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ABSTRACT
Mosquitoes rely on carbon dioxide (CO2) to detect and orient towards
their blood hosts. However, the variable and rapid fluctuations of
atmospheric CO2 concentrations may have an impact on the host-
seeking behaviour of mosquitoes. In this study, we analysed the
effect of transient elevated background levels of CO2 on the host-
seeking behaviour and the physiological characteristics of the CO2-
sensitive olfactory receptor neurones (ORNs) in female yellow fever
mosquitoes, Aedes aegypti. We show that the take-off and source
contact behaviour of A. aegypti is impeded at elevated background
levels of CO2 as a result of masking of the stimulus signal. The
mechanism underlying this masking during take-off behaviour is one
of sensory constraint. We show that the net response of the CO2-
ORNs regulates this CO2-related behaviour. Since these neurones
themselves are not habituated or fatigued by the transient elevation
of background CO2, we propose that habituation of second-order
neurones in response to the elevated CO2-ORN activity could be one
mechanism by which the net response is transduced by the olfactory
system. The findings from this study may help to predict future shifts
in mosquito–host interactions and consequently to predict vectorial
capacity in the light of climate change.

KEY WORDS: Olfaction, Single sensillum recording, Wind tunnel,
Climate change, Absolute detector

INTRODUCTION
Volatiles play an important role in the host-seeking behaviour of
mosquitoes (Takken and Knols, 1999). Carbon dioxide (CO2) is one
of the most important volatiles, a key kairomone emitted by
vertebrates, which has been shown to be a reliable cue for
mosquitoes to detect and orient towards a host species (Mboera and
Takken, 1997). Such a role for CO2 in mosquito foraging was
recognised by Rudolfs as early as 1922 (Rudolfs, 1922). However,
diel atmospheric CO2 concentrations vary between 350 parts per
million (ppm) and 500 ppm (up to 1000 ppm in dense vegetation),
and rapid fluctuations are features of natural CO2 sources (Gillies,
1980; Guerenstein and Hildebrand, 2008). Consequently, variations
in ambient CO2 levels could affect the ability of mosquitoes to
process CO2 fluctuations (Grant et al., 1995) and modulate their
host-seeking behaviour. To date, there have been no published
studies that have dealt with the effects of elevated ambient CO2

levels on mosquito behaviour. Analysis of CO2 processing in the
context of host-seeking behaviour could help to identify the
mechanisms underlying these effects, to predict shifts in
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mosquito–host interactions and consequently to predict vectorial
capacity.

Activation and source finding by host-seeking female mosquitoes
occur when the fine-scale structure of the CO2 plume is filamentous,
i.e. when flying mosquitoes are exposed to intermittent increases in
CO2 concentration above background, as shown under controlled
conditions (Geier et al., 1999; Dekker et al., 2001). Such a plume is
encountered naturally by mosquitoes up to tens of metres from a
host (Costantini et al., 1996; Zöllner et al., 2004). However, in a
variable ambient CO2 background, the effective range of attraction
could decrease, due to limitations of the CO2 chemosensory system.

Highly sensitive olfactory receptor neurones (ORNs), housed in
the maxillary palp capitate peg sensilla of mosquitoes, detect CO2

(Grant et al., 1995; Lu et al., 2007; Syed and Leal, 2007). Pulses of
CO2 elicit phasic–tonic responses in these ORNs, and the pulse
duration is dependent on the concentration and length of the
stimulus pulse (Grant et al., 1995). Grant et al. have shown that this
response of the CO2-ORNs might be impeded in high ambient
concentrations of CO2. However, we do not know how mosquitoes
encode such an impediment and how it affects the behavioural
response of mosquitoes to CO2.

In this study, we analyse the sensory mechanism underlying the
behavioural response of the yellow fever mosquito, Aedes aegypti,
to CO2. We show that female A. aegypti encode pulsed CO2 stimuli,
dependent on ambient CO2 levels, as a net sensory response.
Furthermore, we show that the net sensory response dictates
behavioural activation across ambient CO2 levels. The effect of
ambient CO2 levels on the host-seeking behaviour and vectorial
capacity of mosquitoes is discussed.

RESULTS
CO2-ORN responses in different background levels of CO2
Stimulation with increased concentrations of pulsed CO2 elicited a
significant increase in the A-cell response (background level
400 ppm: F=61.54, d.f.=3, P<0.001; background level 600 ppm:
F=480.81, d.f.=3, P<0.001; background level 1200 ppm: F=379.54,
d.f.=3, P<0.001), as well as in the net response when the stimulus
concentration exceeded that of the background level (background
level 400 ppm: F=75.36, d.f.=3, P<0.001; background level
600 ppm: F=425.76, d.f.=3, P<0.001; background level 1200 ppm:
F=403.47, d.f.=3, P<0.001) (Fig. 1C; Fig. 2). Conversely, a
significant decrease in the net response was observed when the
stimulus concentration was lower than that of the background level
(t=–17.82, d.f.=9, P<0.001, t-test), i.e. when stimulating with
600 ppm CO2 in a 1200 ppm CO2 background (Fig. 2). Hence, the
overall net response of the CO2-ORNs was significantly affected by
the background level of CO2 (F= 4.0, d.f.= 2, P=0.03). The decrease
in net response was contributed to by a significant increase in the
interstimulus activity of the CO2-ORNs at 600 and 1200 ppm CO2

background levels, compared with that at 400 ppm CO2 (F=46.47,
d.f.= 2, P<0.001) (Fig. 2).
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Consistency of pulsed stimuli of CO2
To investigate the correlation between CO2-ORN and behavioural
responses, a similar stimulus protocol was adopted in all
experiments. To ensure that the train of pulsed stimuli were neither
molecularly nor turbulently diffused in the air stream of the wind
tunnel, we designed a protocol to produce pulse trains consistent in
shape and amplitude throughout the wind tunnel. To verify this
consistency, a train of distinct pulsed stimuli of CO2 was visualised
by using acetone as tracer gas using a mini-photo ionisation detector
(mini-PID) to track the ascending flow of known concentrations of
acetone at different positions (centre and lateral sides) and distances
(release chamber, halfway and source contact). This explicitly
showed that the pulsed stimuli had a consistent shape and were
clearly separated from one another throughout the wind tunnel
(Fig. 3A, left inset, N=10). The amplitude of each discrete pulse was
shown by linear regression to be consistent in all positions in the
wind tunnel assayed for each flow rate (Fig. 3A, right inset, N=10).

Behavioural responses to CO2 in different CO2 backgrounds
The host-seeking behaviour of female A. aegypti was significantly
affected by both the stimulus concentration and the background
level of CO2 (Fig. 3B). Time to take-off was significantly decreased
when stimulus concentrations exceeded 1200 ppm CO2, at
background levels of 400 and 600 ppm CO2 (Fig. 3B). At a

background level of 1200 ppm CO2, however, time to take-off was
not affected by stimulus concentration (F=3.6, d.f.=29, P=0.3)
(Fig. 3B). In addition, time to take-off at this background level was
significantly increased compared with that observed at background
levels of 400 and 600 ppm CO2 (Fig. 3B). Once the mosquitoes had
taken off, the time to reach the halfway mark in the wind tunnel was
not significantly affected by either stimulus concentration or
background level of CO2 (data not shown). In contrast, the time to
source contact was affected by both stimulus concentration and the
background level of CO2 (Fig. 3B). At a background level of
400 ppm CO2, the time to source contact was significantly decreased
as stimulus concentration increased (Fig. 3B). However, at
background levels of 600 and 1200 ppm CO2, mosquitoes did not
take a significantly shorter time to reach the source at any stimulus
concentration (Fig. 3B).

Correlation between behaviour and physiology
The net sensory response over increasing stimulus concentrations
among the different background levels was compared, following
normalisation (Fig. 4). The slopes of the net response curves in 600
and 1200 ppm CO2 background levels were significantly different
from that of the 400 ppm CO2 level (F=6.52, d.f.n, d.f.d=76,
P=0.013), but not from each other (F=0.48, d.f.n=1, d.f.d=76,
P=0.49). A net response threshold of ≥100 spikes s−1 was found
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Fig. 1. The temporal characteristics of
CO2 chemosensation in female A.
aegypti in different background levels of
CO2 to four different concentrations of
pulsed CO2 stimuli. (A) An extracellular
recording from a capitate-peg sensillum
showing the spontaneous activity of the
large amplitude ‘A’, the intermediate ‘B’ and
the small ‘C’ neurones, respectively. Vertical
bar indicates the spike amplitude in
millivolts (mV). (B) Waveform analysis of
the extracellular recording in (A) shows the
distinct waveforms of each neurone.
(C) Detection of pulsed CO2 by the CO2-
ORNs, in different CO2 backgrounds, over
ascending concentrations. Black spikes
represent the response by CO2-ORNs to a
pulsed train of 1 s CO2 stimuli and the grey
spikes indicate the interstimulus activity of
the CO2-ORNs. The vertical bar denotes
the amplitude in millivolts. The horizontal
bar represents the pulsed train of 1 s CO2

stimuli.
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(Fig. 4), which correlated with a significant decrease in time to take-
off flight (Fig. 3B) regardless of background CO2 level (Figs 4, 5).
At no tested CO2 concentration, in a background level of 1200 ppm,
did the mosquitoes decrease their time to take-off (Fig. 4), which
correlated with the maximum net response generated of
92.5±4.1 spikes s−1 (Figs 4, 5).

A correlation was observed between net sensory response of the
CO2-ORNs and the behavioural response to pulsed stimuli of CO2

in elevated background of CO2 levels (Fig. 5). The time to take-off

flight was significantly decreased as the stimulus concentration of
CO2 exceeded 1200 ppm at the CO2 background of 400 and
600 ppm, which was significantly correlated with the net response
threshold of ≥100 spikes s−1 (400 ppm at r=0.9764, 95% confidence
interval: 0.2489 to 0.9995, P=0.0236; 600 ppm at r=0.9830, 95%
confidence interval: 0.3970 to 0.9997, P=0.0170; Figs 4, 5). In
addition, the upwind flight towards source contact at CO2

background of 400 ppm was correlated with the net response
(r=0.9644, 95% confidence interval: 0.04438 to 0.9993, P=0.0356;
Fig. 5). However, at the higher background levels of CO2, the
stimulus concentration had no effect on upwind flight (Fig. 5).

DISCUSSION
In this study, we have analysed the sensory mechanism that is
involved in constraining the behavioural response of A. aegypti to
CO2 at elevated background CO2 levels. Knowledge gained through
this study sheds new light on the effects of varying CO2

environments on the interactions between insects and hosts, in
general, and between disease-vector mosquitoes and their blood
hosts specifically. The study also improves our ability to predict
shifts in vectorial capacity and other community interactions in
future environments.

Impact of elevated CO2 levels on mosquito behaviour
Carbon dioxide activates and modulates the host-seeking behaviour
of insects, including mosquitoes, in a concentration-dependent manner
(Dekker et al., 2001; Guerenstein and Hildebrand, 2008; Dekker and
Cardé, 2011). We have shown that a transient elevation of the
background level of CO2 significantly affects the behavioural response
of the mosquitoes. Specifically, our behavioural data suggest that an
elevation of the background level of CO2 adds a masking effect that
reduces the detection of the CO2 stimulus, affecting both activation
and source finding. A similar mechanism has been reported to affect
oviposition by the pyralid moth Cactoblastis cactorum, and its
peripheral reception (see below) (Stange, 1997). This mechanism is
closely analogous to the attraction of male moths towards the
pheromone of calling females, which decreases with an increase in the
background concentration of pheromone (Sanders, 1982; Sanders and
Lucuik, 1996; Schofield et al., 2003).

Our behavioural data suggest that mosquitoes are able to cope
with the present natural diurnal and seasonal changes in atmospheric
CO2 concentrations, i.e. 350–500 ppm (up to 1000 ppm in dense
vegetation) (Gillies, 1980; Guerenstein and Hildebrand, 2008).
However, it is unclear if they will be able to do so following the
predicted ongoing increase in atmospheric CO2, 550–1000 ppm by
the turn of the next century (Guerenstein and Hildebrand, 2008).
This ongoing increase in ambient CO2 level may reduce the
vectorial capacity of mosquitoes by limiting the effective range of
attraction to their blood hosts (Zöllner et al., 2004). Additional
studies, however, are required to investigate the ability of
mosquitoes to adapt to ongoing increases in atmospheric CO2 levels.

Constraint of the CO2-ORNs
Limitations of the CO2-induced behavioural response are dependent
on the physiological response of their CO2-ORNs. In A. aegypti,
CO2-ORNs respond in a concentration-dependent manner at all
background levels of CO2. A dampening of the signal resolution
occurs between 2400 and 4800 ppm, which corresponds to a
previously observed upper behavioural response threshold
(Costantini et al., 1996). A plausible mechanism that the olfactory
system of mosquitoes uses to minimise this loss of signal resolution
is to subtract the spontaneous (interstimulus) activity of the ORNs
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at a given CO2 background level from the stimulus response. This
generates a net response that remains linear throughout the
ecologically relevant range of CO2 stimuli. This strategy, while
maintaining signal resolution to elevated CO2 stimuli, requires
stronger stimuli in increased CO2 background levels to produce an
equivalent signal to that generated in a lower CO2 background. The
requirement for a stronger stimulus in the elevated backgrounds is
likely to be mitigated by the reduction of the membrane potential
needed to achieve the threshold for firing an action potential. This
is a result of the increased baseline membrane potential predicted
during the interstimulus periods in elevated background CO2. Thus
mosquitoes are able to accurately detect the level of CO2 stimulus
above background CO2 levels over a broad range of concentrations.
This sensitivity ensures that a mosquito is able to respond to a plume
of host-emitted CO2 in which distance from the source becomes the
limiting factor in elevated backgrounds of CO2.

Carbon dioxide-ORNs have been described as absolute
concentration detectors, i.e. at or below the background CO2 level,
the sensory response to CO2 remains linear (Syed and Leal, 2007),
and background CO2 concentration has little to no effect on the

stimulus response (Grant et al., 1995). Our electrophysiological
analyses revealed that the CO2-ORNs meet the first criterion, but not
the second. Mosquito CO2-ORNs exhibit compressive non-linearity
(Stevens, 1971). The response to CO2, as a function of the stimulus
(spikes s−1 ppm−1), was significantly reduced when the background
level increased. Similar observations have been made for CO2

detection in the moth C. cactorum (Stange and Wong, 1993; Stange,
1997), for 1-octen-3-ol detection in the fly Musca domestica
(Kelling et al., 2002), and for pheromone detection in a wide variety
of moths (Willis and Baker, 1984; Mafra-Neto and Baker, 1996;
Evenden et al., 2000). The compressive non-linearity suggests that
insects experiencing elevated background concentrations of stimuli
either are unable to perceive the stimulus or are habituated, which
consequently affects their behavioural performance.

We found no indication of sensory neurone habituation or fatigue
during the electrophysiological experiments (<5 min exposure to the
elevated CO2 background), as is demonstrated by there being no
difference in CO2-ORN response to stimulus or interstimulus during
the first, fifth or tenth stimulation. The duration of the exposure of
the mosquitoes to the background CO2 during the behavioural
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Fig. 3. Behavioural responses of female A. aegypti in different background levels of CO2. (A) Behaviour was assessed in a wind tunnel assay, as shown
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the centre (in red) and at the lateral sides (in black) of the release chamber, at halfway and at the source. The upper right panel presents a graphical
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increasing flow rates. (B) Female mosquito attraction towards pulsed stimuli of four concentrations of CO2 in the wind tunnel at different CO2 background levels
is shown (N=30 for each background level). Numbers inside the bars represent the number of tested individuals that took off (left panel) or made source
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assays (<3 min) was less than that used for the physiological assays.
Yet, with no evidence of ORN habituation or fatigue, the modulation
behaviour is still evident within this time period. We argue that this
is due to the sensory information included both in the stimulus
response and the interstimulus response: what we have termed the
net response. Although we have not investigated the response profile
of second-order neurones in the antennal lobe in this study, we
propose that second-order neurones may become habituated to the
background firing of the CO2-ORNs. In fact, this may be one
mechanism by which the difference between the background firing

of the ORN could be subtracted from the stimulus, resulting in the
transfer of the net response to the higher brain centres. In this model,
the absolute sensory constraint on the activation behaviour is the
difference between the background and maximum firing rate of the
CO2-ORNs. If the difference is less than the physiological threshold
then no decrease in time to activation behaviour can occur. This
system provides signal resolution in a sea of noise, which would
otherwise result in the activation of host-seeking behaviour in
elevated background CO2 concentrations in the absence of a host.

Future perspectives
Considering the reliance on CO2 sources, the CO2-sensory system
of mosquitoes is an ideal target to disrupt their host-seeking
behaviour. In this study, we showed that an elevation of ambient
CO2, of up to three times that of normal concentration, adds a
masking effect that significantly reduces the detection of this key
host kairomone. In line with our finding, Turner et al. (Turner et al.,
2011) recently showed that host-seeking mosquitoes become
disoriented by artificially prolonged activation of CO2-ORNs, which
masks the ability of the mosquitoes to detect changes in the
concentration of CO2 in the environment. We believe that our study
will provide a better understanding of the natural mechanisms
involved in this masking process. 

MATERIALS AND METHODS
Insects
Aedes aegypti (Rockefeller strain) were kept at 27°C, 65±5% relative
humidity (RH) and at a 12:12 h light:dark period, as previously described
(Cook et al., 2011). The ambient concentration of CO2 during rearing and
experiments was 400±5 ppm sugar-fed, 4- to 7-days post-emergence, female
mosquitoes were used in this study.

Single sensillum recordings
Capitate peg sensilla are found on the fourth segment of the maxillary palps
of female A. aegypti (McIver, 1972). Each sensillum houses three ORNs,
distinguishable by spike amplitude (Fig. 1A,B) (Cook et al., 2011). The
ORN with the largest amplitude is, by convention, referred to as the A-cell
and has previously been shown to respond to CO2 (Grant et al., 1995).
Single sensillum recordings from this cell were performed as previously
described (Cook et al., 2011). A single recording was taken from each of 10
preparations at each background concentration. In total, recordings were
made from 30 mosquitoes.

CO2 stimulation
A continuous humidified airstream containing a background of either
ambient (400), 600 or 1200 ppm CO2 was delivered at 2 l min−1 via a glass
tube (7 mm i.d.). The elevated CO2 backgrounds were obtained by diluting
pure CO2 (Strandmöllen, Ljungby, Sweden) directly into the airstream. The
outlet of the tube was placed approximately 10 mm from the maxillary
palps. An IDAC-4 (Syntech, Kirchzarten, Germany) was used to activate
two-way Teflon solenoid valves (Teddington, Lanna, Sweden) that
controlled the delivery of an embedded CO2 stimulus into the glass tube
through a separate CO2 line. The stimulus was embedded into the airstream
through a hole (2 mm i.d.) in the glass tube, 11 cm upstream of the maxillary
palps, and the pulses were verified by using a CO2 analyser (LI-820, LI-
COR Biosciences, Lincoln, NE, USA). The solenoid valves were connected
to separate gas cylinders containing metered amounts of CO2 (600, 1200,
2400 and 4800 ppm) and oxygen (20%), balanced by nitrogen
(Strandmöllen). A pulsed stimulus train of CO2 was used, with stimulation
for 1 s and an interstimulus interval of 1 s.

Wind tunnel bioassay
Behavioural experiments with pulsed CO2 stimuli were performed in a glass
wind tunnel (80×9.5 cm i.d.) (Fig. 3A), illuminated from above at 280 lx. A
charcoal-filtered and humidified air stream (25±2°C, RH 65±2%) flowed
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through the wind tunnel at 30 cm s−1. The air was passed through a series of
stainless-steel mesh screens to generate a laminar flow and a homogenous
plume structure.

To investigate the direct correlation between sensory input and behaviour,
we created distinct pulsed stimuli of 1 s on and 1 s off, embedded on the CO2

background of 400, 600 and 1200 ppm, in a wind tunnel (Fig. 3A, inset). The
transient elevated backgrounds were obtained by diluting pure CO2 in the
main airstream. The pulsatile plume structure was designed to be consistent
in amplitude and structure throughout the length and breadth of the wind
tunnel. For this, homogenous discrete pulse stimuli were created by pushing
pure CO2-laden air into a pulse generator placed behind the stainless-steel
mesh screens through a stimulus controller (SEC-2/b, Syntech) (Fig. 3A).
Desired concentrations (600, 1200, 2400 and 4800 ppm) of pulsed CO2 were
obtained by regulating the CO2 flow to the stimulus controller. To ensure
distinct pulses of stimuli, pressurised air at 4.5 l min−1 was introduced into
the pulse generator just downstream of the point where the CO2 was
introduced (Fig. 3A). Various flow rates of known amounts of acetone as a
tracer gas (99.9%, Chromasolv, Sigma-Aldrich, Stockholm, Sweden) were
used to investigate the consistency of distinct pulse stimuli throughout the
wind tunnel and measured at different positions (centre and lateral sides) and
distances (40 cm ‘source contact’, 80 cm ‘halfway’ and 120 cm ‘release
chamber’) from the pulse generator (Fig. 3A, inset). Five cycles of 1 s on
and 1 s off were tested at each flow rate. The consistency in amplitude and
the structure of the pulsed stimuli was visualised using a mini-PID (Aurora
Scientific, Aurora, Ontario, Canada). The corresponding concentrations of
CO2 were calculated backwards from mini-PID responses to the known
concentration of acetone with different flow rates (Fig. 3A, inset). The
concentration of CO2 was measured at the downwind and upwind end of the
wind tunnel via the CO2 analyser.

Female mosquitoes were kept individually in 7×2.6 cm i.d. glass release
chambers in the wind tunnel room for 24 h before the experiments.
Mosquitoes were provided with water through a moistened filter paper placed
against the stainless-steel mesh, which covered one end of the chamber. The
release chambers were placed in the centre of the downwind end of the wind
tunnel. Thereafter, the following behavioural steps were observed: time to
take-off flight, halfway and source contact, for a maximum of 120 s. Equal
numbers of experimental and control flights were performed each day.

Statistical analysis
Physiological activity was analysed (AUTOSPIKE, Syntech) as the number
of spikes during interstimulus interval (1 s) subtracted from the number of
spikes during the stimulus response (1 s), resulting in the net response
(spikes s−1; 10 replicates per elevated CO2 background level). The response,
interstimulus activity and net response resulting from the first, fifth and tenth
stimulus pulses were first assessed for normal distribution using the
D’Agostino omnibus K2 test (Prism version 5.01, GraphPad Software, La
Jolla, CA, USA) and then compared by 2-way repeated measures analysis of
variance (ANOVA) followed by Bonferroni post hoc test (Prism version 5.01).

Data resulting from the fifth stimulus pulse was then used for all subsequent
analyses, as there were no significant differences between factors among the
stimulus pulses. Power analysis was performed on net physiological response
to determine the sample size. Furthermore, we determined the significant
effect of stimulus concentration on each variable by a general linear model
(GLM) 2-way ANOVA followed by Tukeys’ post hoc test (Minitab version
16.1.0). A one-sample t-test was performed to analyse the significance level
of response to the stimulus of 600 ppm CO2 in the background of 1200 ppm
CO2 compared with zero (Minitab version 16.1.0).

To define the relationship between CO2-ORN response and CO2

background level, a regression analysis was performed separately for each
insect tested. The slopes were used to analyse the statistical variation, with
respect to background level of CO2, for net response (Prism version 5.01).
Prior to linear regression analyses, we normalised the concentration regime
by subtracting the logarithm of the stimulus concentration from the
logarithm of the background level.

To describe the correlation between CO2-ORN net response (10 replicates
per elevated CO2 background level) and behavioural observation (30
replicates per elevated CO2 background level), Pearson’s correlation was
used. Based on the prior behavioural (Figs 3, 5) and physiological (Figs 2,
5) analyses, thresholds for a significant reduction in time to take off (≤30 s;
≥100 spikes s−1) and source contact (<6 s; ≥65 spikes s−1) were identified.
The number of observations that matched these criteria for each dose in each
background condition were counted and recorded as a ratio of the total
number of observations. Pearson’s correlation coefficients were calculated
comparing the ratios of significant behavioural and physiological responses
for each background condition.
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