute phases θjϵ[0,∞] instead
of θjϵ[0,1] modulo 1, so that absolute phases increase from one step
to the next as described by Eqn 3.

The phases θj* are in principle continuous random variables but
since they derive from successive leg touchdown data in practice
they are non-decreasing sequences of integers. Typical opening
entries of the sequence {θj*}m

j=1 might therefore be
{0,0,0,0,0,0,1,1,1…}, logging the touchdown phases of the first
three tripods of legs at times t1,…,t9, with identifying leg indices
such as θ2(t1),θ6(t2),θ4(t3),θ3(t4),θ5(t5),θ1(t6),θ6(t7),θ2(t8),θ4(t9),…
Referring to Fig. 5A in the main text for the numbering convention
for right (Rj) and left (Lj) legs, this indicates that legs 2=R2, 6=L3
and 4=L1 of one tripod touch down in that order, followed by legs
3=R3, 5=L2, and 1=R1 of the other tripod to complete the first
step. In the second step legs 6=L3, 2=R2 and 4=L1 follow, each
having completed one full cycle, etc. If one or more legs fail to
touch down during the j-th step fewer than six entries j,j,… appear.

Noting that the random variables θj* implicitly depend on the
vector λ of model parameters, we define the likelihood function L(λ)
as the conditional probability density of (θ2*,…, θm*), given that
θ1*=d1=0, evaluated at θ2*=d2,…θm*=dm. We condition on the first
measurement, because the equilibrium probability density of θ1* is
not well defined because of neutral eigenvalue of the linear system
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(Eqn 8). Indeed, recalling the definition of the deterministic system
(Eqn 5), this stochastic differential equation (SDE) can be written as

where S is a diagonal matrix with components Sii=σi and the matrix
B has a zero eigenvalue with eigenvector (1,…,1)T, as noted in main
text. We shall use vector form (Eqn A4) below.

To compute L(λ) for a given λ, let the vector m={k1,…,
kj;t1,…,tj;d1,…,dj} denote measurements up to and including the j-
th touchdown time and pj(dj) be the conditional probability density
of θj* given the data mj−1 evaluated at θj*=dj. The likelihood can then
be written as the product of these conditional probability densities:

Because the SDE (Eqn A4) is linear and measurement errors are
Gaussian, each conditional phase density pj is also Gaussian, and
thus is completely characterized by its conditional expected value
E(θj*|mj−1) and conditional variance Var(θj*|mj−1). Taking the log of
Eqn A5 we therefore find that:

Let μ(j)=E[θ(tj)|mj−1] and Σ(j)=Cov[θ(tj)|mj−1] be the conditional
vector expected value and conditional covariance matrix,
respectively, of θ(tj) given mj−1. (Here the superscripts j identify leg
touchdowns, because we will use subscripts to denote components
of μ(j) and Σ(j).) Our measurement model θj*=θkj(tj)+σmηj implies that:

and given E[θ(t1)|D1] and Cov[θ(t1)|m1], we can compute μ(j) and Σ(j)

for j=2,…,m using a continuous-time Kalman filter with discrete
measurements (Zhang et al., 2005). Eqns A6 and A7 can then be
used to compute the likelihood L(λ). Therefore, it only remains to
describe how to compute E[q(t1)|m1] and Cov[θ(t1)|m1].

To compute E[θ(t1)|D1], we assume that the distribution of relative
phases is at equilibrium at the time of the first touchdown, so that
each component E[θ(t1)| m1]=�i−�k1. To compute Cov[θ(t1)|m1], let
M be the 5-by-6 matrix such that ϕ

~
=Mθ is the vector of relative

phases θi−θk1 for i=1,…k1−1, k1+1,…,6. Also let M+ be the 6-by-5
matrix obtained by taking the 5-by-5 identity matrix I5 and inserting
a row of zeros at row index k1.

Noting that M+ is a right pseudo-inverse of M+:MM+= I5 [see
section 3.4 in Strang (Strang, 1976)], we may transform Eqn A4
above to:

Then, based on the theory of linear stochastic differential equations
(Arnold, 1974), the equilibrium covariance matrix C of ϕ

~
is the

solution of the linear matrix equation:

From the definition of M+ above, ϕ=M+ϕ
~

is the vector of relative
phases θi−θk1 and the equilibrium covariance matrix of ϕ is
C=M+C(M+)T. For each component of θ we can write θi(t1)=[θi(t1)−
θk1(t1)]+ θk1(t1)= ϕi(t1)+σmη1. By assumption, the phase dynamics
and measurement noise η1 are independent, so that:
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where J6 is the 6-by-6 matrix of ones and we have used the fact that
the first touchdown provides no information about the relative phases
ϕ(t1) or measurement noise σmη1. This starts our Kalman filter process.

Details of experimental data fitting and analysis
Intersegmental coupling parameters
As described in the main text, we used the stochastic version Eqn 8
of the phase oscillator model to estimate intersegmental connectivity
strengths. Including only nearest-neighbor connections between all
pairs of adjacent units (see Fig. 5A), the model potentially has 14
different coupling strengths αij. To determine how many of these are
needed to capture the dynamics of the running sequences, and to
investigate (approximate) symmetries, we started by fitting these 14
independent coupling parameters and then successively considered the
following cases with increasing degrees of symmetry: 11 parameters
– assuming symmetry in contralateral couplings α14=α41, α25=α52,
α36=α63; nine parameters – partial bilateral symmetry, assuming the
above and α12=α45, α21=α54; seven parameters – full bilateral
symmetry, assuming the above and α23=α56, α32=α65; six parameters –
partial rostro-caudal symmetry, assuming the above and α14=α36; four
parameters – full rostro-caudal symmetry, assuming the above and
α12=α32, α21=α23; three parameters – assuming the above and α12=α14;
two parameters – one for all ipsilateral and one for all contralateral
connections; one parameter – all coupling strengths equal.

An alternative 11-parameter connection architecture with diagonal
and contralateral connections was also investigated. This included
pairwise connections between the three units in each tripod (α15, α51,
α24, α42, α26, α62, α35, α53) and symmetric nearest-neighbor
contralateral coupling α14=α41, α25=α52 and α36=α63.

Determining number of coupling parameters according to
information criteria
The qualities of fits for different coupling configurations were
assessed using Akaike and Bayesian Information Criteria (AIC and
BIC) (Akaike, 1974; Akaike, 1981). These metrics evaluate goodness
of fit while penalizing extra parameters. We computed AIC and BIC
scores for each connection architecture and fitted parameter values
using the log likelihood of how well it recovers the experimental data
to determine the optimal number of independent coupling parameters.
We also compared the nearest-neighbor architectures to the diagonal
and contralateral architecture described above.

Supplementary material Table S1 lists BIC values of the different
tested configurations for each preparation. Lower BIC scores
indicate better fits and the blue cells in each line identify the optimal
configuration for that preparation. As can be seen, no more than
seven coupling parameters were needed to sufficiently recover the
experimental data for all preparations. AIC scores (not shown)
revealed a similar result.

Absolute values of coupling parameters
As noted in main text, absolute values of estimated coupling and
noise parameters vary substantially among preparations. In
supplementary material Table S2 the estimated frequency, coupling
strengths and the square root of sum of squares of noise estimates:

are given for each preparation (see supplementary material Table S3
for individual σj values). As can be seen from these values and in
supplementary material Fig. S2, the average coupling strengths:

∑σ = σ
=

, (A11)i1 1

6 2

∑ =
c

1
7

, (A12)
i j1

7

co-vary with estimated noise levels (P<0.05, linear regression
analysis), suggesting that differences in optimal solutions found may
be attributed to differences among the seven preparations in noise
levels and running path variability.

Supplementary material Table S3 lists the estimated preferred phase
differences ѱij=�j−�i between the first and other five legs estimated for
the different preparations. As noted in the main text, these values
implicitly determine all preferred phase differences. Individual noise
strengths σi and measurement noise σm are also listed.

Distance from the balanced subspace
Using the seven-parameter architecture, the conditions under which
inputs entering each leg are balanced are characterized by:

as described in main text. Eqn A13 constrains two of the seven
independent coupling parameters and thereby defines a five-
dimensional balanced subspace Ɓ. We define the distance to balance
for each preparation as its Euclidian distance from Ɓ by taking the
vector of coupling strengths c=(c1,…,c7)ϵR7 and computing its
normal projection onto Ɓ:

where A is a 7-by-5 matrix whose columns span Ɓ. Specifically, we
chose:

The distance of c from Ɓ is then ||c−Pc||. Normalized distances from
Ɓ are computed as ratios of ||c−Pc|| to the magnitude of the
component of c parallel to Ɓ:

where I7 is the 7-by-7 identity matrix and ||·|| denotes the Euclidean
norm.
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