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ABSTRACT
Thermal tolerance is an important factor influencing the distribution
of ectotherms, but we still have limited understanding of the ability of
species to evolve different thermal limits. Recent studies suggest that
species may have limited capacity to evolve higher thermal limits in
response to slower, more ecologically relevant rates of warming.
However, these conclusions are based on univariate estimates of
adaptive capacity. To test these findings within an explicitly
multivariate context, we used a paternal half-sibling breeding design
to estimate the multivariate evolutionary potential for upper thermal
limits in Drosophila melanogaster. We assessed heat tolerance using
static (basal and hardened) and ramping assays. Additive genetic
variances were significantly different from zero only for the static
measures of heat tolerance. Our G matrix analysis revealed that any
response to selection for increased heat tolerance will largely be
driven by static basal and hardened heat tolerance, with minimal
contribution from ramping heat tolerance. These results suggest that
the capacity to evolve upper thermal limits in nature may depend on
the type of thermal stress experienced.

KEY WORDS: Thermal tolerance, Heritability, Genetic correlation, 
G matrix

INTRODUCTION
Thermal tolerance is a key factor contributing to distributional limits
in many taxa (Cossins and Bowler, 1987). Temperature is increasingly
likely to be a source of strong selective pressure for many organisms,
with temperatures expected to increase across the globe over coming
decades (IPCC, 2013). Importantly, the close association between
environmental and body temperatures means that climate change is
likely to impact ectotherms’ distribution and abundance (Chown et al.,
2010; Colwell et al., 2008; Parmesan and Yohe, 2003), metabolism
(Dillon et al., 2010) and therefore risk of extinction (Deutsch et al.,
2008; Huey et al., 2009; Sinervo et al., 2010).

Importantly, behavioural thermoregulation may have a limited
ability to ameliorate the effects of climate warming in ectotherms
(Huey and Pascual, 2009; Huey and Tewksbury, 2009; Kearney et
al., 2009; Rego et al., 2010), and temperature is expected to impose
significant selection pressures on both ectotherms and endotherms
(e.g. Huey et al., 2012). However, whether organisms are able to
modify upper thermal limits via evolutionary responses or
phenotypic plasticity and mediate their extinction risk remains
largely unknown. Inter-specific studies of Drosophila (Kellermann
et al., 2012) suggest that some organisms will be unlikely to mediate
the effects of global warming by evolving higher thermal limits.
However, comprehensive intra-specific assessments of adaptive
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capacity for upper thermal limits, which provide important insight
into contemporary microevolutionary responses to global change,
are more limited, and provide mixed support for such conclusions
(but see Kelly et al., 2013).

In addition, estimates of upper thermal limits may vary depending
on the methodology used (Mitchell and Hoffmann, 2010; Rezende
et al., 2011; Santos et al., 2011; Sgrò et al., 2010; Terblanche et al.,
2007). Thermal tolerance can be assessed using either static
(constant temperature) assays (Hoffmann et al., 2002; Hoffmann et
al., 2003) or dynamic (variable temperature) assays that involve
gradually heating or cooling an animal from a particular starting
temperature until physiological failure, such as knockdown or loss
of righting ability (Mitchell and Hoffmann, 2010; Overgaard et al.,
2012; Sgrò et al., 2010; Terblanche et al., 2007; Terblanche et al.,
2011). Ramping assays are argued to be more ecologically relevant
because they are thought to better reflect changes in temperature in
the field and because they indicate the activity range for a population
under acute conditions experienced in nature. However, the rate of
change in temperature used in these assays has been shown to affect
predictions about upper thermal limits (Mitchell and Hoffmann,
2010; Sgrò et al., 2010), leading some to question the extent to
which different measures adequately or accurately assess upper
thermal limits (Rezende et al., 2011; Santos et al., 2011). It should
be noted that inferences about upper thermal limits based on static
measures have been linked to fitness in the field under hot
conditions (Kristensen et al., 2007), suggesting that such measures
also capture ecologically important aspects of Drosophila life
history in response to extreme thermal stress. Repeated clines in
static measures of heat tolerance (Sgrò et al., 2010) and other studies
(Loeschcke et al., 2011) also suggest that the ability to mount
responses to sudden increases in temperature is ecologically
important. Such responses may become increasingly important
under climate change, where the frequency and severity of extreme
thermal stress is predicted to increase.

Importantly, estimates of adaptive capacity for upper thermal
limits can also depend on the methodology used (Chown et al.,
2009; Mitchell and Hoffmann, 2010; Rezende et al., 2011).
Specifically, Mitchell and Hoffmann (Mitchell and Hoffmann, 2010)
found that compared with static measures of heat tolerance, the
narrow-sense heritability and evolvability of ramping heat tolerance
was significantly reduced in two populations of D. melanogaster.
These results imply a constrained evolutionary response to selection
imposed by the gradual heating that may also be experienced in
natural populations (Hoffmann, 2010; van Heerwaarden et al.,
2012). This reduced adaptive capacity was driven by significantly
lower levels of additive genetic variance, and not inflated
environmental variance (see Chown et al., 2009; Rezende et al.,
2011). Nonetheless, criticism of this and other studies (e.g. Sgrò et
al., 2010; van Heerwaarden et al., 2012) that have used slower
(0.06°C increase per minute) ramping rates to examine upper
thermal limits has continued on the grounds that such rates are
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confounded by increased stochasticity, which will inflate the
environmental variance and subsequently reduce narrow-sense
heritability estimates, thereby artificially lowering estimates of
adaptive capacity for upper thermal limits (Rezende et al., 2011;
Santos et al., 2011; Santos et al., 2012).

However, this argument has been framed entirely within a
univariate context. This is important, because we know that the
ability of a population to respond to selection for increasing heat
tolerance will be determined by the patterns of genetic variation and
covariation in the traits under selection (Blows and Hoffmann,
2005). If both static and dynamic measures of thermal tolerance
significantly covary with one another, then reliance on univariate
measures of adaptive capacity may provide inaccurate information
about the evolution of upper thermal limits under climate change.

Mitchell and Hoffmann (Mitchell and Hoffmann, 2010) found
that the static and ramping measures of heat tolerance were
positively correlated across Drosophila species, suggesting perhaps
some potential for correlated responses to selection. However, only
one study to date has directly assessed the extent to which static
versus ramping measures of heat tolerance share a genetic basis.
Specifically, using a multivariate approach, we have recently shown
(van Heerwaarden and Sgrò, 2013) that D. simulans harbours
significant levels of additive genetic variation for both ramping and
static measures of heat tolerance, and that both types of traits will
contribute to selection for increased heat tolerance in this species via
direct and correlated responses. These results contrast with those for
D. melanogaster (Mitchell and Hoffmann, 2010), which were based
on a univariate assessment of adaptive capacity.

The aim of the present study was therefore to examine the extent
to which static and dynamic measures of heat tolerance in D.
melanogaster share a genetic basis, and to determine whether the
evolution of heat tolerance in natural populations of this widespread
species might indeed be constrained by low additive genetic
variances within or covariances between different measures of heat
tolerance. We did this by estimating additive genetic variances and
covariances for three commonly used measures of heat tolerance,
static basal and hardened heat knockdown time and ramping
(dynamic) heat knockdown time, in a single population of D.
melanogaster. Previous work (Sgrò et al., 2010) has shown that all
three measures of heat tolerance show parallel clines in D.
melanogaster populations from along the east coast of Australia that
reflect the action of selection and not neutral processes.
Furthermore, we know that temperature is a significant selective
agent for Drosophila (Huey and Pascual, 2009; Kellermann et al.,
2012; Rego et al., 2010), and the observed clinal patterns in heat
tolerance in D. melanogaster (Sgrò et al., 2010) reflect this.
However, whether these parallel clinal patterns are the result of
independent selection acting on all three measures of heat tolerance
or reflect a shared genetic basis remains unknown. We therefore
performed a half-sib–full-sib breeding design to empirically assess
the additive genetic variance for, and additive genetic covariances
between, all three measures of heat tolerance. This allowed us to test
whether the predictions arising from previous work (Mitchell and
Hoffmann, 2010) in D. melanogaster, where univariate estimates of
adaptive capacity suggest a limit for adapting to the gradual
increases in temperature that are commonly experienced in nature,
hold true when an explicitly multivariate perspective is taken.

RESULTS
Genetic variation and covariation for heat tolerance
We detected significant levels of additive genetic variance only for the
two static measures of heat tolerance (Table 1). The additive genetic

covariance between basal and hardened knockdown time was positive
and significantly different from zero. The covariances between
ramping heat knockdown time and both static basal and hardened heat
knockdown time were not significantly different from zero (Table 1).

One additive genetic correlation was significantly different from
zero: a significant positive genetic correlation was found between
basal and hardened heat knockdown time (Table 1). This genetic
correlation was significantly different from zero but not one,
implying that both traits will show correlated evolutionary responses
to selection pressures. None of the genetic correlations between
ramping and either static measure of heat tolerance were
significantly different from zero (Table 1).

Eigen analysis of G – estimating gmax
The genetic relationship between all three traits was investigated by
examining the additive genetic variance–covariance (G) matrix. An
eigen analysis of G was performed to determine how many
genetically independent traits (eigenvectors) were represented by the
three original traits measured, and how much genetic variance
(eigenvalues) was associated with each eigenvector. The eigen
analysis revealed that the genetic variance in G was distributed in a
single dimension (Table 2). The first eigenvector gmax explained
88.71% of the total additive genetic variance in G. That is, most of
the additive genetic variance in all three traits measured can be
represented by the first eigenvector, gmax. Basal, hardened and
ramping heat knockdown time all loaded positively to gmax. Basal
knockdown time made the largest contribution to this vector
(Table 2). Ramping knockdown time made a large positive
contribution to the second eigenvector, g2, with a much smaller
positive contribution from static hardened heat knockdown time.
Static basal heat knockdown made a small negative contribution to
this eigenvector. However, this eigenvector only accounted for a

Table 1. Additive genetic variance and covariance matrix (G)
estimated from the model with unconstrained sire-level variances
and covariances, and additive genetic correlations

Basal Hardened Ramping

Basal 0.3376a 0.2011a 0.0572
Hardened 0.8958b,c 0.1512a 0.0412
Ramping 0.4383 0.4679 0.053

Additive genetic variances on the diagonal; additive genetic covariances
above the diagonal; additive genetic correlations below the diagonal. Basal,
static basal heat knockdown time; hardened, static hardened heat
knockdown time; ramping, ramping (dynamic) heat knockdown time.
Estimates are based on raw data variance standardised by observer.
aP<0.05 for log likelihood ratio test of significant difference from zero.
bP<0.05 for log likelihood ratio test of significant difference from zero.
cP>0.05 for log likelihood ratio test of significant difference from one.

Table 2. Eigen analysis of genetic variation for all traits examined
gmax g2 g3

VA 47.78 4.19 2.19
%VA total 88.21 7.73 4.09
Basal 0.8307 −0.2498 −0.5019
Hardened 0.5322 0.0789 0.8429
Ramping 0.1634 0.9673 −0.1938

Data shown are trait loadings on eigenvectors of the unconstrained sire-level
additive genetic variance covariance matrix (G), the additive genetic variance
(VA, eigenvalue) associated with each eigenvector, and the percentage of the
total additive genetic (%VA) variance explained by each eigenvector. 
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small amount of the total additive genetic variance in G (Table 2).
The third eigenvector, g3, only accounted for 4% of the total additive
genetic variance in G, with negative contributions from ramping and
static basal knockdown time, and a large positive contribution from
static hardened heat knockdown time.

Factor analytic modelling – dimensionality of G
Factor analytic modelling tested the statistical significance of the
genetic dimensions described by G. Of the three dimensions, only
the first was significant (Table 3), and therefore only gmax can be
considered to display significant genetic variance.

The first two dimensions were displayed in a biplot to visualise
the genetic relationships between the three traits (Fig. 1). In the
biplot, the squared length of a vector is the variance explained by
the two dimensions, while the cosine angle between vectors is the
genetic correlation between them in this two-dimensional space
(Smith et al., 2001). Therefore, vectors orientated in the same
direction have a high correlation. As the angle between vectors
increases, the genetic correlation decreases. Therefore, basal and
hardened heat knockdown time have vectors of similar direction and
magnitude, reflecting the high pair-wise genetic correlation between
them (Table 1). In contrast, ramping heat knockdown time has a
vector in a different direction, and the genetic correlation between
this trait and both basal and hardened heat knockdown time is
reduced (Table 1).

Univariate measures of evolvability
Narrow-sense heritability estimates were only significant for static
basal heat knockdown time (Table 4). The non-significant

heritability for static hardened heat knockdown time seems to be
driven by higher environmental variance, as significant levels of
additive genetic variance were detected (Tables 1, 4). In contrast,
very low levels of additive genetic variance, rather than inflated
environmental variance, seem to be driving the non-significant
heritability estimate for ramping heat knockdown time (Table 4).
This interpretation is supported by the mean standardised estimates
of variation (Table 4), where the coefficients of additive genetic
variation and environmental variation were larger for static basal
heat knockdown time, and very much smaller for ramping heat
knockdown time. The lower evolvability estimate for ramping heat
knockdown time suggests that the potential rate of univariate
evolutionary change in this trait is less than for either static basal
and hardened heat knockdown (Table 4).

DISCUSSION
Climate change is expected to impose increasing selection on upper
thermal limits. There has subsequently been mounting interest in
understanding the extent to which the evolution of upper thermal
limits might be constrained by low additive genetic variance
(Kellermann et al., 2012; Mitchell and Hoffmann, 2010). It has
recently been suggested that inferences about an organisms’ ability
to evolve higher upper thermal limits will depend on how heat
tolerance is measured (Chown et al., 2009; Mitchell and Hoffmann,
2010; Rezende et al., 2011; Santos et al., 2012). Specifically,
estimates of heritability using ramping assays may be reduced
largely because this measure incorporates more stochasticity, thereby
increasing the environmental variance (Chown et al., 2009; Rezende
et al., 2011; Santos et al., 2012). In the first direct test of these ideas,
Mitchell and Hoffmann (Mitchell and Hoffmann, 2010) did indeed
show that the narrow-sense heritability for ramping heat knockdown
time was not significantly different from zero. However, they clearly
showed that this was due to reduced additive genetic variance, and
not inflated environmental variance.

However, this debate has occurred within a univariate framework,
and ignores the fact that the ability of a population to respond to
selection for increasing heat tolerance will be determined by the
patterns of genetic variation and covariation in the traits under
selection. The results of Mitchell and Hoffmann (Mitchell and
Hoffmann, 2010) seem to be at odds with the parallel linear clines
in static and ramping female heat tolerance reported for D.
melanogaster populations from eastern Australia (Sgrò et al., 2010).
Whether the cline in ramping heat knockdown time in D.
melanogaster is the result of correlated responses to selection on an
unmeasured trait could not be determined, as Mitchell and
Hoffmann (Mitchell and Hoffmann, 2010) did not assess the
additive genetic covariance between the different measures of heat
tolerance.

Thus the motivation of our study was to take a multivariate
approach to estimating adaptive capacity for upper thermal limits,
and in doing so determine the extent to which adaptive capacity
differs across three different, but commonly used, measures of heat
tolerance in D. melanogaster. We first showed significant additive
genetic variance only for the static measures of heat tolerance. We

Table 3. Factor analysis of dimensions of (G) showing −2 log-likelihood scores, covariance parameters and significance for adding a
dimension (factor)
No. factors (dimensions) −2 log-likelihood Covariance parameters χ2 d.f. P

2 7407.1 14 2.3 2 0.317
1 7404.8 12 10.8 3 0.013
0 7415.6 12
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Fig. 1. Biplot of the first two dimensions of genetic variance (and the
percent total additive genetic variance explained by each dimension)
among the three traits measured. Each vector relates to one of the three
traits measured: b, static basal heat knockdown time; h, static hardened heat
knockdown time; r, ramping (dynamic) heat knockdown time.
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then demonstrated that the additive genetic variance covariance
matrix, G, is of reduced rank, with only the first eigenvector, gmax,
explaining most (88%) of the total additive genetic variance in G.
Basal and hardened static heat knockdown time made the largest
contributions to gmax, with a much smaller contribution by ramping
heat knockdown time. This suggests that selection for increased heat
tolerance (in the direction of gmax) should result in evolutionary
increases in heat tolerance in the two static traits, with a very small
response in the ramping measure.

We also showed that static basal and hardened knockdown time
were positively genetically correlated to each other. In contrast, the
genetic correlations between ramping and both static measures of heat
knockdown time were not significantly different from zero. Although
Mitchell and Hoffmann (Mitchell and Hoffmann, 2010) suggested that
static basal and ramping heat knockdown time might be correlated
based on inter-specific correlations between the two traits, our data
indicate that adult responses to static and ramping thermal stress are
largely genetically independent, which is consistent with recent work
in D. simulans (van Heerwaarden and Sgrò, 2013). We also show that
ramping heat knockdown time and static hardened heat knockdown
time are genetically independent of each other at least in the
population of D. melanogaster examined here. These results are also
consistent with recent work in D. simulans (van Heerwaarden and
Sgrò, 2013). As ramping involves a gradual increase in temperature,
it has been suggested that responses to ramping heat stress likely
involves hardening responses (Chown et al., 2009; Rezende et al.,
2011; Sgrò et al., 2010). However, our results indicate that the two
measures are not genetically related.

Our results therefore suggest that the parallel clines observed in
all three traits in populations of D. melanogaster from eastern
Australia (Sgrò et al., 2010) are likely the result of both direct and
correlated responses to selection. This is possible in spite of the non-
significant univariate estimates of additive genetic variance for
ramping heat knockdown time because this trait still made a
positive, although small, contribution to gmax (Lynch and Walsh,
1998), and gmax was the only vector (combination of independent
traits) that displayed significant additive genetic variance in
multivariate space. It is also possible that the cline in ramping heat
knockdown time is the result of historical directional selection that
resulted in the depletion of additive genetic variance for this trait
over time (Blows and Hoffmann, 2005).

Our univariate analysis was consistent with the results of Mitchell
and Hoffmann (Mitchell and Hoffmann, 2010). Narrow-sense
heritability estimates for ramping heat knockdown time were not
significantly different from zero because of low levels of additive
genetic variance for this trait, not because of increased
environmental variance (see Santos et al., 2012). Indeed, the
environmental variance for ramping heat knockdown time was
smaller than for either of the static measures of heat tolerance, as

was the mean standardised coefficient of environmental variation.
These results are also consistent with those reported for the same
measures of heat tolerance in D. simulans (van Heerwaarden and
Sgrò, 2013). Taken together, these results suggest that estimates of
adaptive capacity for ramping measures of heat tolerance using the
slower rates of temperature increase (0.06°C min−1) are not
downwardly biased by increased levels of stochasticity as argued by
Santos et al. (Santos et al., 2012). Nor are they confounded by
starvation or desiccation stress (Overgaard et al., 2012). Why D.
melanogaster displays non-significant levels of additive genetic
variance for ramping heat knockdown time, in contrast to the
similarly widespread D. simulans, is puzzling. Finally, the non-
significant narrow-sense heritability for hardened heat knockdown
time reported here reflects an increased environmental variance for
this trait, because it did display significant additive genetic variance.
These results again contrast with those reported for hardened heat
knockdown time in D. simulans, where both narrow-sense
heritability and the additive genetic variance were significantly
different from zero. Whether these results extend to other
Drosophila species or insects is not yet known.

It is important to note that a true empirical test of the extent to
which the evolution of heat tolerance in D. melanogaster may or
may not be constrained by genetic variances or covariances requires
an estimate of both the additive genetic variance–covariance matrix
(G) and the vector of directional selection gradient, β, for all traits
(Lynch and Walsh, 1998). While we have estimated the former, we
do not have direct estimates of β for any of the traits examined. We
can only infer the role of natural selection from clinal studies of D.
melanogaster from eastern Australia that demonstrate parallel clines
in all three heat tolerance traits (Sgrò et al., 2010) as well as clines
in starvation resistance and body (wing) size (James et al., 1995)
that have been shown to result from selection rather than genetic
drift. Whether on-going selection for increased heat tolerance in D.
melanogaster will result in unconstrained long-term evolutionary
responses, or whether the multivariate genetic variance for upper
thermal limits might be exhausted, resulting in a selection response
plateau (Gilchrist and Huey, 1999), remains to be investigated.
Further studies that take an explicitly multivariate perspective to this
question are required.

In conclusion, we have shown that D. melanogaster does indeed
harbour reduced additive genetic variation for a dynamic measure
of heat tolerance. However, our multivariate analysis shows that
selection for increased heat tolerance will be possible, largely as the
result of direct and correlated responses in static measures of heat
tolerances, with only a small contribution from the dynamic
measure. Further empirical studies that take an explicitly
multivariate perspective to the evolution of thermal tolerance across
more taxa are needed to obtain a clearer understanding of adaptive
capacity for upper thermal limits.

Table 4. Mean (±s.e.m.) heat knockdown time (min), additive genetic variance (VA), environmental variance (VE), phenotypic variance (VP)
and narrow-sense heritability (h2), evolvability (IA; ×100), coefficient of additive genetic variance (CVA) and coefficient of environmental
variance (CVE) for basal, static hardened and ramping heat knockdown time

Heat knockdown 
Trait time (min) VA VE VP h2 IA CVA CVE N

Basal 26.16±0.20 13.25±4.09a 29.35±1.92 35.33±1.69 0.375±0.12* 1.94 0.139 0.043 964
Hardened 32.38±0.22 6.51±3.65a 34.42±2.27 39.53±1.86 0.165±0.09 0.62 0.079 0.033 945
Ramping 186.92±0.18 1.47±1.31 13.87±0.91 15.39±0.72 0.096±0.09 0.004 0.006 0.0004 932

N, sample size. Estimated from raw data, not variance standardised by scorer.
aP<0.05 for log likelihood ratio test of significant difference from zero. 
*P<0.05.
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MATERIALS AND METHODS
Experimental population and data collection
Drosophila melanogaster Meigen 1830 were collected from Coffs Harbour,
a mid-latitude (latitude 30.30°S, longitude 153.12°E) site along the east
coast of Australia, using banana baits in March 2012. Fifty field-inseminated
females were collected and used to establish iso-female lines in the
laboratory at 25°C under a 12 h:12 h light:dark cycle at 95–100% humidity.
Species identification was confirmed in the F1 generation by examining
males from each iso-female line, to ensure all lines were in fact D.
melanogaster. These iso-female lines were then allowed an additional
generation in the laboratory to ensure large population sizes in each line
prior to setting up a mass-bred population. In the second generation after
collection (F2), a mass-bred population was founded with 10 males and 10
females from each of the 50 iso-female lines. This mass-bred population was
kept at 25°C under a 12 h:12 h light:dark cycle at 95–100% humidity in
three 250 ml bottles containing 60 ml of potato, yeast and sucrose medium.

After five generations of mass rearing (to minimise laboratory adaptation
and to ensure the break-up of linkage disequilibrium resulting from crossing
iso-female lines), we used a paternal half-sibling breeding design to estimate
the additive genetic variances and covariances underlying the different
measures of heat tolerance. The parents of the focal flies were reared at
controlled densities of 40 eggs per vial, and were collected within 6 h of
emergence. Virgin females and males were separated using light (less than
2 min exposure) CO2 anaesthesia and held in separate vials by sex, at a
density of ~20–30 individuals per vial until 4 days old. One-hundred and
seventy virgin males (sires) were randomly selected from all holding vials.
Each sire was placed in a vial containing 6 ml of food medium and ad
libitum live yeast, with five virgin females (dams) and left to mate for
3 days. After this time, each dam was placed individually in a separate vial
and allowed to lay eggs for 6 to 8 h to control larval density to no more than
20 larvae per vial, then moved to a fresh vial and allowed to lay eggs for a
further 6 h. Densities were ~300–350 flies per bottle to ensure a census
population size of 900+ individuals.

Generation six individuals – the focal offspring – were collected within
1 day of emerging in vials and held together in a fresh food vial for a further
48 h to ensure females were mated. After 48 h, females were separated using
light CO2 anaesthesia and allowed to recover for a further 48 h. Two females
from each vial were measured for each heat tolerance assay (for a total 100
sires, each mated to five dams, with two offspring per dam measured for
each assay of heat tolerance). Flies used in the heat tolerance assays were 5
to 6 days old. The half-sibling breeding experiment was performed at 25°C
under a 12 h:12 h light:dark cycle at 95–100% humidity.

Heat tolerance assays
Basal and hardened heat knockdown time
Females were placed individually in 5 ml glass vials, and exposed acutely
to 38.5°C by immersion in a preheated re-circulating water bath. The
hardening treatment involved exposure of flies to 35°C for 30 min followed
by recovery at 25°C for 3 h prior to the knockdown assay being performed
(van Heerwaarden et al., 2012; van Heerwaarden and Sgrò, 2013). Basal and
hardened flies were tested simultaneously. Heat knockdown time was scored
as the time taken for all flies to be knocked down and immobilised. Heat
knockdown time was assessed over 2 days, with six runs performed each
day. The same two people (observers) performed all of the heat knockdown
assays across all runs.

Ramping (dynamic) heat knockdown time
Individual females were placed in 5 ml glass vials, which were submerged
into a water bath heated to 28°C. The temperature was increased gradually
by 0.06°C min−1, which is representative of maximal rates of temperature
increase in southeastern Australia (van Heerwaarden et al., 2012) and other
parts of the world (Nyamukondiwa and Terblanche, 2010; Terblanche et al.,
2011). A data logger (Maxim Integrated i-button DS1923) was submerged
into the heated water bath (along with the flies) to record the temperature of
the heated water bath throughout the experiment. Resistance was scored as
the time taken for all flies to be knocked down, ensuring that all three traits
were measured on the same scale. Note that this measure is equivalent to
CTmax, because the temperature was increased at the rate of 0.06°C min−1

until all flies had succumbed to heat stress. The ramping assays were
performed over 2 days with two runs per day. The same two people
(observers) performed all of the heat knockdown assays across all runs.

Estimating the additive genetic covariance matrix, G
Our data were generated from a standard paternal half-sibling breeding
design (Lynch and Walsh, 1998). The mixed model used to analyse the data
was:

y = α + XB + Zsds+ Zddd + e , (1)

where α is the grad mean of each trait; X is the design matrix for the fixed
effect of run, B; Zs and Zd are the design matrices for the random effects of
sire and dam, respectively; ds and dd are the effect of the sire and the effect
of dam nested within sire, respectively; and e is the residual variance. The
total phenotypic variance (σ2

P) for the breeding design for the purpose of
estimating genetic parameters was represented by:

σ2
P = σ2

S + σ2
D + σ2

W , (2)

where σ2
S, σ2

D and σ2
W, are the sire, dam and within-group level variance

components, respectively. Variance and covariance components were
estimated using restricted maximum likelihood implemented via the MIXED
procedure in SAS (SAS Institute, Cary, NC, USA). As we used a half-
sib–full-sib breeding design, the sire variance, σ2

S, is one-fourth of the
additive genetic variance (VA) (Falconer and Mackay, 1996; McGuigan et
al., 2011). Thus, to estimate VA, we multiplied the sire variance by four.

It has recently been suggested that observer error will affect the estimation
of variance components for traits such as heat knockdown time (Castañeda
et al., 2012) and that multiple measurements for every individual should be
taken, and repeatability statistics reported for thermotolerance. This is not
feasible in experiments such as those described here. Instead, we checked
for a significant effect of observer on the phenotypic variance of all three
measures of heat knockdown time prior to estimating the variance
components using Levene’s test for equal variances. Observer had a
significant effect on the variance of ramping (F1,932=5.86, P<0.05) and static
basal (F1,964=5.83, P<0.05) heat knockdown time, but not static hardened
knockdown time (not shown). To ensure that this did not bias estimates of
the variance and covariance components, we variance standardised all of the
heat knockdown time data by observer prior to the analyses described below.
Run did not affect the variances (not shown), but did affect the means, so
was treated as a fixed effect in the model described above.

The additive genetic variance for each trait was first estimated using a
univariate model. Log likelihood ratio tests were performed, where the final
model for each trait was compared with a model specifying σ2

S to be zero,
to determine whether levels of additive genetic variance for each trait were
significantly different from zero (Littell et al., 1996; McGuigan et al., 2011;
Simonsen and Stinchcombe, 2010). We then estimated the unconstrained G
matrix. In both cases, the variance at both the sire, ds, and the dam, dd, levels
was modelled using an unstructured covariance matrix. The additive genetic
variance and covariance components of G were individually tested for
significance from zero by performing log likelihood ratio tests where the
final models for each trait were compared with models specifying σ2

S and
the sire-level covariances (COVS) to be zero (Littell et al., 1996; McGuigan
et al., 2011; Simonsen and Stinchcombe, 2010).

Dimensions of G
To examine the distribution of genetic variance in multivariate space, two
complimentary approaches were utilised to estimate the number of
dimensions of G.

Eigen analysis of G – estimating gmax
To determine how many genetically independent traits (eigenvectors) were
represented by the original traits (phenotypes) actually measured, and how
much genetic variance (eigenvalues) was associated with each independent
set of eigenvectors (traits), eigen analysis of the unconstrained additive
genetic variance covariance matrix, G, was performed using the matrix
analysis option implemented in the Microsoft Excel add-in PopTools (Hood,
2010). The eigenvector with the largest eigenvalue (gmax) (Schluter, 1996)
is the vector explaining most of the additive genetic variance in the G
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matrix. The traits (eigenvectors) that load onto gmax represent independent
trait combinations that together account for the most additive genetic
variance in G.

Factor analytic analysis of G
Factor analytic modelling was then used to determine how many factors
(dimensions) of G are required to describe all of the genetic variation across
the three traits examined (Hine and Blows, 2006; McGuigan and Blows,
2010). Factor analytic modelling reports the fit of the model for the number
of factors (dimensions) specified using a factor analytic covariance structure
rather than the unstructured covariance at the sire level. In order to
determine the number of significant genetic dimensions of G, the fit of the
model was determined for one through to three genetic dimensions. The
significance of the nth dimension was then tested by comparing the model
with a model with n–1 dimensions in a hierarchical fashion (McGuigan and
Blows, 2010). For example, to test for the significance of the second
dimension of G, the model with two dimensions was compared with the
model with one dimension. The χ2 value is the difference in –2 log-
likelihood scores between the two models, and the degrees of freedom are
the difference in the number of covariance parameters associated with the
two models. If the test produced a significant χ2, then adding the second
dimension produced a significantly improved model. If the test produced a
non-significant χ2, then adding the second dimension produced a
significantly inferior model.

Additive genetic correlations between heat traits
To complement the multivariate methods described above, we estimated the
additive genetic correlation between all three traits using the MIXED
procedure of SAS (SAS Institute). Log likelihood ratio tests were used to
test whether any of the additive genetic correlations were significantly
different from both zero and one (Littell et al., 1996; Simonsen and
Stinchcombe, 2010).

Univariate measures of evolvability
To directly assess the extent to which univariate measures of evolvability for
heat tolerance reflected the multivariate analyses described above, we also
estimated the narrow-sense heritability for each trait. Narrow-sense heritability
for each trait was estimated as the additive genetic variance (VA) divided by
the total phenotypic variance (VP) (Falconer and Mackay, 1996; Lynch and
Walsh, 1998). The evolvability, IA, of each trait was estimated as the additive
genetic variance divided by the square of the trait mean following Hansen et
al. (Hansen et al., 2011), as its numerical estimate can be interpreted as the
percent change in a trait under a unit strength of selection.
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