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INTRODUCTION
Stimuli can differ in kind and/or intensity. At the sensory level,
stimulus kind is defined by the type of receptor activated and its
connectivity, while the level or latency of activation of the receptor
codes for the intensity of the stimulus. Thus, processing of stimulus-
kind and stimulus-intensity is entangled: one cannot conceive of a
receptor that is activated, but at no particular level. In turn, a given
level of activation must always be the level of activation of a
particular receptor. At the perceptual level, however, the
entanglement of quality and intensity can be resolved: it is possible
to refer to a smell as ‘fruity’ without specifying the intensity of the
olfactory impression, or to regard the olfactory impression of a
perfume as ‘too much’, without specifying its kind. Clearly, such
disentanglement of intensity from quality is a feature of perception,
brought about by post-receptor computations. It is one of the more
challenging tasks to understand these computations neurobiologically.

In this context, we decided to study intensity processing in
olfactory associative function; that is, olfactory discrimination
learning can rely either on intensity differences, quality differences,
or both. While the coding of odour quality is often proposed to be
combinatorial along the olfactory pathway (see Discussion), and
although a fairly explicit working hypothesis about short-term odour
quality memory trace formation is available (see Discussion), it is
less obvious how odour intensity information is organized. In the

present paper, we focus on the question whether odour intensity
information is included in olfactory memory traces at all.

We tackle this issue using odour–sugar associative conditioning
in larval Drosophila (Fig.1A) (Scherer et al., 2003; Michels et
al., 2005; Neuser et al., 2005; Mishra et al., 2010; Chen et al.,
2011; Michels et al., 2011; Saumweber et al., 2011a; Saumweber
et al., 2011b) (for reviews, see Gerber and Stocker, 2007; Gerber
et al., 2009; Diegelmann et al., 2013). This is a suitable system
for such a study due to its simplicity in terms of cell number, its
genetic tractability and the robustness of the paradigm. Last, but
not least, the circuit architecture of the olfactory pathway of the
larva (as of insects in general) is functionally analogous to that
in vertebrates (for reviews, see Hildebrand and Shepherd, 1997;
Strausfeld and Hildebrand, 1999; Korsching, 2002; Davis, 2004;
Ache and Young, 2005; Bargmann, 2006; Ramdya and Benton,
2010; Wilson, 2008; Galizia and Rössler, 2010), rendering
experimental as well as computational studies of insect olfaction
potentially inspiring on a broader scale.

Our approach follows the one advocated for adult flies (Yarali
et al., 2009) [that paper also includes a discussion of alternative
approaches (Xia and Tully, 2007; DasGupta and Waddell, 2008;
Masek and Heisenberg, 2008)]. A distinguishing feature of this
approach is that first the dose–effect curves of learnability are
described. This allows choosing odour intensities appropriate for
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an intensity generalization type of experiment (see Fig.1B), where
we train larvae to a medium intensity, but test them with either a
lower or higher intensity of the trained odour. The rationale of this
experimental design is that if associative testing scores turn out to
increase when the testing intensity is higher than the training
intensity, this must be because a higher intensity is judged by the
larvae as ‘more of the trained’ odour (Fig.1Bi). If, in contrast, the
larvae regard a higher intensity as ‘something different’, we should
observe a generalization decrement for the higher testing condition
(Fig.1Bii). This latter result would imply that the memory trace
established by the larvae during training is parametrically specific
for the trained intensity of the odour.

MATERIALS AND METHODS
Flies

Third-instar, feeding-stage Drosophila larvae (5days after egg
laying) of the Canton Special wild-type strain were used. The flies
were kept in mass culture under a 14h:10h light:dark cycle at 25°C
and 60–70% relative humidity. For the learning assay, a spoonful
of medium containing larvae was placed in an empty Petri dish, and
30 larvae were collected and washed in distilled water. Experiments
complied with applicable law.

Petri dishes
One day prior to the experiment, Petri dishes of 85mm inner
diameter (Sarstedt, Nümbrecht, Germany) were filled either with a
solution of 1% agarose (electrophoresis grade) or 1% agarose with
2moll–1 fructose (both from Roth, Karlsruhe, Germany). Once the
agarose had solidified, dishes were covered with their lids and left
until the following day.

Learning assay
Learning assays were performed under a fume hood at 21–26°C,
under room light from a fluorescent lamp. Larvae were trained and
tested in cohorts of 30, using either of two reciprocal training
regimen (for a sketch see Fig.1A). For each regimen, the sequence
of training trials was balanced across repetitions of the experiment.
For example, at the beginning of training, two odour-filled Teflon
containers were placed at opposite sides of a Petri dish containing
agarose, with added fructose (Odour +). Larvae were placed in the
middle of this dish and left crawling for 5min. They were then
removed to another Petri dish containing two empty Teflon
containers (EM) and filled with only agarose, where they also spent
5min. This cycle of Odour+/EM training was repeated three times,
using fresh Petri dishes each time. At the end of training, larvae
were placed in the middle of a Petri dish filled with only agarose.
Teflon containers were placed on opposing sides, one filled with
the odour and one empty; the sidedness of placing these containers
was balanced across repetitions of the experiment. After 3min, larvae
on each half of the Petri dish were counted to calculate a preference
index (Pref) as:

Pref = (NOdour – NEM)/NTotal . (1)

In this formula, N is the number of larvae on the corresponding side
of the dish. Pref values thus range from –1 to 1; negative values
indicate avoidance of the odour, positive values reflect approach.
The Pref scores for all experiments are documented in supplementary
material FigsS1, S2 and S4.

Alternately, we trained larvae reciprocally, that is by unpaired
presentations of odour and reward (Odour/EM+) and then tested
them as described above. An associative performance index (PI)
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Fig.1. Experimental design. (A)Larvae are trained and tested in cohorts of 30, using a reciprocal training regimen. At the beginning of training, odour (magenta
cloud) is presented to a Petri dish containing agarose, with added fructose (+). Larvae are then removed to another dish containing no odour and filled with only
agarose. This cycle of training is repeated three times. For the test, larvae are placed in the middle of a dish filled with only agarose; on one side odour is
presented, and on the other side no odour is presented. After 3min, larvae on each half of the dish are counted. Alternately, we train larvae reciprocally, by
unpaired presentation of fructose and odour. This allows for subsequent calculation of a performance index (PI) comparing the preference values (Pref) between
the reciprocally trained groups. The sequence of training trials within groups as well as the sidedness of placing these containers is balanced across repetitions
of the experiment. (B)To test for intensity learning, we train larvae with a medium odour intensity and during the subsequent test either the same trained
medium intensity, or a lower, or a higher odour intensity is presented; (i) no intensity learning: increased levels of conditioned behaviour when the test intensity
is higher than in training indicate that the intensity parameter is not included in the memory trace; (ii) intensity learning: if we see the full level of conditioned
behaviour only when training and testing odour intensities are matching, we conclude that the intensity parameter is included in the memory trace.
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Fig. 2. See next page for legend.

THE JOURNAL OF EXPERIMENTAL BIOLOGY



1555Odour-intensity memory

can then be calculated based on the difference in odour preference
between these two reciprocally trained groups (Saumweber, 2007;
Selcho et al., 2009; Saumweber et al., 2011a; Saumweber et al.,
2011b):

PI = (PrefOdour+/EM – PrefOdour/EM+)/2 . (2)

The subscripts of Pref indicate the respective training regimen.
These associative performance indices thus range from –1 to 1,
positive values indicating conditioned approach (appetitive
learning), and negative values indicating conditioned avoidance
(aversive learning).

Odours
As odours, we used 3-octanol (3-Oct), n-amyl acetate (AM), 1-octen-
3-ol (1-Oct-3-ol), linalool (Lin) and 1-octanol (1-Oct) (all from
Merck, Darmstadt, Germany; CAS: 589-98-0, 628-63-7, 3391-86-
4, 78-70-6, 111-87-5), and hexyl acetate (HA), benzaldehyde (BA)
and 4-methylcyclohexanol (MCH) (from Sigma-Aldrich, Steinheim,
Germany; CAS: 142-92-7, 100-52-7, 589-91-3). Odours were
diluted in paraffin oil (Merck) as described in the Results section.
In each case, 10μl of odour solution was applied to custom-made
Teflon containers with an inner diameter of 5mm, and a perforated
cap with seven holes of 0.5mm diameter each.

For AM, 3-Oct, 1-Oct-3-ol and BA we describe the dose–effect
functions of learnability and probe for the intensity specificity of
the memory trace; for the remaining odours, we restrict ourselves
to documenting the dose–effect functions of learnability and the
underlying preferences (supplementary material Fig.S2), either

because learnability is undesirably low (1-Oct, MCH, Lin), or in
the case of HA because a high similarity, both physico-chemically
and perceptually (Chen et al., 2011), seems to make HA redundant
to AM. A summary of the dose–effect functions of learnability for
all odours can be found in supplementary material Fig.S3.

Statistics
Data were collected in parallel for all the groups to be statistically
compared, using non-parametric analyses throughout.
Kruskal–Wallis (KW) tests were used to compare across multiple
groups; in case of significance, we separately tested the scores of
single groups against zero using one-sample sign (OSS) tests. The
significance level for these tests was set to 0.05, maintaining an
experiment-wide error rate of 5% by a Bonferroni correction. That
is, in a case where for example five groups are to be compared
individually with zero, the critical P-level is set to 0.05/5=0.01. The
Mann–Whitney U-test (MWU) along with the Bonferroni correction
was used to compare two groups with each other. All statistical
analyses were performed with Statistica (version 8.0, StatSoft, Tulsa,
OK, USA) on a PC.

Performance indices are presented as box plots with the median
as mid-line, box boundaries as the 25/75% quartiles and whiskers
as the 10/90% quantiles. Sample sizes are given in the figures.

RESULTS
Memory is intensity specific for n-amyl acetate, 3-octanol and

1-octen-3-ol
Using AM as odour, we find an optimum function for associative
performance indices across odour intensities (Fig.2Ai; KW test:
H=47.4, d.f.=7, P<0.05). Specifically, at intermediate intensities
significant associative scores are obtained, whereas the lowest
intensity used is apparently not learnable; notably, also at the highest
intensity performance indices do not formally differ from chance
(Fig.2Ai; OSS tests with P<0.05/8 as criterion for significance).
This is probably because at such high intensity the relatively strong
innate preference for AM hinders revealing an associative memory
(see supplementary material Fig.S1A). We therefore restrict our
choice of odour intensities up to the 1:10 dilution.

To probe for a possible intensity specificity of the AM memory
trace, we used an intensity that supports about half-maximal
associative performance indices (Fig.2Aii), allowing us to detect
both increases and decreases in scores. Specifically, we chose
1:104 as the medium intensity for training, and then tested larvae
either at lower (1:105, 1:106) or higher (1:103, 1:102, 1:10)
intensities. It turns out that as the testing intensities deviate from
the training intensity towards either higher or lower intensities,
performance indices approach zero (Fig.3A: OSS tests with
P<0.05/6 as criterion for significance; the KW test across all
groups yields P<0.05, H=29.4, d.f.=5). Thus, in order to support
full retention, the testing intensity needs to match the training
intensity; this follows scenario ii in Fig.1B. Given that for 3-Oct
and 1-Oct-3-ol we obtain the same results (Fig.2B,C, Fig.3B,C;
for statistics, see legends), we conclude that as a rule olfactory
associative learning establishes intensity-specific memory traces
in larval Drosophila.

Is benzaldehyde an exception?
In the adult, BA memories do not seem to be intensity specific as
assayed in an odour–electric shock associative paradigm: higher-
than-trained BA intensities support higher associative performance
indices than the actually trained intensity [see fig.4D in our previous
paper (Yarali et al., 2009); for a replication within the present study,

Fig.2. Dose dependency of learnability. Dose–effect curves of learnability
across odour intensities for four different odours: (A) n-amyl acetate (AM),
(B) 3-octanol (3-Oct), (C) 1-octen-3-ol (1-Oct-3-ol) and (D) benzaldehyde
(BA). In the i parts, data are presented as box plots (median as the mid-
line, 25/75% quartiles as box boundaries and the 10/90% quantiles as
whiskers). *P<0.05 refers to global comparisons across odour intensities in
KW tests. Shading of a box indicates that the performance indices
significantly differ from zero (OSS tests, Bonferroni corrected). Respective
sample sizes are shown at bottom corners of the graphs. In the ii parts, the
median performance indices from i are plotted over odour dilution, on a
logarithmic axis. From these curves odour dilutions for the follow-up
experiments (Fig.3) are chosen such that they support about half-maximal
performance indices, designated as medium intensity, as well as
respectively lower and higher intensities. (Ai)For AM we find an optimum
function for associative performance scores across odour intensities; from ii
we designate 1:104 as the medium intensity, 1:105 as well as 1:106 as
lower, and 1:103, 1:102 as well as 1:10 as higher intensities (for statistics,
see text). (Bi)For 3-Oct, associative performance indices at very low
intensity are not significantly different from zero, whereas all other groups
do show significant learning scores (OSS tests with P<0.05/6 as criterion
for significance) (the KW test across groups yields H=13.89, d.f.=5,
P<0.05), although one may note a trend for decreasing performance
indices for the highest intensity used. From ii, we identify 1:106 as the
medium intensity, 1:108 as a lower intensity, and 1:104 as well as 1:103 as
higher intensities. (Ci)For 1-Oct-3-ol, we find an optimum function for
associative performance scores across odour intensities (KW test: H=28.1,
d.f.=6, P<0.05): at very low and very high odour intensities, performance
indices are not significantly different from zero, whereas the other groups
do show significant associative performance scores (OSS tests with
P<0.05/7 as criterion for significance). From ii, we designate 5.6:106 as the
medium intensity, 1:106 as lower, and 1:104 as well as 1:103 as higher
odour intensities. (Di)For very low intensities of BA, associative
performance indices are not significantly different from zero, whereas all
other groups do show significant scores (OSS tests with P<0.05/7 as
criterion for significance) (the KW test across groups yields H=43.3, d.f.=6,
P<0.05). From ii, we designate 1:102 as the medium intensity, 1:103 as
lower, and 1:10 as well as 1:1 as higher odour intensities.
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Fig.3. Memory traces are intensity specific. Larvae are trained with a given odour intensity, but are tested for retention with either that trained odour
intensity, or with higher or lower intensities. We observe a specificity of retention for the trained intensity for all four odours used: (A) n-amyl acetate (AM),
(B) 3-octanol (3-Oct), (C) 1-octen-3-ol (1-Oct-3-ol) and (D) benzaldehyde (BA). Other details as in Fig.2. (A)After training with a medium intensity of AM,
associative performance indices degrade upon a mismatch between training and testing odour intensities (for statistics, see text). (B)For 3-Oct, larvae show
the highest associative performance indices when the testing intensity matches the training intensity (OSS tests with P<0.05/4 as criterion for significance)
(the respective KW test yields H=8.5, d.f.=3, P<0.05; pair-wise MWU tests confirm this conclusion). (C)For 1-Oct-3-ol, we also observe a loss of associative
performance indices upon a mismatch between training and testing odour intensities (OSS tests with P<0.05/4 as criterion for significance) (the respective
KW test yields H=15.2, d.f.=3, P<0.05; pair-wise MWU tests confirm this conclusion). (Di)For BA, associative performance indices decrease when the
testing odour intensity is lower than the training intensity (MWU test, U=30, P<0.05/3) (scores remain significantly different from zero: OSS test: P<0.05/4).
When testing intensity is higher or much higher than the training intensity, scores remain formally unaltered, despite an apparent trend towards decreasing
scores (MWU tests: medium vs higher, U=90; medium vs much higher, U=64, P>0.05/3 in both cases) (the respective KW test yields H=13.1, d.f.=3,
P<0.05). (Dii) When we use the low intensity of BA as the training intensity, associative performance indices decrease as the testing intensity is increased
towards much higher odour intensity (MWU tests: low vs medium, U=271, P>0.05/3; low vs higher, U=203, P>0.05/3; low vs much higher, U=124, P<0.05/3)
(the respective KW test yields H=10.9, d.f.=3, P<0.05). (E)Semi-schematic summary of the data from A–D. On the x-axis we use a logarithmic scale to
indicate relative odour concentrations. A value of 1 indicates that testing intensity equals training intensity; all other values indicate the fold-mismatch
between training and testing intensity. On the y-axis, for each odour we define the median associative performance index observed when training and
testing intensity match as 1; all other medians regarding that odour then are plotted as normalized performance indices. For all odours used, performance
scores decay upon mismatch in odour intensity between training and test.
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see supplementary material Fig.S5), thus following scenario i in
Fig.1B. We therefore include BA in our analysis concerning the
larva as well.

In the dose–effect description of the learnability of BA,
associative performance indices increase as odour intensity is
increased (Fig.2Di; KW test: H=43.3, d.f.=6, P<0.05). We chose
high, medium and low intensities from this dose–response curve
(Fig.2Dii), and trained the larvae with the medium intensity.
Different groups of larvae were then tested with either the same
medium, with lower, or with higher intensities, respectively. As
expected, when lower intensities are used for testing, associative
performance indices are lower than when the trained medium
intensity is presented at test (Fig.3Di; MWU test: U=30.0,
P<0.05/3). However, associative performance indices remain
unaltered if medium-trained larvae are tested with higher or even
much higher intensities (Fig.3Di; MWU tests: U=90, 64.0, P=0.51,
0.12) (the corresponding KW test yields P<0.05, H=13.11, d.f.=3).
This result is not conclusive regarding the question whether BA
memory traces are intensity specific (compare the data of Fig.3Di
to the two scenarios presented in Fig.1B).

To overcome this deadlock, we trained larvae with a low intensity
and tested them with either that very same trained low intensity, or
the medium, or the higher odour intensity (note that in this
experiment the latter two testing intensities are both higher-than-
trained). Clearly, if the training intensity is relatively low, overall
performance indices are lower (compare the medium-medium
condition in Fig.3Di to the low-low condition in Fig.3Dii); more
critically, we found that associative performance indices are
decreased as testing intensities are strongly elevated above the
trained low intensity [Fig.3Dii; train low, test low versus the groups
tested with medium (MWU test: U=271.0, P=0.42), higher (MWU
test: U=203.0, P=0.2), or tested with much higher intensities (MWU
test: U=124.0, P<0.05/3)] (the corresponding KW test yields:
P<0.05, H=9.16, d.f.=3). Thus just as for all other assayed odours,
these results fit the scenario in Fig.1Bii: BA memories are intensity
specific in larval Drosophila (Fig.3E).

DISCUSSION
We provide an analysis of whether intensity can be a distinctly
learnable parameter of an odour. Indeed, for adult flies (Xia and
Tully, 2007; Masek and Heisenberg, 2008; Yarali et al., 2009) and
bees (Bhagavan and Smith, 1997; Wright et al., 2005; but see Pelz
et al., 1997), such intensity specificity of memory has been reported.
Here, we show that in a system as simple as larval Drosophila, too,
there is intensity learning (Fig.3E). Interestingly, in a corresponding
study in adult Drosophila, three of the four odours used (namely
AM, 3-Oct and 4-methylcyclohexanol) support intensity learning,
but apparently BA does not (Yarali et al., 2009) (for a replication
of this latter result, see supplementary material Fig.S5). This
discrepancy between the intensity specificity of larval and adult BA
memories may be caused either by the difference in learning
paradigms used (e.g. kind of reinforcer, number and duration of
training trials, etc.) or by the fact that in adult Drosophila the genetic
and neuronal basis for BA responsiveness differs from those of other
odours (Helfand and Carlson, 1989; Ayer and Carlson, 1992; Keene
et al., 2004; Yarali et al., 2009), while this is not apparently the
case in the larvae. Also, while many investigators have found that
4-methylcyclohexanol can be learned well in adults (Yarali et al.,
2009), this is not the case in larvae (supplementary material
Fig.S2C). Actually, larvae seem behaviourally little responsive to
4-methylcyclohexanol (supplementary material Fig.S2C). Given that
the general circuit architecture between larvae and adults is rather

similar (Gerber et al., 2009), it is tempting to speculate that these
discrepancies between larvae and adults may be based on different
receptor repertoires of the two life stages (Kreher et al., 2005; Hallem
and Carlson, 2006).

Possible circuitry underlying intensity learning
With respect to larval Drosophila, nothing is known as yet about
the mechanisms of intensity learning. Trivially, the recognition of
a particular odour intensity at test as being different from the trained
one is possible only if the neuronal activity induced by a given odour
intensity differs in at least some respect from the activity induced
by other intensities of that same odour. At which stage along the
olfactory pathway may such dissociation be found? We first briefly
review the architecture of the olfactory pathway (for reviews, see
Vosshall, 2000; Gerber and Stocker, 2007; Vosshall and Stocker,
2007; Stocker, 2008; Gerber et al., 2009; Masse et al., 2009; Touhara
and Vosshall, 2009; Diegelmann et al., 2013) and then suggest two
alternative scenarios for intensity learning.

Different odours initially activate partially overlapping subsets
of olfactory sensory neurons in the olfactory organs, dependent on
the ligand profile of the olfactory receptor protein expressed. In the
larva, each of the 21 olfactory sensory neurons expresses only one
ligand-specifying Or receptor gene, and in turn each receptor gene
is expressed in only one sensory neuron. Each sensory neuron then
innervates one of the 21 glomeruli in the antennal lobe. In analogy
to the situation in adults (Wilson, 2008), the pattern of activity in
the antennal lobe is probably shaped by local interneurons (Thum
et al., 2011). The resulting glomerular activity pattern is picked up
by typically uni-glomerular projection neurons and is relayed both
to pre-motor centers as well as to the Kenyon cells of the mushroom
bodies, which in turn have access to pre-motor areas as well. Thus,
dependent on the ligand profiles of the receptors and the connectivity
in the system, odour quality could be combinatorially encoded along
the olfactory pathway.

As for odour intensity, activity patterns in sensory and
projection neurons seem to broaden with increasing intensity
[larva (Asahina et al., 2009); adult (Ng et al., 2002; Wang et al.,
2003; Root et al., 2007)]; notably, however, at successive
processing stages activity patterns become more and more
intensity invariant (Voeller, 2009). Such nested representations
clearly could not accommodate intensity learning. Suppose that
during training a memory trace was laid down in those neurons
that are activated by the particular odour intensity used. In the
subsequent test, a higher intensity of the same odour would
activate, among other neurons, always all these same neurons,
probably even more strongly than the trained intensity does, hence
inducing at least as strong conditioned behaviour as the trained
intensity. It therefore seems unlikely that the traces of intensity
memories are laid down at a level of processing where olfactory
representations are nested, such as is probably the case for sensory
or projection neurons. At the next level of olfactory processing,
mushroom body Kenyon cells show different levels of intensity
invariance in their responses [locust (Stopfer et al., 2003); adult
Drosophila (Wang et al., 2004; Voeller, 2009)]; critically, the
activity pattern evoked by a low intensity of an odour is not always
fully nested within that evoked by a higher intensity of the same
odour [e.g. for ethyl acetate, see fig.3 in Wang et al. (Wang et
al., 2004)]. It remains unclear what kind of a connectivity scheme
could transform nested representations at the projection neuron
level to intensity-specific representations at the Kenyon cell level.
In any event, taking this scenario to its logical extreme, training
with a particular intensity could lay down a memory trace in a
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Fig.4. Two suggested circuit architectures for intensity learning. We sketch two logical extremes as to how odour intensity may be encoded along the
olfactory pathway. For simplicity, only a few units are displayed at each level of olfactory processing. We exemplify the encoding of three different
intensities: (i) low, (ii) medium and (iii) high. Along the sketched olfactory pathway, those units that are activated by a particular intensity are coloured
accordingly, faintest for low and strongest for high. Arrowheads indicate excitatory outputs; blunt ends represent inhibition. In either scenario (A and B), at
the sensory neuron level, more units are activated with increasing odour intensity; thus the pattern of activity for the low intensity is nested within that for the
medium, which in turn is nested within the pattern for the high. (A)Uni-glomerular projection neurons pick up these nested representations and relay them to
the mushroom body Kenyon cells. Due to an as yet unknown scheme of connectivity from the projection neurons, non-overlapping sets of Kenyon cells are
activated by different odour intensities, enabling intensity-specific memories to be laid down. (B)Omni-glomerular neurons sum up the activity over all
antennal lobe glomeruli. We sketch three omni-glomerular neurons with different sensitivities, i.e. different sigmoidal tuning curves. Note that at the level of
these omni-glomerular neurons, too, we obtain nested representations for different intensities as low<medium<high. This is sorted out at the next level of
neurons: each of these receives excitatory input from one omni-glomerular neuron and inhibitory input from the neighbouring omni-glomerular neuron with
less sensitivity, i.e. with a right-shifted tuning curve. This pattern of connectivity results in bell-shaped tuning to odour intensity at this last level of neurons,
enabling intensity learning.
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set of Kenyon cells that, as a set, is specifically activated only
by that same odour at that same intensity. Obviously, this implies
an entangled storage of quality and intensity information in the
Kenyon cells (Fig.4A).

Alternatively, quality and intensity might be encoded separately,
enabling independent learning and retrieval of each (Fig.4B). While
the quality of an odour may be coded for memory formation by the
unique set of Kenyon cells it activates, its intensity may be coded
for example by the level of activity summed across all antennal lobe
glomeruli, as previously argued with respect to adult Drosophila as
well as the honey bee (Borst, 1983; Sachse and Galizia, 2003;
Yamagata et al., 2009; Schmuker et al., 2011). Both larval and adult
antennal lobes harbour inhibitory interneurons innervating various
numbers of glomeruli; also, excitatory interneurons with similarly
wide connectivity are found in the adult antennal lobe [larva (Python
and Stocker, 2002a; Python and Stocker, 2002b; Asahina et al., 2009;
Thum et al., 2011); adult (Wilson and Laurent, 2005; Olsen et al.,
2007; Shang et al., 2007; Chou et al., 2010; Huang et al., 2010;
Seki et al., 2010; Yaksi and Wilson, 2010); for a particularly detailed
anatomical analysis, see Tanaka et al. (Tanaka et al., 2012)]. Finally,
particular adult projection neurons with yet unknown response
characteristics connect multiple glomeruli to Kenyon cells and pre-
motor centers in the lateral horn (Marin et al., 2002; Lai et al., 2008;
Tanaka et al., 2012). Any or all of these multi/omni-glomerular
neurons could sum up the activity across broad aspects of the
antennal lobe, and might thus contribute to encoding odour intensity.
Note, however, that even at the level of a set of omni-glomerular
neurons differing in sensitivity, the representation of a low intensity
would be nested within that of a higher intensity. In order to lay
down an unambiguous intensity-specific odour memory trace, one
would need an additional layer of neurons. These would need to
receive, for example, excitatory input from a highly sensitive omni-
glomerular neuron and inhibitory input from an intermediately
sensitive omni-glomerular neuron to become activated specifically
at low but not at medium intensity ranges (Fig.4B). It would be in
these neurons where a memory trace for specifically a low odour
intensity could be established. Note that, at its logical extreme, this
scenario implies that odour intensity is encoded entirely independent
of odour quality. It is as yet unclear whether such a circuit exists,
and if so, whether and how such an intensity memory trace is then
neuronally and behaviourally integrated with the odour quality
memory trace.

To summarize, we show that in a system as simple as the one of
larval Drosophila, olfactory memory traces are intensity specific.
This reveals an unexpected richness of olfactory processing in the
larva, and defines the demands on cellular accounts and
computational models of associative olfactory function – indeed,
the proposed kinds of circuitry may provide a useful scaffold for
such an endeavour.
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