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Building a dishonest signal: the functional basis of unreliable
signals of strength in males of the two-toned fiddler crab,
Uca vomeris
Candice L. Bywater1,*, Frank Seebacher2 and Robbie S. Wilson1

ABSTRACT
Males of many species use signals during aggressive contests to
communicate their fighting capacity. These signals are usually reliable
indicators of an individual’s underlying quality; however, in several
crustacean species, displays of weapons do not always accurately
reflect the attribute being advertised. Male fiddler crabs possess one
enlarged claw that is used to attract females and to intimidate
opponents during territorial contests. After the loss of their major claw,
males can regenerate a replacement claw that is similar in size but
considerably weaker. As this inferior weapon can still be used to
successfully intimidate rivals, it represents one of the clearest cases
of unreliable signalling of strength during territorial contests. We
investigated the functional mechanisms that govern signal reliability in
the two-toned fiddler crab, Uca vomeris. Male U. vomeris exhibit both
reliable and unreliable signals of strength via the expression of original
and regenerated claw morphs. We examined the morphological,
biomechanical and biochemical characteristics of original and
regenerated claws to establish the best predictors of variation in
claw strength. For a given claw size, regenerated claws have less
muscle mass than original claws, and for a given muscle mass,
regenerated claws were significantly weaker than original claws.
The mechanical advantage was also lower in regenerated claws
compared with original claws. However, the activity of three catabolic
enzymes did not differ between claw types. We conclude that the
structural and physiological predictors of force production influence
the frequencies of reliable and unreliable signals of strength in
U. vomeris. This study furthers our understanding of the proliferation
of unreliable signals in natural populations.
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INTRODUCTION
Males of many animal species use displays of weapons to signal
aggressive intent and fighting capacity to opponents in order
to avoid the potential costs of combat (Arnott and Elwood,
2010; Berglund et al., 1996; Kokko, 2013). The accuracy of the
information transferred between opponents can govern the outcome
of these aggressive displays (Searcy and Nowicki, 2005). Signals of
potential strength can effectively change an opponent’s behaviour
as both competitors in a bout can assess the likelihood of combat
success should the dispute escalate to physical contact (Bradbury

and Vehrencamp, 2011; Hughes, 2000). Most signals reliably
reflect the intrinsic attribute being advertised by the signaller,
assuming a strong correlation between the perceived quality (e.g.
signal size) and the actual underlying quality (e.g. strength, fighting
ability, resource holding potential) (Számadó, 2011a,b). For
example, dewlap (throat fan) size in many Anolis lizards is a
reliable signal of strength (Lailvaux and Irschick, 2007). Male
anoles frequently engage in prefight displays involving extension
of their dewlaps, and while dewlap morphology is highly variable,
size (perceived signal) is highly correlated with bite force (actual
quality) (Lailvaux and Irschick, 2007). Theoretical models of signal
reliability suggest that on average signals must be beneficial to both
signaller and receiver in order to be evolutionarily stable, and
signals should also transfer reliable information (Smith and Harper,
1995, 2003). However, this is not always the case and under certain
conditions unreliable signals can pervade signalling systems and be
maintained in frequencies greater than initially theorised (Számadó,
2000, 2008, 2011b). Unreliable signals do not transmit accurate
information to receivers and occur when the perceived quality (via
signal size) becomes decoupled from the actual underlying quality
(Lailvaux et al., 2009). Empirical evidence of such signals has been
identified in several species of crustaceans via this mismatch of
signal size and underlying quality; for example, high variability of
claw size to strength relationships in crayfish (Walter et al., 2011;
Wilson et al., 2007), bluff displays in stomatopods (Steger and
Caldwell, 1983) and discrete phenotypic claw morphs in fiddler
crabs (Backwell et al., 2000). In fact, one of the best-studied
examples of unreliable signalling has been described for the
regenerated major claws of male fiddler crabs (e.g. Backwell et al.,
2000; Bywater et al., 2014; Lailvaux et al., 2009; McLain et al.,
2010).

Male fiddler crabs possess a greatly enlarged (major) claw that is
used as a signal during both courtship displays and prefight
assessment, and as a weapon during physical contests (Jordão and
Oliveira, 2001; Lailvaux et al., 2009; Reaney et al., 2008). Claw size
is considered to be the primary signal for male dominance and
resource holding potential, and males with smaller claws retreat
prior to physical contact more often than males with larger claws,
and receive fewer visits from females (Lailvaux et al., 2009;McLain
et al., 2010; Reaney et al., 2008). Following the loss of the major
claw due to fighting or predator attacks, crabs can regenerate a
replacement; however, males with a regenerated claw were found
to be competitively inferior compared with original-clawed males
(Backwell et al., 2000; Crane, 1975). Although regenerated
(leptochelous) claws grow to similar sizes compared to the
original (brachychelous) claws, they lack morphological features
like dactyl teeth and tubercules and are comparatively weaker (see
Backwell et al., 2000; Lailvaux et al., 2009; McLain et al., 2010).
Claw regeneration among male fiddler crabs can be widespread, andReceived 9 February 2015; Accepted 28 July 2015

1School of Biological Sciences, The University of Queensland, St Lucia, QLD 4072,
Australia. 2School of Biological Sciences A08, The University of Sydney, Sydney,
NSW 2006, Australia.

*Author for correspondence (candice.bywater@uqconnect.edu.au)

3077

© 2015. Published by The Company of Biologists Ltd | Journal of Experimental Biology (2015) 218, 3077-3082 doi:10.1242/jeb.120857

Jo
u
rn
al

o
f
Ex

p
er
im

en
ta
lB

io
lo
g
y

mailto:candice.bywater@uqconnect.edu.au


between 10% and 45% of a crab population bear regenerated claws
(Bywater and Wilson, 2012; Callander et al., 2012; McLain et al.,
2010). Backwell et al. (2000) also established that the morphology
of regenerated claws never develops to the original quality, even
after multiple moult cycles. Fiddler crabs are unable to visually
differentiate between the two claw morphs (Backwell et al., 2000;
Lailvaux et al., 2009) and during the signalling stages of aggressive
contests, individuals with weaker regenerated claws are equally
successful at acquiring resources (Lailvaux et al., 2009). Yet, when
combat does occur, individuals with regenerated claws are
competitively inferior because claw strength, which is a critical
determinant of fighting success, is lower for individuals with
regenerated claws (McLain et al., 2010).
Unreliable signals of strength are common within the genus Uca

and while modelling provides a theoretical understanding of how
these signals evolve and remain in populations, the functional and
mechanistic bases of these signals has been poorly examined. We
theorised that the capacity to produce these phenotypes is likely to
be constrained by an individual’s underlying physiology. As such,
the aim of the present study was to investigate the functional
mechanisms underlying the development of unreliable signals of the
two-toned fiddler crab, Uca vomeris McNeill 1920. We explored
structural and physiological processes that may be driving this
mismatch between claw size and strength in regenerated claws.
Initially, we examined whether changes in morphology between
claw types were biomechanically constraining force production. We
predicted that alterations in shape should affect the leverage of the
claw and thereby reduce the maximum strength achievable in
regenerated claws. We also assessed whether muscle physiology
differed between claw types. We predicted that the reduced muscle
strength seen in regenerated claws might be a by-product of reduced
metabolic capacity.

RESULTS
The size of the major claw did not significantly differ between claw
types (F1,104=2.57, t=1.60, P=0.13). However, claw shape was
significantly different between original and regenerated claw types
for any given claw size (F3,99=200.1, t=−23.15, P<0.001) (Fig. 1A).
Regenerated claws had longer dactyls and pollexes than original
claws, but possessed a smaller manus area. Claw strength increased
significantly with claw size (F2,100=144.8, t=6.11, P<0.0001),
but regenerated claws were weaker than original claws
(F2,100=144.8, t=−16.63, P<0.0001) (Fig. 1B). Claw size was
also significantly associated with claw muscle mass, with larger
claws possessing more muscle (F3,99=136.5, t=16.73, P<0.0001)
(Fig. 1C). However, the relationship between muscle mass and size
differed significantly between claw types. Regenerated claws
possessed significantly less muscle mass than original claws for
any given size (F3,99=136.5, t=−11.72, P<0.0001). Claw strength
increased significantly with total muscle mass of the claw
(F2,100=132.5, t=5.36, P<0.0001); however, for a given muscle
mass, regenerated claws were significantly weaker than original
claws (F2,100=132.5, t=−11.79, P<0.0001) (Fig. 2A).
Claw strength was also influenced by the velocity ratio of the

claw. Regenerated claws had a small velocity ratio as they had
longer but thinner dactyls, whereas original claws had a higher
velocity ratio because of their shorter but wider dactyls
(F2,100=108.7, t=−3.452, P<0.0001) (Fig. 2B). Enzyme activity
did not differ significantly between claw types for all enzymes
tested (values reported are means±s.e.); lactate dehydrogenase
(LDH, original=32.28±3.84 U ml−1, regenerated=37.16±5.61 U ml−1,
F1,19=0.43,P=0.52), citrate synthase (CS, original=1.40±0.14 U ml−1,

regenerated=1.24±0.15 U ml−1,F1,20=0.87,P=0.36) and cytochrome
c oxidase (COX, original=0.90±0.16 units ml−1, regenerated=0.92±
0.13 units ml−1, F1,21=0.09, P=0.77).
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Fig. 1. The relationship between claw size and claw shape, strength and
musclemass formaleUca vomeris. (A) Claw shape (PC2), (B) claw strength
and (C) claw muscle mass, plotted against claw size (PC1), for original and
regenerated major claws. Claw shape in regenerated claws was significantly
different between types (F3,99=200.1, t=−23.15, P<0.001) whereby
regenerated claws had longer dactyls than originals, but with a comparatively
reduced manus area (negative PC2 values). Claw strength significantly
increasedwith claw size (F2,100=144.8, t=6.11,P<0.0001) yet differed between
claw types (F2,100=144.8, t=−16.63, P<0.0001), with regenerated claws being
significantly weaker than original claws. Larger claws had more muscle
(F3,99=136.5, t=16.73, P<0.0001); however, the relationship between muscle
mass and size was significantly different between types. Regenerated claws
were significantly lighter than original claws for any given size (F3,99=136.5,
t=−11.72, P<0.0001).
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DISCUSSION
Functional processes influence the production of the unreliable
claw morphs in male U. vomeris. We found that the mismatch
between claw size and strength seen in regenerated major claws
was affected, in part, by both the structure and physiology of the
claw. The capacity to generate force is limited by the leverage
system of the claw, and is a function of the claw’s dimensions
(mechanical advantage), the muscle cross-sectional area and
muscle characteristics (Levinton and Judge, 1993; McLain et al.,
2010). Like previous studies of claw morphs in Uca mjobergi
(Reaney et al., 2008), we found that the regenerated claws of
U. vomeris had a reduced manus area and longer dactyl length.
Regenerated claws had significantly lower mechanical advantage
than original claws, as a by-product of these changes in claw
dimensions, which contributes to the lower closing forces
observed.
Additionally, we identified that the differences in strength

between claw morphs partially reflect the reduced muscle mass
found in regenerated claws. Claw muscle mass fluctuates cyclically
as a result of the tissue atrophy required for a crab to moult and grow
(Ismail and Mykles, 1992; Skinner, 1966). During ecdysis, the
major claw must undergo a large reduction in mass (up to 50% in
Uca pugnax) in order to be withdrawn through a small joint at the
base of the claw (Ismail and Mykles, 1992). Subsequent restoration
of the muscle occurs once the new exoskeleton has formed. Muscle
mass at any given time during this process is governed by the
balance between the rates of protein synthesis and protein
degradation (Mykles, 1997). When synthesis exceeds degradation,
protein accumulates, and a net loss of protein is seen when
degradation is up-regulated (Mykles, 1997). Muscle mass is also
influenced by fluxing levels of growth hormones, which can
regulate rates of protein synthesis and degradation, but also by
capped numbers of myoblast satellite cells, which constrain the
capacity for growth of new muscle tissue (Rai et al., 2014). Muscle
atrophy and regeneration is a complex process that occurs on cellular
and subcellular levels, so it is difficult to pinpoint the direct cause of
muscle mass variation. In saying that, however, it is likely that tissue
atrophy would affect the two claw types equally, and the variability
we see in muscle mass and strength within each claw type may be
partially attributable to an individual’s moult stage at the time of
testing.

Even when accounting for the differences in muscle mass
between claw morphs, regenerated claws were still weaker than
original claws. Because of the importance of underlying strength for
combat success and given the unreliable nature of regenerated claws
as signals of strength, we predicted that differences in muscle
physiology might be constraining the development of strong claws.
Measuring the enzyme activity of original and regenerated muscle
tissue provided a means to estimate the metabolic capacity of the
claw muscle. However, we found no differences in the enzyme
activity of LDH, CS and COX between regenerated and original
claw muscle, which suggests that the two claw types have a similar
cellular metabolic capacity. This is also consistent with the
observation that rates of oxygen consumption of muscle do not
differ between claw types (Bywater et al., 2014). However, we
would expect catabolic pathways to primarily regulate maximal
oxygen consumption rate and not resting rate. Resting oxygen
consumption rate is driven by ATP demand for protein synthesis and
ATPase activity, and is not generally constrained by maximal
enzyme activity (Horton et al., 2006; Seebacher and James, 2008;
White and Kearney, 2013). The significant differences observed
in whole-claw rates of oxygen consumption could be attributed to
the reduced muscle mass found in the regenerated claws. As cell
enzyme activity is often correlated with muscle fibre type (Mykles,
1988), we can infer that the two claw morphs have similar fibre
composition. However, further histochemical and biochemical
examination of the claw muscle is required to identify and
eliminate fibre composition as a potential driver of variability in
claw strength.

While there were no enzymatic differences between claw types,
other muscle characteristics may be affecting force production. The
contractile ability of muscle fibres is known to influence claw
strength. A single muscle fibre consists of longitudinally packed
myofibrils and the efficiency of muscle contractions relies upon the
complementary movements of thick and thin myofilaments located
within each myofibril (Campbell et al., 2006). These filaments
occur as small contractile units, called sarcomeres, which repeat
along the length of the myofibril. Taylor (2000) found that
sarcomere length provides a reliable measure of the size of muscle
contractile units in claw muscle and that resting sarcomere length
was highly correlated to maximum muscle force. The ratio of thick
to thin filaments, as well as filament density, also affects fibre
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contractile ability, and elimination of thin myofilaments during
processes like atrophy leads to inefficient myofibril contractions,
thus reducing the fibre’s ability to generate force (Mykles, 1997;
Mykles and Skinner, 1981, 1982). The arrangement of muscle
fibres within the manus may also influence claw strength, as the
bi-pennate muscle fibre arrangement found in crab claws increases
the capacity to generate force compared with parallel-fibred
muscles. Maximum force is dependent on the angle of pennation,
and a change in the angle of fibre attachment and arrangement effect
an equivalent change in mechanical advantage (Alexander, 1983).
It would be ideal to examine muscle fibre arrangement in both
claw types to see if regenerated claw fibres attach differently.
Additionally, the level of muscle innervation also influences
myofibril functionality and can differ between individual muscle
fibres (Atwood and Bittner, 1971; Dewell and Belanger, 2008; Rai
et al., 2014). Innervation is fundamental for initiating myofibril
contraction and any outside factors that influence the nerve supply
will also affect the contractile ability (Rai et al., 2014). It is possible
that regenerated muscles are unable to contract efficiently as a by-
product of myofibrillar development or have a reduced nerve
supply, thereby constraining force production.
Furthering our knowledge of the structural and physiological

predictors of force production, and the subsequent capacity to
develop reliable signals, should allow for a greater understanding of
the proliferation of unreliable signals in natural populations. We
suggest that the functional constraints of major claw development,
in part, influence the frequency of reliable and unreliable signals of
strength in U. vomeris. However, while were able to empirically
identify some of the functional predictors driving the variation in
force production within the major claw, an explanation for why such
a disparity remains between size and strength across claw types is
largely theoretical. The regeneration of unreliable major claws in the
fiddler crab is widespread, and given the importance of claw
displays during signalling, and of underlying strength for combat
success, it is important to understand how and why these unreliable
signals develop. Claw size plays a large role in determining the
success or failure of both mating and combat displays in many
fiddler crab species, with larger-clawed individuals prevailing more
often than not (Callander et al., 2013; Reaney, 2009; Reaney et al.,
2008). It is thus unsurprising that an individual regenerating a claw
would devote resources into developing a large claw quickly, whilst
not investing in the metabolically costly muscle within. Yet,
regardless of the explanations behind any physiological changes
observed in the regenerated claw, it remains an inferior performer
during combat (McLain et al., 2010). With this in mind, it is hard to
reconcile the potential negatives of combat failure including loss of
territory or mating opportunities, with the benefits an individual
may gain from reduced muscle development via changes in either
claw shape or muscle quality. An additional question that remains
unanswered is why claw dimensions change during regrowth,
particularly as these changes negatively impact on closing force, and
it would be ideal to examine the internal and external growth
patterns of the major claw throughout the regeneration process.
Callander et al. (2013) suggest that it is sexual selection via male–
male combat that could be driving shape variation inU. mjobergi, as
females only responded to claw size and wave rate and did not select
mates based on claw shape. If this is the case, claw development
during regeneration should be balanced between sexual selection
driven by female choice and sexual selection driven by male–male
combat. InU. vomeris at least, claw development appears skewed by
female choice given that claws are large but weak; however,
evaluating this theory with any confidence is beyond the scope of

our study. Many questions regarding the development of
regenerated claws and the evolution of unreliable signals remain
unanswered and open for further empirical and theoretical
investigation.

MATERIALS AND METHODS
Animal collection and morphological measurements
We collected 104 maleU. vomeris (75 original claws, 29 regenerated claws)
for morphological and biomechanical analyses, from two mudflats in south-
east Queensland, Australia, between October 2009 and March 2010. An
additional 23 males (13 original claws, 10 regenerated claws) were collected
for biochemical analyses. Crabs were collected by hand and housed in 40 l
tubs (54×40×20 cm) containing a gravel substrate and shelter. Tubs were
maintained at 23±1°C (mean±s.e.) with fewer than 10 individuals per
container. All individuals were tested within 1 week of collection and then
returned to their site of capture. We took morphological measurements of
each individual including body mass; carapace width (anterolateral angle to
anterolateral angle), length and depth; claw muscle mass; claw shape; and
claw size. To measure claw size and shape, photographs were taken of each
major claw using a digital camera (Sony, model DSC-W5), against a
background of graph paper for calibration. Digital images were analysed
using morphometric software (SigmaScan Pro5, Systat Software Inc., San
Jose, CA, USA) and seven measurements were recorded for each claw
(Fig. 3A) (see Bywater and Wilson, 2012). These measurements included:
(1) width at heel, (2) width at dactyl/manus joint, (3) length of manus from
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Fig. 3. Morphology of the major claw of male U. vomeris. (A) Diagram
showing the sevenmeasurements recorded to describe claw size and shape of
themajor claws of the two-toned fiddler crab (U. vomeris). (B,C) Example of the
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closing force along the dactyl. See Results (adapted from fig. 1.4 in Alexander,
1983).
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heel to joint, (4) width of pollex at dactyl joint, (5) width of dactyl (at joint),
(6) length of pollex (tip to joint) and (7) length of dactyl (tip to joint). We ran
a principal components analysis (PCA) using the seven measurements
recorded for all individuals combined to provide an overall measure of claw
size (PC1) and shape (PC2). These measurements were selected based upon
the co-variation and loadings generated for each principal component
(Table 1), and only two principal components were retained for analyses
based upon the generated scree diagram and ‘elbow’method. PC1 was used
as a measure of claw size as all vectors loaded in the same direction and 87%
of data variation was explained within one component. PC2 accounted for
an additional 10% of variation in the data and denoted claw shape, as manus
size negatively co-varied with dactyl length. Original and regenerated claws
in U. vomeris were identified via differences in claw morphology and the
presence or absence of claw tubercles as per Lailvaux et al. (2009) and
Backwell et al. (2000) (Fig. 3B,C).

Maximum claw strength of the major claw was measured for all males
using a custom-built force transducer which records the flexion of metal
plates via a strain gauge (for further details, see Bywater andWilson, 2012).
Each crab was encouraged to close the tip of its claw on the transducer plate
at least five times, then rested for 5 min before repeating the procedure. The
greatest claw closing force recorded for each individual was taken as their
maximum claw strength. To avoid the claw slipping on the metal plate, and
to ensure maximum repeatability, a small piece of thin cloth tape was
adhered to the top as a target. The tape did not affect force recordings and
was included in all calibrations. The transducer was calibrated daily using
known weights and output data were converted from millivolts (mV) into
newtons (N) for analyses. Claw strength was square-root transformed to
achieve normality (Quinn and Keough, 2002) and transformed values were
used in all analyses.

Biomechanical analyses
We performed an examination of the biomechanical constraints on force
production. The claw is a simple lever system; force is applied via the
contraction of claw muscle (F1), which is transmitted through the in-lever
(dactyl height, L1) to the out-lever (dactyl length, L2) via the dactyl pivot
(muscle attachment), to produce a closing force along the dactyl (F2)
(Fig. 3D). When L2 is longer than L1, the lever reduces the overall input
force, thus claws produce less force when the dactyls are longer. We
calculated the velocity ratio (VR; L1/L2) at the dactyl tip for original and
regenerated claws as an approximation of their mechanical advantage (MA;
F2/F1). MA represents the ability of a claw to produce force efficiently. We
assume the dactyl pivot point to be relatively frictionless; thus, MA is nearly
equal to VR (Alexander, 1983). VRs were calculated by dividing dactyl
height by dactyl length as per Warner and Jones (1976).

Biochemical analyses
Metabolic enzyme assays were performed on 23 individuals (13 original
claws, 10 regenerated claws). After morphological and force measurements
were collected, the major claw was removed by squeezing the base of the
claw near the body, causing the crab to self-autotomize their claw. Muscle
tissue samples (∼0.05 g) were then dissected out, placed in cryo-Eppendorf
tubes and immediately transferred into liquid nitrogen. Samples were

maintained at −80°C for up to 3 weeks until testing occurred. We measured
maximal activities of LDH, which catalyses the conversion of pyruvate to
lactate, thereby releasing ATP in the absence of oxygen. In addition, we
measured the activities of two mitochondrial enzymes, CS and COX, which
control flux through the citric acid cycle and the electron transport chain,
respectively. Muscle tissue was homogenised in nine volumes of cold
extraction buffer (pH 7.5) consisting of 50 mmol l−1 imidazole, 2 mmol l−1

MgCl2, 5 mmol l−1 EDTA, 0.1% Triton and 1 mmol l−1 glutathione, and
samples were kept on ice during processing. The homogenate was diluted
1:100 for LDH assays. Enzyme activities were measured using a UV/visible
spectrophotometer (Ultrospec 2100pro, GE Healthcare, USA) equipped
with a temperature-controlled cuvette holder. All assays were performed at
25°C and carried out in duplicate as per the methods outlined in Seebacher
et al. (2003).

Statistical analyses
All statistical analyses were performed using R (version 2.12.2) or JMP
(version 8). Statistical significance was taken at the level of P<0.05.
ANCOVA were used to compare the differences between claw types for
morphological and biomechanical analyses, with claw size, claw muscle
mass or VR as covariates. ANOVA were used to compare the activity of
enzymes between claw types.

Statistics were derived from the data in supplementary material Table S1.

Acknowledgements
We would like to thank J. Heiniger, S. Cameron, T. Shuey, J. Pettitt, A. Findsen and
J. Andersen and L. Alton for field assistance and data collection, J. Beaman and
C. Condon for assistance with the collection of enzyme activity data, G. David for
assistance with manuscript presentation and two anonymous reviewers for
comments and suggestions.

Competing interests
The authors declare no competing or financial interests.

Author contributions
C.L.B., R.S.W. and F.S. conceived and designed the experiments, C.L.B. collected
and analysed the data, and C.L.B., R.S.W. and F.S. wrote the manuscript.

Funding
This research received no specific grant from any funding agency in the public,
commercial or not-for-profit sectors.

Supplementary material
Supplementary material available online at
http://jeb.biologists.org/lookup/suppl/doi:10.1242/jeb.120857/-/DC1

References
Alexander, R. M. (1983). Animal Mechanics. Chichester: Packard Publishing

Limited.
Arnott, G. and Elwood, R. W. (2010). Signal residuals and hermit crab displays:

flaunt it if you have it! Anim. Behav. 79, 137-143.
Atwood, H. L. and Bittner, G. D. (1971). Matching of excitatory and inhibitory inputs

to crustacean muscle fibers. J. Neurophysiol. 34, 157-170.
Backwell, P. R. Y., Christy, J. H., Telford, S. R., Jennions, M. D. and Passmore, J.

(2000). Dishonest signalling in a fiddler crab.Proc. R. Soc. B Biol. Sci. 267, 719-724.
Berglund, A., Bisazza, A. and Pilastro, A. (1996). Armaments and ornaments: an

evolutionary explanation of traits of dual utility. Biol. J. Linn. Soc. 58, 385-399.
Bradbury, J. W. and Vehrencamp, S. L. (2011). Principles of Animal

Communication. Sunderland, MA: Sinauer Associates, Inc.
Bywater, C. L. and Wilson, R. S. (2012). Is honesty the best policy? Testing signal

reliability in fiddler crabs when receiver-dependent costs are high. Funct. Ecol. 26,
804-811.

Bywater, C. L., White, C. R. and Wilson, R. S. (2014). Metabolic incentives for
dishonest signals of strength in the fiddler crab Uca vomeris. J. Exp. Biol. 217,
2848-2850.

Callander, S., Bolton, J., Jennions, M. D. andBackwell, P. R. Y. (2012). A farewell
to arms: males with regenerated claws fight harder over resources. Anim. Behav.
84, 619-622.

Callander, S., Kahn, A. T., Maricic, T., Jennions, M. D. and Backwell, P. R. Y.
(2013). Weapons ormating signals? Claw shape andmate choice in a fiddler crab.
Behav. Ecol. Sociobiol. 67, 1163-1167.

Campbell, N. A., Reece, J. B. and Meyers, N. (2006). Biology: Australian Version.
New South Wales, Australia: Prentice Education Australia.

Table 1. The principal component loadings of claw measurements

Claw measurement PC1 PC2

Width at heel −0.39 −0.20
Width at dactyl/manus joint −0.40 −0.16
Length of manus from heel to joint −0.37 −0.45
Width of pollex at dactyl joint −0.38 0.35
Width of dactyl (at joint) −0.37 −0.44
Length of pollex (tip to joint) −0.37 0.47
Length of dactyl (tip to joint) −0.37 0.44

Values represent the relative contribution of each of the seven claw
measurements to the data variation explained by each principle component.
PC1 represents claw size as all values have similar loadings in the same
direction. PC2 represents claw shape and describes variation in claw
proportions between the manus and dactyl/pollex.

3081

RESEARCH ARTICLE Journal of Experimental Biology (2015) 218, 3077-3082 doi:10.1242/jeb.120857

Jo
u
rn
al

o
f
Ex

p
er
im

en
ta
lB

io
lo
g
y

http://jeb.biologists.org/lookup/suppl/doi:10.1242/jeb.120857/-/DC1
http://jeb.biologists.org/lookup/suppl/doi:10.1242/jeb.120857/-/DC1
http://jeb.biologists.org/lookup/suppl/doi:10.1242/jeb.120857/-/DC1
http://dx.doi.org/10.1016/j.anbehav.2009.10.011
http://dx.doi.org/10.1016/j.anbehav.2009.10.011
http://dx.doi.org/10.1098/rspb.2000.1062
http://dx.doi.org/10.1098/rspb.2000.1062
http://dx.doi.org/10.1111/j.1095-8312.1996.tb01442.x
http://dx.doi.org/10.1111/j.1095-8312.1996.tb01442.x
http://dx.doi.org/10.1111/j.1365-2435.2012.02002.x
http://dx.doi.org/10.1111/j.1365-2435.2012.02002.x
http://dx.doi.org/10.1111/j.1365-2435.2012.02002.x
http://dx.doi.org/10.1242/jeb.099390
http://dx.doi.org/10.1242/jeb.099390
http://dx.doi.org/10.1242/jeb.099390
http://dx.doi.org/10.1016/j.anbehav.2012.06.017
http://dx.doi.org/10.1016/j.anbehav.2012.06.017
http://dx.doi.org/10.1016/j.anbehav.2012.06.017
http://dx.doi.org/10.1007/s00265-013-1541-6
http://dx.doi.org/10.1007/s00265-013-1541-6
http://dx.doi.org/10.1007/s00265-013-1541-6


Crane, J. (1975). Fiddler Crabs of the World (Ocypodidae: Genus Uca). Princeton:
Princeton University Press.

Dewell, R. B. and Belanger, J. H. (2008). Degree of neuromuscular facilitation is
correlated with contribution to walking in leg muscles of two species of crab.
J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 194, 1031-1041.

Horton, H. R., Moran, L. A., Scrimgeour, K. G., Perry, M. D. and Rawn, J. D.
(2006). Principles of Biochemistry. New Jersey, USA: Pearson Education
International.

Hughes, M. (2000). Deception with honest signals: signal residuals and signal
function in snapping shrimp. Behav. Ecol. 11, 614-623.

Ismail, S. Z. M. and Mykles, D. L. (1992). Differential molt-induced atrophy in the
dimorphic claws of male fiddler crabs, Uca pugnax. J. Exp. Zool. 263, 18-31.
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