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ABSTRACT
Determining where, when and how much animals eat is fundamental
to understanding their ecology. We developed a technique to identify
a prey capture signature for little penguins from accelerometry, in
order to quantify food intake remotely. We categorised behaviour of
captive penguins from HD video and matched this to time-series data
from back-mounted accelerometers. We then trained a support vector
machine (SVM) to classify the penguins’ behaviour at 0.3 s intervals
as either ‘prey handling’ or ‘swimming’. We applied this model to
accelerometer data collected from foraging wild penguins to identify
prey capture events. We compared prey capture and non-prey
capture dives to test the model predictions against foraging theory.
The SVM had an accuracy of 84.95±0.26% (mean ± s.e.) and a false
positive rate of 9.82±0.24% when tested on unseen captive data. For
wild data, we defined three independent, consecutive prey handling
observations as representing true prey capture, with a false positive
rate of 0.09%. Dives with prey captures had longer duration and
bottom times, were deeper, had faster ascent rates, and had more
‘wiggles’ and ‘dashes’ (proxies for prey encounter used in other
studies). The mean (±s.e.) number of prey captures per foraging trip
was 446.6±66.28. By recording the behaviour of captive animals on
HD video and using a supervised machine learning approach, we
show that accelerometry signatures can classify the behaviour of wild
animals at unprecedentedly fine scales.

KEY WORDS: Penguin, Eudyptula minor, Machine learning,
Support vector machine, Foraging ecology, Energetics, Feeding,
Predation

INTRODUCTION
Identifying with confidence where and when animals find food is
integral to studies of foraging ecology. Accurately detecting feeding
behaviour can enable energy intake to be estimated (Rothman et al.,
2012), and can give insights into the distribution of food and the
processes by which animals search for it (Bestley et al., 2008).
However, it is difficult in practice to identify specific feeding events
if directly observing the animal foraging in the wild is impractical
or impossible. In these cases, biologging technologies can provide
insight into the behaviour of wild animals, with the added value of
simultaneously recording contextual information about the
environment (Ropert-Coudert and Wilson, 2005).

Accelerometry is increasingly being used to classify behaviour
states based on patterns of animal movement, and is a promising
tool for identifying feeding events remotely (Lagarde et al., 2008;
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Grünewälder et al., 2012; Nathan et al., 2012). Extensive high-
resolution data describing continuous profiles of animal movement
can now be collected reliably and cost-effectively, and the
computational tools to mine this information are being accessed by
ecologists (e.g. Bidder et al., 2014). Accelerometry can improve our
understanding of the way that animals move through three-
dimensional space and interact with the environment to acquire
resources at unprecedentedly fine scales (e.g. Goldbogen et al.,
2013). However, there are relatively few examples of studies in
which analytical methods have been both (a) validated and (b)
applied to wild animals to give insight into ecological processes (but
see Nathan et al., 2012; Watanabe and Takahashi, 2013; Watanabe
et al., 2014).

There are two main approaches to using accelerometry data to
infer the behaviour of animals. The first is an ‘unsupervised’
classification approach, by which accelerometer data are grouped by
similarities in movement patterns either by visual inspection of the
data (in the form of a line graph) or by using techniques such as
cluster analyses (Sakamoto et al., 2009) or spectral analyses
(Watanabe et al., 2005; Ropert-Coudert et al., 2006). Unsupervised
approaches have the benefit of being readily applicable to both new
and existing datasets without the explicit need to ground-truth the
information (Sakamoto et al., 2009), although validation can be done
post hoc to confirm or improve estimates of behaviour. However,
searching accelerometer data for groups of patterns related to
various activities can be problematic, as this relies heavily on
assumptions about how we expect animals to move and behave. For
example, rapid increases in the speed of locomotion may reflect
pursuit of prey, but may also signify intraspecific interaction or
predator avoidance.

The second approach is ‘supervised’ classification, in which a
model is trained on segments of movement data that have been
given behaviour labels after direct observation of the animal
carrying the accelerometer (Nathan et al., 2012). These ground-
truthed models can then be applied to new accelerometer output to
classify unobserved behaviour into pre-determined classes.
Examples of this approach include machine learning techniques
such as support vector machines (SVMs), classification and
regression trees (CART) and artificial neural networks (ANNs), and
these provide computationally powerful methods of data
classification that can detect complex patterns that are not evident
to the human eye. Thus, the models can identify intrinsic differences
between similar behaviours or locomotory types when applied to
acceleration data (Martiskainen et al., 2009). Another advantage of
supervised models for determining animal behaviour is that the
accuracy of the model can be tested on portions of data that are held
out from model training, enabling the error rate to be clearly
quantified during the model development process (Bidder et al.,
2014).

Studies using accelerometry to identify feeding events in wild
marine animals have favoured unsupervised models, because of the
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obvious logistical difficulties of ground-truthing datasets. In larger
animals, accelerometers have been placed on the head, or on both
the head and back to identify dynamic head movements thought to
be related to ‘lunging’ for prey (Kokubun et al., 2011; Gallon et al.,
2013; Ydesen et al., 2014) and jaw-mounted accelerometers have
been used to identify mouth opening events that may result in prey
ingestion (Viviant et al., 2010). In smaller marine species, back-
mounted accelerometry is currently the best or only option. In these
cases, periods when the wing/flipper/tail beat frequency or
amplitude [identifiable from the ‘heaving’ (wing/flipper) or
‘swaying’ (tail) axis of the accelerometer data] spike above a
threshold are determined to be ‘dashes’ – increases in speed when
the animal may have encountered and pursued prey (Ropert-Coudert
et al., 2006). When validation has been undertaken in the marine
realm (by attaching a video camera alongside the accelerometer), it
has tended to focus on validating prey capture attempts (e.g. head
lunges) rather than the actual capture and consumption of prey
(Watanabe and Takahashi, 2013). This distinction is important, as it
is impossible to quantify an animal’s foraging efficiency or its
energy intake if the success of prey capture remains uncertain.

Several little penguin (Eudyptula minor, Forster 1781)
populations around the south coast of Australia are experiencing
declines that seem at least partially related to changes in the
availability of the small baitfish that constitute its primary prey
(Cannell et al., 2012). There is therefore an urgent need to
understand the energetic requirements and feeding ecology of this
species at fine scales, both to predict its vulnerability to
environmental change that may alter the abundance and distribution
of prey and to assess the need for conservation measures such as
restrictions on fishing activity around breeding colonies. The relative
ease of studying little penguins both in captivity and in the wild also
makes them a suitable model species for developing analytical
techniques that can be applied to other marine fauna.

Here, we developed a supervised machine learning approach to
identifying feeding events at sea from observations of little
penguins wearing accelerometers while they handled prey in
captivity. Because of their small size, it is not yet possible to equip
little penguins with cameras in the wild, and the captive setting
provides a means of observing feeding behaviour in great detail.
Although translating observations made in captivity to the
behaviour of wild animals is inherently problematic owing to the
diversity of natural behaviours and contexts, by developing a
classification model based on the handling of prey rather than on
pursuits or capture attempts, we can be more confident that this

approximates natural feeding behaviour. This is because the
physical processes of prey handling and consumption are likely to
be similar even if other predator–prey interactions may differ
between captive and wild settings. By taking this approach, we
also aimed to remove some of the uncertainties of prey capture
variability as well as uncertainties resulting from the presence of
rapid movements that are unrelated to prey encounters.

We then applied this model to wild penguin acceleration data and
compared ‘successful’ versus ‘unsuccessful’ foraging dives as a
means of further exploring the validity of the model on wild data,
and to characterise foraging success and its determinants in little
penguins. We also attempted to quantify the number of prey items
ingested during a day of foraging, and validated this information in
relation to what is known about little penguin energetics.

RESULTS
SVM performance on captive data
We analysed 20 accelerometry profiles recorded by seven different
captive penguins on 8 days. A total of 5244 behaviour observations
(3971 ‘swimming’; 1273 ‘prey handling’) were extracted after
processing the data into 0.3 s blocks. These observations were
randomly split into 3670 training and 1574 testing points for the
initial parameter tuning run, and for each subsequent iteration when
evaluating the model’s performance. The overall mean accuracy of
the SVM in classifying both swimming and prey handling events
correctly on the unseen testing data was 84.95±0.26% (mean ± s.e.,
N=12 iterations). As we were interested in how well the model is
likely to correctly predict prey handling in the wild, a more
important measure of model performance is the false positive rate,
i.e. the likelihood of misclassifying an event as prey handling when
it should have been swimming. On our unseen testing data, this
measure was 9.8±0.24%.

Application of the SVM to wild accelerometer profiles
Accelerometer profiles were obtained for 21 penguins performing
23 foraging trips in 2013 (two birds were sampled twice at different
times of the year and in different breeding stages – for information
about penguins and their foraging trips, and measures of their
foraging efficiency see Table 1). We classified a prey capture event
as three consecutive observations of prey handling, in order to
reduce the misclassification of transient events. As each datum is
treated as an independent observation by the SVM, the probability
of the model incorrectly classifying three consecutive observations
as prey handling when they should all be swimming is 0.0009
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Table 1. Summary of the attributes of wild little penguins deployed with accelerometers in 2013, and measures of their foraging efficiency
calculated using a support vector machine

Prey capture Prey captures/
Month Breeding stage Sex Mean mass (g) Total dives dives/total dives Prey captures/day diving minute

Sep. Incubation N=3 Female N=5 1184±115.68 15,557 0.42±0.28 443.82±289.81 1.92±1.14
Guard N=3 Male N=4
Post-guard N=3
Total N=9

Nov. Guard N=2 Female N=5 1103±108.54 7434 0.37±0.23 465.43±454 1.22±0.93
Post-guard N=5 Male N=2
Total N=7

Dec. Guard N=6 Female N=7 1043±163.78 5797 0.47±0.26 431.36±227.29 1.39±0.91
Post-guard N=1
Total N=7

Total Incubation N=3 Female N=17 1125±129.67 28,788 0.42±0.25 446.61±317.86 1.54±1.02
Guard N=11 Male N=6
Post-guard N=9
Total N=23
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(0.098×0.098×0.098). This is strong evidence that the prey capture
events identified by the model were likely to reflect true instances
when the penguin had captured and handled prey.

Comparison of prey capture versus non-prey capture dives
We analysed 28,788 dives and identified prey capture events in 38%.
The number of prey caught per successful dive ranged from one
(75% of successful dives) to six (0.02% of successful dives). We
found that prey capture dives were longer in duration and bottom
time, were deeper, and were more likely to contain wiggles and
dashes (see Fig. 1 and below). A random subsample of 25,910
(90%) of these dives were included in the binomial generalised
linear mixed model (GLMM). These results showed that dive
residual (a measure of dive duration corrected for depth), mean
ascent rate, wiggle presence and dash presence were all significant
parameters (P<0.0001), while mean descent rate was not significant
(P=0.33) (see Table 2).

Comparison of SVM predictions with wiggles and dashes
Wiggles (undulations in the bottom phase of a dive) occurred in
71% of prey capture dives, 40% of non-prey capture dives and 54%
of all dives. Dashes (periods where the amplitude of the ‘heaving’
axis, a proxy for flipper strokes, spiked above a threshold) occurred
in 61% of prey capture dives, 52% of non-prey capture dives and
56% of all dives. Wiggles and dashes were present together in 33%
of all dives, and of these 53% were successful dives and 47% were
unsuccessful dives.

Little penguin foraging efficiency
The number of discrete prey captures by each penguin per foraging
day determined by the model was highly variable, ranging from 120
to 1368 with a mean (±s.e.) of 446.61±66.28 and a median of 305.
The proportion of successful prey capture dives also varied between
individuals, from 0.11 to 0.88 with a mean (±s.e.) of 0.40±0.05. Prey
captures per minute diving (averaged over the whole foraging trip)
ranged from 0.30 to 4.0 with a mean (±s.e.) of 1.54±0.21 and a
median of 1.56.

DISCUSSION
There are several emerging analytical techniques that attempt to
elucidate the relationships between patterns of acceleration and
behaviour in animals. Although each approach can give biological
meaning to movement data, identifying and validating prey captures
in a wild setting remains difficult, and very few accelerometry
studies have attempted to quantify prey ingestion (Watanabe and
Takahashi, 2013). The results of the present study are promising.
The SVM trained on captive penguin accelerometry performed well
on unseen captive data, with an 84.95% overall accuracy and 9.8%
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Fig. 1. A comparison of little penguin dive attributes in 2013. Data
are for dives in which the support vector machine (SVM) detected a
prey capture (successful, S) and those in which it did not
(unsuccessful, U).

Table 2. Slope, s.e. and P-values for a binomial generalised linear
mixed model characterising dive parameters in prey capture
versus non-prey capture dives during 23 little penguin foraging
trips
Parameter Slope s.e. P

Dive residuals 9.82253 0.33185 <0.0001
Mean descent rate −0.21976 0.26772 0.334
Mean ascent rate 4.01958 0.15780 <0.0001
Wiggle presence 0.87131 0.04277 <0.0001
Dash presence −0.46260 0.04259 <0.0001

Parameters in bold were significant.
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false positive, which is similar to those found in studies on captive
terrestrial animals (Nathan et al., 2012; Bidder et al., 2014). The
clear differences that we identified between dives in which the SVM
identified prey capture and those in which it did not are also
encouraging for the translation of this technique to wild datasets.
However, assessing model performance on data collected in the wild
is challenging as it requires several assumptions, the validity of
which we explore below.

Prey captures and foraging strategy
Air-breathing divers such as penguins must frequently leave prey
patches to return to the surface to breathe during foraging trips.
This constraint confers expectations on the way that they are likely
to behave while foraging. Foraging animals should make decisions
that will maximise their potential for resource acquisition, and are
therefore expected to spend more time foraging where food
availability is high (Charnov, 1976). This prediction holds true for
diving animals including wild Adélie penguins, which increase the
duration of their dives in response to the rate of short-term krill
capture success (Watanabe et al., 2014). Theory also predicts that
shallow dives, which constituted most of the dives performed by
penguins in this study (77% of all dives and 61% of successful
dives were above 10 m in depth), should be aborted if prey is not
encountered in the upper part of the water column (Thompson and
Fedak, 2001). Therefore, successful prey capture dives are likely
to be not only longer but also deeper than non-prey capture dives.
The strong differences in duration and depth that we observed
between prey capture and non-prey capture dives support these
theories.

Penguins are observed to have sharper angles of ascent when
bottom duration is longer (Sato et al., 2004), and when prey
capture has been identified by oesophageal temperature loggers
(Ropert-Coudert et al., 2001). This is probably because if
successful prey capture dives are longer and deeper, animals are
likely to be foraging closer to their aerobic dive limit and should
optimise their return to the surface to replenish their oxygen stores
(Viviant et al., 2014). Our results are consistent with these
observations, as significantly higher mean ascent rates were
observed during successful dives. Descent rate was not a
determinant of prey capture in this study, indicating that there was
no strong pre-conception by the penguins about whether prey was
available at the single dive scale. 

There was a clear relationship between the presence of both
wiggles and dashes, which have been used as proxies for prey
encounters in diving animals (Simeone and Wilson, 2003; Zimmer
et al., 2011a), and the presence of a prey capture identified by the
SVM. Wiggles were a better indicator of prey capture than dashes,
corresponding to 71% of dives in which the model identified a prey
capture event compared with 61% for dashes. Studies using proxies
for prey encounter such as wiggles, dashes and head movements
have assumed that (a) all prey that is encountered is pursued
(Ropert-Coudert et al., 2006) and (b) once prey is encountered, the
likelihood of prey capture is high (Zimmer et al., 2011a). However,
there are many factors that are likely to affect the rate of prey
capture success in relation to the prey that is encountered. These
include the effects of prey patch density on prey capture success
(Draulans, 1987; Darby et al., 2012), the effects of light level on the
foraging success of visual predators (Ropert-Coudert et al., 2006),
the presence of competition from other predators (Minderman et al.,
2006) and the effects of individual experience (Daunt et al., 2007).
For these reasons, rates of prey capture cannot be inferred from prey
encounter, and methods that focus on prey encounters or capture

attempts alone could significantly over-estimate the prey consumed
by foraging animals.

Foraging efficiency and prey capture rates
Prey acquisition is difficult to quantify in marine animals.
Techniques such as diet analyses based on stomach flushing are
prone to bias as different prey types have differential digestion rates,
and hard parts such as otoliths and squid beaks, if consumed, may
not always be retained in the gut (Gales, 1988). For animals
performing longer foraging trips, stomach contents on return to the
colony may only represent the most recent bout of feeding. Such
studies generally report the relative occurrence of prey types, rather
than attempting to quantify the number of prey items that have been
ingested. However, approximate quantities can be estimated by
back-calculating the wet mass of key prey types required to fulfil the
daily energy requirements of individuals based on known metabolic
rates (Adams et al., 1993; Watanabe and Takahashi, 2013) or they
can be determined via water and sodium influxes (Gales and Green,
1990).

To determine whether the SVM result provides a reasonable
estimate of the quantity of prey items ingested, we estimate the
possible feeding requirements of little penguins from what is known
about their energetics. The SVM identified a mean of 447 prey
capture events per penguin per day. The relationship between the
daily metabolic rate of little penguins during the breeding season
and the food that they require is complicated by the penguins’ need
to consume a surplus to account for fasting days and the extra mass
of food required to provision growing chicks. The metabolic rate of
little penguins during the breeding season has been determined to be
between 661 kJ kg–1 day−1 (for a fasting, incubating bird) and
2532 kJ kg–1 day−1 (for a foraging bird late in the chick-provisioning
phase) using the doubly labelled water method (Gales and Green,
1990). The mean energy value of the little penguin diet, with
varying proportions of fish, squid and krill across the annual cycle
is ~3.87 kJ g−1. Food consumption based on water and sodium influx
has been calculated as being up to 664g kg–1 day−1 (Gales and
Green, 1990).

Multiplying the standardised metabolic rate by the mean mass of
the penguins in this study (1.125 kg), foraging penguins
provisioning chicks require up to 2848 kJ day−1. This approximate
energy requirement could be met with 736 g of food, a similar mass
to the 747 g obtained when the mass of food estimated by water and
sodium influx is also multiplied by 1.125 kg (Gales and Green,
1990). Food consumption has also been estimated for little penguin
chicks using water and sodium influx, with an estimated mean rate
of intake of 256 g day−1 for older (post-guard stage) chicks (Green
et al., 1988). This means that ~1259 g of food could be eaten on an
average day by a foraging penguin provisioning two chicks. This
estimate may be lower for incubating birds and those with very
small chicks; however, this figure provides a benchmark on which
to sanity test our observations.

If all prey captures identified by the SVM represent actual prey
captures, prey consumed by little penguins in our study had a mean
mass of ~2.8 g. The mean mass of ingested fish species estimated
from diet reconstruction for little penguins at Phillip Island, Victoria,
Australia, ranged from 0.9 g (red cod) to 10.7 g (garfish), with a
mean of ~4.9 g per item across all fish species (Cullen et al., 1991).
Small (1–5 cm) schooling fish were the primary component of the
diet of little penguins around Montague Island in 2013, with
penguins also eating krill when transient swarms entered the area
(G.C., unpublished data). Our estimate of mean prey ingestion
quantities is consistent with this provided that the handling of small
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size classes of fish and krill is considered in the same way as the
handling of larger fish by the SVM.

As the model was trained on penguins handling one type of prey
(pilchards), whether or not the capture of other prey types can be
identified with the same accuracy is uncertain. This is a limitation
of the interpretability of non-linear SVMs, which are to some extent
‘black box’ algorithms with non-transparent decision rules
(Rosenbaum et al., 2011). Logically, the capture and handling of any
prey type (live or dead) is more likely to resemble the physical
action of handling dead pilchards than of swimming. It is probable
that when the accelerometer records these events, the SVM classifies
the observations as ‘prey handling’, and the number of prey captures
recorded in our study supports the notion that the capture of small
prey items is being detected.

However, in this study we made a number of assumptions
regarding the amount of time it takes for a little penguin to handle
prey in the wild. By setting a prey capture event at three consecutive
0.3 s observations of prey handling, the minimum observable prey
handling time was 0.9 s, which may not be at a fine enough
resolution to detect the rapid consumption of small prey. Similarly,
by using a survival curve to determine the amount of time between
consecutive prey captures it is possible that we also underestimated
prey capture rates when prey density was high. Without validating
the handling of more prey types (particularly small fish and krill)
and of both dead and live prey, there will remain a level of
uncertainty, and the absolute estimates of prey capture quantity
should be interpreted with caution at this early stage.

Benefits of supervised accelerometry analysis and future
applications
The ability to determine the quantity and timing of prey
consumption in wild animals has immense value in ecological
studies. The supervised accelerometry approach provides a reliable
and minimally invasive method to assess and monitor foraging
efficiency, and to estimate the energy intake of predators. Further
value can be added by integrating this information with fine-scale
location data and environmental covariates such as temperature and
light level (Guinet et al., 2014). This will lead to an improved
understanding of the factors governing the distribution of resources
in both space and time, and enable better predictions of the effects
of environmental change on predator populations (Hazen et al.,
2013).

Although identifying and quantifying the consumption of prey
gives us valuable information in the little penguin example,
supervised accelerometry analysis can be equally applied to other
behaviours of interest. We have shown here that fine-scale
behaviours that correspond to transient events lasting less than a
second can be detected accurately with a machine learning model
such as an SVM. Therefore, this technique is potentially valuable
for identifying other behaviours of interest that are variable or
transient, or occur relatively rarely, e.g. aggressive interactions or
copulation.

In order to detect events at such a fine scale, the accelerometry
data must be high resolution (30 Hz or greater) (Broell et al., 2013)
and behaviour analysis must occur at the same resolution in order to
pinpoint the transition between behaviour states with precision.
Ground-truthing accelerometry data in captivity is valuable in this
respect, as high-quality video can be collected from angles that
clearly show the whole organism and all its movements to allow for
more precise coding of behaviour. The opportunity also exists to
experimentally increase the frequency of a particular activity,
whereas data must be collected in a much more opportunistic

fashion in the wild. Although critter cams are valuable for gaining
insight into the natural behaviours of wild animals, they may not
always show a behaviour from the best angle, making it difficult, for
example, to determine whether prey capture was successful
(Watanabe and Takahashi, 2013). They are also a sub-optimal
method for animals that operate primarily in low light conditions
such as nocturnal or deep diving animals, because of the potential
interference of the camera’s light source with the animal’s normal
behaviour (Heaslip and Hooker, 2008). Ideally, observation of
animals in the wild is the best way to remove doubts regarding the
validity of acceleration signatures for identifying the full range of
their natural behaviours. However, if this is impractical and if
captive animals perform behaviours that adequately reflect the
natural behaviour of their wild conspecifics, the captive environment
provides a useful setting to begin to model their fine scale behaviour
using accelerometry.

MATERIALS AND METHODS
The field study was conducted on Montague Island (−36.252777°,
150.227110°), 9 km off the southeast coast of NSW, Australia. The island
supported approximately 5000 breeding pairs of little penguins in 2000
(Weerheim et al., 2003); however, there have been no recent, reliable
estimates of population size on the island. Extensive habitat restoration on
Montague Island has necessitated the use of nest boxes to accommodate a
large portion of the breeding penguin population. Data used in this analysis
were collected during the breeding season in September, November and
December 2013. Penguins were captured in their artificial wooden nest
boxes at night, and sex was determined by comparing the morphology of the
two adults present in the nest (males are generally slightly larger in body
size and have thicker bills with a pronounced hook at the tip). 

Accelerometer data loggers (G6a and G6a+, CEFAS Technology Pty Ltd,
Suffolk, UK) were attached to feathers just below the mid-point of the back
with cloth tape (Tesa, Hamburg, Germany) the night before a penguin went
to sea. The units recorded acceleration in three axes: anterior–posterior
(surging), lateral (swaying) and dorso-ventral (heaving) with a range of ±2 g
(see Fig. 2). The accelerometers recorded depth, temperature and
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Fig. 2. Schematic diagram of a little penguin wearing an accelerometer
(yellow) swimming towards a fish and handling prey. The accelerometer
axes (heaving, surging and swaying; see Materials and methods) are shown
on the left. Beneath is a sample raw accelerometry profile from the heaving
axis (recorded at 30 Hz) of a penguin swimming and handling prey in
captivity, labelled with the associated behaviours identified from HD video.
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acceleration and were programmed in two modes: ‘shallow’ mode (<1.37 m:
1.5% of the full scale pressure range), where parameters were recorded
every 10 s; and ‘dive’ mode (>1.37 m), where the same parameters were
recorded at a rate of 30 Hz. When the penguins returned from a foraging trip,
they were recaptured in their nest boxes, the loggers were removed and the
penguins were weighed in a calico bag using a spring balance scale (Pesola
AG, Switzerland).

Validation of accelerometer signal
To identify a unique signal from acceleration data that corresponds to prey
handling in little penguins, we attached the same accelerometers to captive
penguins at Taronga Zoo, Sydney, Australia, using the same technique as for
wild penguins. The accelerometers were programmed to record depth and
tri-axial movement continuously at 30 Hz. Three underwater cameras
(GoPro Hero 3, San Mateo, CA, USA) filming in HD 1080 at 60 frames s−1

were fixed in the pool and angled to give coverage of the entire swimming
area. The accelerometers were attached using uniquely coloured cloth tape
so that each penguin with an accelerometer could be individually identified
from the video. First, we attached accelerometers to five penguins and
recorded their behaviour as they swam around their enclosure with other
members of their captive group for 1 h. In subsequent experiments,
accelerometers were attached to two to five penguins in the morning, and
were programmed to start recording before the afternoon feeding session.
Two GoPro cameras were then strategically placed to provide coverage of
the feeding area at the start of each feeding session.

The behaviour of the penguins was determined from the video footage
and recorded directly onto the accelerometer output file. This created a
behaviour label for each 30 Hz accelerometer reading. Exact pairing of the
video footage with accelerometer data to the 30 Hz level was achieved by a
combination of (a) identifying the exact frame within a given second in
which a change in behaviour occurred on the video and (b) visually
identifying rapid changes in acceleration associated with a change in
behaviour from plotted accelerometer data. Behaviour was scored as being
one of ‘swimming’, ‘surface swimming’ or ‘prey handling’.

Because of ethical and practical considerations, live prey was not used in
feeding trials. Instead, handfuls of dead pilchards were thrown into the pool
until the penguins were satiated. Prey handling was recorded from the time
that the penguin grabbed a fish in the water until the first powerful flipper
stroke as it began to swim away after swallowing the fish. We believe that
this reasonably approximates the prey handling behaviour of wild penguins,
as: (1) the captive penguins approached a fish at high speed and with
dynamic movement as there were usually several penguins competing for
each fish and (2) the captive penguins performed characteristic behaviours
such as striking at the head of the fish to ‘immobilise’ it before swallowing
it head first. All other behaviour, including all feeding behaviour leading
right up to grabbing a fish, was recorded as swimming unless the penguin
was at the surface. All observations where the penguin was recorded as
surface swimming were later removed from the analysis, as the wild data
did not capture times when the birds rested at the surface at the same 30 Hz
resolution.

Data analysis
SVM  and data processing
Twenty-eight summary statistics were calculated from the raw accelerometer
output using a rolling window of 10 data points (0.3 s). For each axis
(heaving, surging and swaying), we calculated mean, s.d., minimum,
maximum, skewness and kurtosis. We also calculated pairwise correlations
between the three axes as well as overall dynamic body acceleration, an
estimate of activity-specific metabolic rate (Wilson et al., 2006). Rather than
pre-segmenting the data into groups representing single behaviours for the
training/testing process (e.g. Nathan et al., 2012), we took the behaviour
label of each 10 data point rolling window to be whichever behaviour was
represented by most (>5) observations. Having behaviour inputs that are
mixed in this way introduces uncertainty and is therefore likely to reduce
the accuracy of our model when tested on captive data. However, this should
result in a model that can be applied with increased confidence to wild
accelerometry, where the model must be robust to data that are not grouped
into classes.

Several powerful supervised machine learning methods have been
successfully employed to classify the behaviour of terrestrial animals from
accelerometry, including classification and regression trees, random forests,
artificial neural networks and SVMs. Each of these models performs to a
high standard when classifying animal behaviour (see Nathan et al., 2012;
Martiskainen et al., 2009). We selected the SVM to classify feeding because
it is robust and consistently among the best performers in comparisons of
machine learning methods. Rather than comparing a variety of statistical
methods, we focus instead on exploring the ability of a single method to give
insight into fine scale ecological processes.

SVMs are used in many pattern recognition applications and we have
attempted to describe the underlying mechanisms of the model here in
relation to classifying animal behaviour [for a detailed explanation, see
Shawe-Taylor and Christianini (Shawe-Taylor and Christianini, 2004)]. As
in all supervised machine learning problems, the model is trained on data
that have been given class labels. In this case, the data are the summary
statistics derived from the acceleration data, and the labels are the
behaviours that the animal was observed performing from the video that
correspond to the acceleration data. The model ‘learns’ the relationship
between features of the data and these behaviour labels, and is then able to
classify new unlabelled data into these classes.

The SVM can be visualised conceptually in two dimensions, with points
representing two linearly separable classes, e.g. swimming and prey
handling (see Fig. 3). There are many lines that could be drawn that would
separate the data into these two classes. The SVM algorithm aims to
determine the line (or ‘hyperplane’) that is able to separate the data with the
largest possible margin. This large margin makes the model robust to new
data that may fall outside the range of the observations used to train the
model. The optimal hyperplane determined during the training process is
then used to classify new examples.

Rather than classifying data in two dimensions, in reality the space is n-
dimensional, where each dimension represents a different user-specified
feature of the data. In this case, features could be any number of summary
statistics derived from the raw accelerometer data across some time window
(e.g. the mean of the heaving accelerometer axis over 0.3 s) and many
features are usually required for the model to accurately detect patterns.
Unsurprisingly, separating the two classes with a linear classifier is often not
possible. A kernel represented by k(xi, yi), where xi is the sample vector input
as training data, and yi is the class label of xi, is therefore employed to
increase the distance between the classes by transforming or ‘mapping’ them
in a high dimensional feature space. The type of kernel that is selected
defines this feature space.

RESEARCH ARTICLE The Journal of Experimental Biology (2014) doi:10.1242/jeb.113076

A B

C D

Fig. 3. Conceptual 2D representation of how SVMs separate data into
two classes. (A) A series of possible lines that could separate data of two
classes; (B) the optimal line or ‘hyperplane’ determined by a support vector
machine that separates the data with the largest margin; (C) data that cannot
be linearly separated; and (D) the effect of applying a ‘kernel trick’ to increase
the distance between the classes in C by projecting them in hyperspace.
Points with the same coloured asterisk in C and D represent the same data
point.
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We trained an SVM to classify the behaviour of the penguins as swimming
or prey handling from the labelled data in the freely available R statistical
software (R Development Core Team, 2013) package e1071 (Meyer et al.,
2014). The data were randomly split into two sets in a 70:30 ratio
(training:testing). Tuning of the SVM parameters was performed using 10-fold
cross-validation. We trialled a range of available kernels (radial, linear, 
second-, third- and fourth-order polynomial kernels), and selected a second-
order polynomial kernel [represented by k(xi, yi)=(xi, yi)2] as the model
developed with this kernel showed the highest overall accuracy. Mean and s.d.
of the overall accuracy and false positive rate, a measure of how often the
model misclassifies a point as prey handling when it should be swimming
(incorrect ‘prey handling’/incorrect ‘prey handling’ + true ‘swimming’), of the
best model were obtained by generating random 70:30 splits, re-training and
testing the accuracy of the model on each of these datasets.

Application of SVM to wild accelerometer dataset
When the best model had been selected, we then applied it to the wild
dataset, after pre-processing the data using the same statistics and 10 data
point (0.3 s) rolling window. We classified a ‘prey capture event’ as any
sequence of three or more consecutive prey handling classifications, to
reduce the misclassification of transient events. We determined a threshold
for the amount of time that separated discrete feeding events by plotting a
survival curve showing the frequency of seconds (1–100 s) between prey
handling events for each individual penguin. The breakpoint of the curve
was used to define the threshold, which was between 5 and 9 s for all
penguins. We took the timestamp of these feeding events (to the nearest
second) to be the 5th data point of the sequence of 10 data points used in
calculating the summary statistics.

We calculated a number of summary statistics in order to characterise
intrinsic differences between dives in which the SVM identified prey capture
and those in which it did not. We first calculated maximum depth, dive
duration, bottom time duration, mean ascent and descent rates, wiggle
presence and dash presence. We included wiggles and dashes in this part of
the analysis as they have been used as proxies for prey encounter in previous
studies, and we wished to understand whether their presence was related to
predictions of prey capture derived from the SVM. Dashes are instances
where the penguin increases the amplitude of its flipper strokes, possibly to
pursue prey (Ropert-Coudert et al., 2006; Zimmer et al., 2011a). For the
dash analysis, we identified an upper amplitude threshold for flipper strokes
(identifiable in the vertical heaving axis) by plotting a survival curve of
amplitude frequency from the raw accelerometer data. We calculated

thresholds separately for the descent, bottom time and ascent phases of dives
and for each individual bird. As penguins must stroke harder in the top part
of the water column to compensate for buoyancy, the descent phase of a dive
was not analysed if the depth was less than 4 m (Zimmer et al., 2011b).

Wiggles are undulations in the bottom phase of dives thought to be related
to hunting strategy, and have been shown to be a proxy for prey encounter
in other species of penguins (Simeone and Wilson, 2003; Bost et al., 2007)
and whales (Goldbogen et al., 2013). We defined a wiggle as a change in
depth during bottom time occurring at >0.5 m s−1 (see Fig. 4). We defined
the start and end of bottom time as the first and last time within a dive that
the rate of change in depth was <0.25 m s−1 (Kato et al., 2008).

To determine which of these features are important components of prey
capture versus non-prey capture dives, we used a binomial GLMM in the R
package lme4 (Bates et al., 2014). As dive duration, maximum depth and
bottom duration were all strongly, linearly correlated, we calculated the ‘dive
residual’: a measure of dive duration after removing the effect of maximum
depth, and dropped both maximum depth and dive duration from the model.
The dive residual is likely to be a proxy for bottom duration, with removal
of the contribution of time spent travelling to and from depth. We therefore
also omitted bottom time duration from the GLMM. Fixed effects were dive
residual, mean ascent rate, mean descent rate, wiggle presence and dash
presence. As these variables are naturally autocorrelated at the single dive
scale (the presence or absence of prey capture in one dive is not an
independent observation if the penguin is foraging in bouts), we ran the
GLMM on a random sub-sample representing 90% of the dives, to reduce
the autocorrelation. Penguin ID was included as a random effect.
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Fig. 4. Depth and acceleration in the vertical heaving axis during a
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>0.5 m s−1; dashes are spikes above an acceleration threshold determined
using a survival curve. Both wiggles and dashes have been used as proxies
for prey encounter and are included in this paper to understand their
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