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ABSTRACT
We describe and characterize a method for estimating the pressure
field corresponding to velocity field measurements such as those
obtained by using particle image velocimetry. The pressure gradient
is estimated from a time series of velocity fields for unsteady
calculations or from a single velocity field for quasi-steady
calculations. The corresponding pressure field is determined based
on median polling of several integration paths through the pressure
gradient field in order to reduce the effect of measurement errors that
accumulate along individual integration paths. Integration paths are
restricted to the nodes of the measured velocity field, thereby
eliminating the need for measurement interpolation during this step
and significantly reducing the computational cost of the algorithm
relative to previous approaches. The method is validated by using
numerically simulated flow past a stationary, two-dimensional bluff
body and a computational model of a three-dimensional, self-
propelled anguilliform swimmer to study the effects of spatial and
temporal resolution, domain size, signal-to-noise ratio and out-of-
plane effects. Particle image velocimetry measurements of a freely
swimming jellyfish medusa and a freely swimming lamprey are
analyzed using the method to demonstrate the efficacy of the
approach when applied to empirical data.

KEY WORDS: Swimming, Flying, Wakes, Feeding, Particle image
velocimetry

INTRODUCTION
A long-standing challenge for empirical observations of fluid flow
is the inability to directly access the instantaneous pressure field
using techniques analogous to those established to measure the
velocity field. Recent approaches have made significant progress,
especially in the measurement of pressure associated with unsteady
fluid–structure interactions (e.g. Hong and Altman, 2008; Jardin et
al., 2009a; Jardin et al., 2009b; David et al., 2009; Rival et al., 2010;
Rival et al., 2011; David et al., 2012; Tronchin et al., 2012; van
Oudheusden, 2013; Liu and Katz, 2013). However, prior efforts
have not achieved explicit pressure estimation for moving bodies
with time-dependent shape, such as those characteristic of animal
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locomotion and feeding. The pressure field of swimming animals is
complicated by the interaction between pressure associated with
vortices in the flow and the irrotational pressure field due to
acceleration of the body, often referred to as the acceleration
reaction or added mass (Daniel, 1984).

Existing methods for empirical pressure estimation often require
relatively complex measurement techniques such as multi-camera
or time-staggered, multi-exposure particle image velocimetry (PIV)
(Jensen and Pedersen, 2004; Liu and Katz, 2006). In addition,
significant computational costs can be associated with the post-
processing required to derive the pressure field from measurements
of the velocity or acceleration fields. These post-processing
approaches generally fall into one of two categories. In the first case,
the pressure field is computed as a solution to a Poisson equation,
e.g. in an inviscid flow:

where p is the pressure, u is the velocity vector, ρ is the fluid
density, and D/Dt is the material derivative, i.e. the time rate of
change of an idealized infinitesimal fluid particle in the flow.
Solution of Eqn 1 poses challenges in practice because
measurement errors accumulate due to the required temporal and
spatial derivatives of u, the condition number (i.e. sensitivity) of
the Laplacian operator (Golub and Van Loan, 1996), and
measurement uncertainty in the boundary conditions, especially at
fluid–solid interfaces (Gurka et al., 2000). For attached flows at
high Reynolds numbers, the Neumann boundary condition
specifying the pressure gradient at fluid–solid interfaces is given
by the boundary layer approximation as ∂p/∂n≈0, where n is the
direction of the local normal surface vector (Rosenhead, 1963).
However, for separated flows at moderate or low Reynolds
numbers, such as those commonly found in animal locomotion, a
priori determination of the appropriate fluid–solid boundary
conditions for solution of Eqn 1 can be intractable.

A second category of approaches for pressure field estimation is
those based on direct integration of the pressure gradient term in the
Navier–Stokes equation, e.g. for incompressible flow:

where ν is the kinematic viscosity of the fluid. The pressure
difference between two points in the domain is determined by
integration of Eqn 2 between the two points. For example, the
difference in pressure between two points x1 and x2 is given by:

Because measurement errors accumulate along the path of
integration from x1 to x2 in Eqn 3, various techniques have been
employed to make this approach less sensitive to measurement
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uncertainty. A common strategy is to take advantage of the scalar
property of the pressure field, such that its local value is independent
of integration path. Therefore, each independent integration path that
arrives at a point in the flow is in principle an independent estimate
of the pressure at that point, provided that measurement errors are
uncorrelated. By polling a large number of integration paths, an
estimate of the local pressure can be achieved. For example, one
successful method (Liu and Katz, 2006) uses an iterative scheme
that averages 2m(n+m)+2n(2m+n) integration paths on an m×n grid
in order to estimate the instantaneous pressure field.

The aforementioned iterative scheme, while effective in limiting
the influence of measurement errors, still incurs a relatively high
computational cost. For example, for a 128×128 grid of velocity
vectors that is commonly acquired using PIV, the method requires
1.6×105 integration paths per iteration of velocity field integration;
and several iterations can be required for convergence of the method
(Liu and Katz, 2006). Furthermore, if each integration path is taken
as a straight line through the domain, then the method requires
interpolation of the estimated pressure gradient field in order to
evaluate integration path points that do not coincide with the original
data grid. While these requirements are not necessarily prohibitive
for two-dimensional calculations, they are time consuming and are
indeed a showstopper for extension of the method to three
dimensions.

We present a simple yet demonstrably effective approach for
pressure estimation that is in the spirit of the second category of
pressure estimation methods. The method is validated by using two
numerically simulated flows: flow past a two-dimensional,
stationary bluff body and the flow created by a three-dimensional,
self-propelled anguilliform swimmer. The first flow is used to
characterize a quasi-steady implementation of the algorithm, in
which the pressure field is estimated from a single velocity field
measurement. The second flow demonstrates the ability of the
method to accurately estimate the pressure on unsteady, deformable
bodies such as those of relevance in animal locomotion. Both flows
are used to characterize the method, including its numerical
convergence properties and sensitivity to domain size, signal-to-
noise ratio and out-of-plane effects. Furthermore, we apply the
method to PIV measurements of a freely swimming jellyfish medusa
and a freely swimming lamprey, and show that this tool can be
applied to the type of measurement data commonly acquired in
research.

The reader is strongly encouraged to proceed to the Materials and
methods section of the paper before continuing to the Results and
Discussion.

RESULTS AND DISCUSSION
Quasi-steady pressure estimation
Fig. 1 compares an instantaneous pressure field from the numerical
simulation of flow past a stationary bluff body with the pressure
field estimated from the corresponding velocity field using the
quasi-steady form of the present algorithm. A vector field spatial
resolution of D/16 (where D is the side length of the bluff body) is
used in the horizontal and vertical directions to mimic typical PIV
measurements. The salient features of the flow, especially the high
pressure on the upstream face of the bluff body and the low pressure
in the shear layers and near-wake vortices, are well captured by the
algorithm (see supplementary material Appendix S1 for discussion
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Fig. 1. Validation of quasi-steady
pressure algorithm. (A) Pressure
field computed from numerical
simulation of flow past a two-
dimensional square cylinder at a
Reynolds number Re=UD/ν=100,
where U is the freestream velocity, D
is the side length of the bluff body
and ν is the kinematic viscosity of the
fluid. The pressure coefficient
cp=p/(ρU2), where p is pressure and ρ
is the fluid density. (B) Pressure field
estimated using the quasi-steady
algorithm.
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Fig. 2. Validation of fully unsteady pressure algorithm. (A) Pressure field
computed from numerical simulation of a three-dimensional self-propelled
swimmer. The pressure coefficient cp=p/(ρU2). Velocity nodes completely
inside the swimmer body are indicated in black (the body surface is smooth
in the numerical simulation). Spatial coordinates are normalized by swimmer
length. (B) Pressure field estimated using the unsteady algorithm.
(C) Pressure field estimated using the quasi-steady algorithm.
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of discrepancies in the far wake). Furthermore, the maximum and
minimum pressures in the field are in quantitative agreement (see
supplementary material Fig. S1). To be sure, nearest-neighbor
Gaussian smoothing creates a spurious thin layer of undefined
pressure at the fluid–solid interface and moves the pressure peak on
the upstream face of the body away from the interface. However, the
correct near-body pressure can be recovered by increasing the grid
resolution so that the nearest-neighbor filter artifact on the body
surface is limited to a smaller region very close to the body.
Additional surface pressure calculations for the quasi-steady case
(see supplementary material Appendix S1) are based on a velocity
vector spacing of D/64. Note that a similar increase in resolution
using a PIV camera would require a concomitant reduction in the
measurement window size due to limits on camera pixel resolution.

Additional characterization of the quasi-steady algorithm is
detailed in supplementary material Appendix S1, including: analysis
of spatial convergence; the relative contribution of each integration
path to the median pressure field; robustness to measurement noise;
and the effects of domain size, fluid viscosity and fluid–solid
interfaces.

Unsteady pressure estimation
Fig. 2 compares an instantaneous pressure field from the numerical
simulation of a self-propelled anguilliform swimmer with the
pressure field estimated from the corresponding velocity field using
the unsteady form of the present algorithm. A vector field spatial
resolution of L/42 (where L is the length of the swimmer) is used in
the horizontal and vertical directions. No smoothing is applied to
this data set in order to contrast the results with those in the previous

section and to limit the spatial extent of the region of undefined
pressure near the fluid–solid interface. The algorithm is effective in
capturing: the high–low pressure couples formed on the sides of the
swimmer head and tail as they accelerate in the positive-y direction;
the low–high pressure couple formed at the mid-body as it
accelerates in the negative-y direction; and the pressure in the wake
vortices.

The importance of the unsteady term in Eqn 9 (see Materials and
methods) is illustrated by comparison with the pressure field
estimated using the quasi-steady approximation, shown in Fig. 2C.
Low pressure in the wake vortices is captured, but the high–low
pressure couples on the body surface due to the body added mass
are missing entirely, as is the high pressure in the wake due to vortex
added mass (Dabiri, 2006). The comparison is further quantified in
Fig. 3, which plots the pressure on a contour surrounding the
swimmer and immediately adjacent to the region of undefined
pressure. At each of the four phases of the swimming cycle shown,
good agreement is achieved between the pressure computed in the
numerical simulation and the pressure estimated from the velocity
field using the unsteady algorithm. By contrast, the pressure
estimated by the quasi-steady algorithm is erroneous everywhere
except near the forming wake vortex at the tail.

Additional characterization of the unsteady algorithm is provided
in supplementary material Appendix S2, including analysis of
temporal convergence and out-of-plane effects for three-dimensional
flows.

To demonstrate the efficacy of the present method for analyzing
empirically measured velocity fields, Fig. 4 shows measured
velocity and vorticity fields for the freely swimming jellyfish and
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Fig. 3. Pressure on the contour
surrounding the self-propelled
swimmer and immediately adjacent
to the region of undefined pressure,
at four instants during the swimming
cycle duration T. The head is at body
node number 45; the tail is at body
nodes 1 and 90. Solid curve, pressure
computed from the numerical
simulation. Filled circles, pressure
estimated from the unsteady algorithm.
Open circles, pressure estimated from
the quasi-steady algorithm. (A) t/T=1/4;
(B) t/T=1/2; (C) t/T=3/4; (D) t/T=1, where
t is instantaneous time.
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lamprey (Fig. 4A,C) along with the corresponding pressure fields
estimated using the unsteady algorithm (Fig. 4B,D). The full
measurement domain is shown in both cases; the velocity vector
field is plotted at half of the full resolution. Only the left half of the
jellyfish body is visible in the measurement domain; its exumbrellar
surface is indicated by a black curve in Fig. 4A,B. The full lamprey
body is visible in Fig. 4C,D.

In both cases, the pressure field derived from the velocity field
measurements captures key features near the body surface and in the
wake. In particular, the jellyfish data set indicates low pressure in
the forming starting vortex and high pressure where the bell margin
is accelerating inward and pushing the adjacent fluid. The results are
consistent with the measured vorticity field (Fig. 4C), with the
region of low pressure corresponding to the core of the starting
vortex. The presence of low and high pressure regions near the bell
margin is also in agreement with previous numerical simulations of
a swimming jellyfish with similar body shape and kinematics (Sahin
et al., 2009).

The lamprey data set shares similarities with the three-
dimensional numerical model shown previously. The vorticity and
pressure fields are less smooth and show finer structure in the
empirical measurements, which is attributable in part to the
Reynolds number being approximately four times higher than that
of the numerical simulation.

The ease of implementation of this algorithm, in terms of both
data acquisition and velocity field post-processing, and its relatively
low computation cost (see supplementary material Appendix S2)
gives it the potential to find use in a broad range of problems of
interest in biological fluid mechanics. Because the temporal filter
implemented in the unsteady algorithm does add considerable time

to the pressure calculation (cf. supplementary material Fig. S10), in
practice one should first evaluate the results of both the quasi-steady
and the fully unsteady implementations of the algorithm on a sample
of the data of interest to determine whether unsteady effects are
important. If they are not, then the quasi-steady calculation provides
the most efficient tool for determination of the pressure field.

Although the present evaluation focused on two-dimensional
velocity fields, it is straightforward to extend the algorithm to three
dimensions by the addition of a limited number of new integration
paths consistent with the geometry in Fig. 5. In that case, even
greater reductions in computation expense can be achieved relative
to existing methods as a result of the relatively small total number
of required integration paths and the elimination of associated
velocity field interpolation during integration of the pressure
gradients.

A free MATLAB implementation of this algorithm is available at:
http://dabiri.caltech.edu/software.html.

MATERIALS AND METHODS
Material acceleration estimation
The instantaneous fluid particle acceleration Du/Dt required for calculation of
the pressure gradient in Eqn 2 is estimated by advecting idealized infinitesimal
fluid particles in the measured velocity fields. For quasi-steady estimation, the
material acceleration is derived from a single velocity field as:

where i=1, 2... m×n (i.e. the dimensions of the velocity grid), xi are the
positions of fluid particles coincident with the grid points in the PIV velocity
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Fig. 4. Application of unsteady
pressure algorithm to empirical
measurements. (A) Particle image
velocimetry (PIV) measurement of a
freely swimming jellyfish medusa.
The velocity field is plotted on vorticity
contours. Maximum velocity vector is
~3 cm s−1. The velocity field is plotted
at half of full resolution. The left half
of the exumbrellar surface is
indicated by the black curve.
(B) Pressure field estimated using the
unsteady algorithm. (C) PIV
measurement of a freely swimming
lamprey. The velocity field is plotted
on vorticity contours. Maximum
velocity vector is ~11 cm s−1. The
velocity field is plotted at half of full
resolution. The animal body is
approximately indicated in black.
(D) Pressure field estimated using the
unsteady algorithm.
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field, and xi
a are the positions of those fluid particles after being advected by

the instantaneous velocity field for a period Δt:

In order for Eqns 4 and 5 to remain valid, Δt is limited to values much
smaller than the characteristic time scale of the flow, yet sufficiently large
that there is a measurable change in the fluid particle velocity.

For many flows, especially those involving accelerating or deforming
bodies, the aforementioned constraint on Δt cannot be satisfied. For these
inherently unsteady fluid–structure interactions, we derive the material
acceleration from two sequential velocity fields as:

where

Eqn 7 is akin to a Crank–Nicolson (i.e. trapezoidal) scheme for the particle
positions, in contrast to the forward Euler scheme in Eqn 5. Hence, the
convergence of the method with time step is second order (Crank and
Nicolson, 1947).

The primary source of measurement error in this type of unsteady estimate
of the material acceleration Du/Dt arises from temporal noise in the
measured velocity components at each node in the velocity field. We address
this by applying a temporal filter to the time series of velocity fields, which
results in a smoothing spline approximation u* to the velocity u at each
node in the velocity field. The spline approximations are defined such that
they minimize, for each component of u, the parameter:

where t=1...N is the temporal sequence of velocity fields to be analyzed,
uτ is a velocity vector corresponding to velocity field t in the sequence, uτ*
is the spline-approximated value of the same velocity vector for the same
velocity field in the sequence, tmin and tmax are the temporal bounds on the
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sequence of velocity fields, and ϕ is a weight between the first and second
terms and has a value between 0 and 1. In effect, the parameter Su
quantifies both the deviation of the spline approximation from the original
data (i.e. the first term) and the total curvature magnitude of the spline
approximation (i.e. the second term). For ϕ=0, only the second term is
minimized, resulting in a least-squares fit with zero curvature, i.e. a linear
fit to the data. For ϕ=1, only the first term is minimized, giving a cubic
spline fit that passes through each original data point. In all that follows,
we set ϕ=0.05, a value we have identified as enabling effective temporal
noise filtering without discarding true temporal trends in the measurement
data.

Further characterization of the temporal filter is provided in
supplementary material Appendix S2. In particular, it is shown that the use
of the temporal filter increases the order of temporal convergence above
second order, as anticipated by theory (Atkinson, 1968).

It is worth noting that the distinction between the quasi-steady and
unsteady approaches can be made explicit by decomposing the material
acceleration into its Eulerian components:

The quasi-steady approximation in Eqns 4 and 5 implicitly neglects the first
term on the right-hand side of Eqn 9, whereas the unsteady calculation
retains it.

The viscous term on the right-hand side of Eqn 2 is computed using
centered finite differences between adjacent nodes in the velocity field. The
effect of the viscous term is evaluated in the context of a numerical
simulation described in the validation section.

Pressure gradient integration
Whereas previous methods that integrate the pressure gradient via many
integration paths assign to each grid point the arithmetic mean of the many
integrations, in the present approach the paths are polled by taking the
median. The median is less sensitive to grossly erroneous values that may
arise on a few of the integration paths due to localized measurement errors
or to localized errors created by the aforementioned material acceleration
approximations in Eqns 4–7. Hence, this approach enables a significant
reduction in the total number of integration paths per frame that are required
to achieve accurate pressure estimates. Fig. 5 illustrates the paths used
presently. Eight families of integration paths are used, with each family
originating at the domain boundary and propagating toward each grid point
from the left (L), upper left (UL), top (T), upper right (UR), right (R), lower
right (LR), bottom (B) and lower left (LL), respectively.

Only eight integration paths (one per family) per grid point are used, for
a total of 8m×n paths per velocity field. For the aforementioned example
grid of 128×128 velocity vectors, 1.3×105 integration paths are required, a
20% reduction from existing optimal methods (Liu and Katz, 2006). More
importantly, the integration paths are constrained to include only grid points
coincident with the original velocity field. For example, the UL integration
path is composed of alternating integration steps in the –y and +x directions,
originating at the domain boundary and terminating at each grid point.
Hence, no interpolation is required in order to integrate the pressure gradient
field. Furthermore, portions of many of the paths are redundant, facilitating
fast calculation using simple matrix manipulations. A forward Euler spatial
integration scheme is used throughout, resulting in first-order spatial
convergence of the method (see supplementary material Appendix S1).

An important limitation of the present algorithm that arises from the trade-
off between speed and accuracy is that it assumes the pressure is zero at the
point on the outer domain boundary where each integration path is initiated.
This does not imply, however, that the final pressure estimate is constrained
to be zero at the boundaries. Integration paths that originate from the other
domain boundaries and terminate at a given boundary may estimate a non-
zero value of pressure at the termination point. If the median of all paths
terminating at that point on the domain boundary is non-zero, then the final
pressure estimate at that point will also be non-zero. Note that for all points
in the domain, the final pressure estimate is relative to a zero reference
pressure, as that is the pressure at the origin of each integration path. The
impact of these assumptions on the robustness of the technique is quantified

( )≡ ∂
∂

+ ⋅∇
t t
u u

u u
D
D

. (9)
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Fig. 5. Geometry of integration paths for pressure field estimation. Eight
paths originate from the domain boundary and propagate toward each point
(xi,yi) in the domain from the left (L), upper left (UL), top (T), upper right (UR),
right (R), lower right (LR), bottom (B) and lower left (LL). The points on each
path coincide with the measurement grid.
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in supplementary material Appendix S1, and it is shown to be modest for
the external flows tested. At the same time, the net result of this trade-off in
the algorithm design is a more than order-of-magnitude reduction in
computational time compared with previous methods (see supplementary
material Appendix S2).

A common source of localized error that can affect pressure estimates is
the presence of solid objects in the flow. Typical PIV measurements are
often unreliable in the region close to solid objects, which compromises
pressure integration paths that cross the fluid–solid interface, especially in
previous methods that average the erroneous data instead of discarding it via
median polling (or in Poisson solvers that rely on the pressure gradient at
the fluid–solid interface as a boundary condition). In the present algorithm,
integration paths that cross a fluid–solid interface in the flow can be nullified
by assigning the nodes nearest to the interface an undefined pressure
gradient. Hence, when that value is integrated along any integration path,
the pressure value for that path also becomes undefined and therefore does
not contribute to the median calculation.

Validation data sets
To validate the accuracy of the quasi-steady pressure estimates achieved
using this algorithm, a numerical simulation of flow past a two-
dimensional square cross-section cylinder at a Reynolds number of 100
was used. This numerical data set enabled quantification of the effects of
spatial resolution, domain size and signal-to-noise ratio, while providing
a known pressure field standard for comparison (see supplementary
material Appendix S1). The numerical simulation was executed using a
solver that computes on arbitrary polyhedra (Ham and Iaccarino, 2004).
In the present case, a regular Cartesian mesh was utilized and subsequently
interpolated onto coarser grids of varying sizes typical of PIV data. The
viscous term in Eqn 2 was retained in all of the calculations to demonstrate
the robustness of the median polling approach to errors normally
associated with application of the Laplacian operator. For all calculations
of Eqns 4 and 5 in this validation, we set Δt=0.01h/Umax, where h is the
mean grid spacing and Umax is the maximum flow speed in the
measurement domain. The results described below were insensitive to
order-of-magnitude larger and smaller values of Δt. Where noted, nearest-
neighbor Gaussian smoothing was applied both to the pressure gradient
before integration and to the resulting pressure field.

The accuracy of the fully unsteady pressure estimates was validated by
using a published numerical simulation of a three-dimensional, self-
propelled anguilliform swimmer (Kern and Koumoutsakos, 2006). The
Reynolds number based on swimmer length and speed was ~2400. Time
steps between sequential velocity fields from 0.02T to 0.08T (where T is the
swimming stroke duration) were studied to quantify the temporal
convergence of the method. The validation results described in the Results
section are based on calculations of Eqns 6 and 7 using velocity fields
separated by 0.02T.

Empirical data sets
The present method was also applied to PIV measurements of a freely
swimming Aurelia aurita Linnaeus 1758 jellyfish medusa and a freely
swimming Anguilla rostrata Lesueur 1817 lamprey to demonstrate the
performance of the algorithm with empirical data inputs and, in the case of
the jellyfish, without treatment of fluid–solid interfaces. The swimming
Reynolds numbers of the jellyfish and lamprey were ~1000 and 10,000,
respectively, and the time between sequential velocity fields was 5 ms 
(t/T=0.013) and 4 ms (t/T=0.015), respectively. Details of the PIV
implementation can be found in published literature (Colin et al., 2012).
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