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Packard (Packard, 2012) restudied Huxley’s measurements of Uca
pugnax and presented not only a two-parameter power function but also
a three-parameter power function; this three-parameter model ‘is better
than the two-parameter model for describing the observations’. The
two-parameter model has a biological meaning, as explained by Huxley
(Huxley, 1924); the three-parameter model has no biological meaning.

I have shown (Geraert, 2004) that there is a constant change in the
relationship (and not a constant relationship) between a small amount
of growth of body part y compared with that of body part x;
mathematically speaking, the ‘second difference’ is constant. This
second difference is the growth rate and is present in the quadratic
factor of a quadratic equation; the other factors in the equation have no
biological meaning but are necessary to position the quadratic curve in
a diagram.

In my study (Geraert, 2004), growth is followed from the new-born
stage to the adult; in Huxley’s study on the fiddler crab, a comparison
is made among adult males; as these adults show a very large variation
in the development of the claw, Huxley (Huxley, 1924; Huxley, 1932)
interpreted this also as ‘growth’. An attempt is made to see whether a
quadratic parabola can also be used to describe variation in adults,
called here ‘comparative’ growth.

The quadratic equation calculated for the males of Uca pugnax is as
follows:

Y = 0.097X2 + 0.42X – 0.045 , (1)

in which Y is the mean mass (in g) of the large chela and X is the mean
mass (in g) of the rest of the body after removal of large chela (Huxley,
1932). The calculated values for Y are very near to the observed ones,
except for the smallest bodies where a slightly different Y-value is
calculated; the overall similarity is obvious in Fig. 1; it is also obvious
by the very small value of the sum of (Y measured – Y calculated)2

being only 4.5 mg. The quadratic factor in the above equation is the
growth factor; multiplied by 2, it gives the second difference in the
growth of the claw relative to the growth of the rest of the body; e.g.
for every additional growth of the body with 100 mg, the differences
in the growth of the claw show a constant increase of 1.94 mg
(=2×0.97).

In the case of Uca pugnax, a quadratic curve describes the
comparative growth in males in a satisfactory way; moreover, it also
has a biological meaning. Power curves with two parameters and three
parameters (Packard, 2012) describe the phenomenon as well, but the
three-parameter curve has no biological meaning. In my study
(Geraert, 2004), the quadratic curve describes real growth in such an
impressive way that fare-reaching conclusions could be made; it seems
not necessary to introduce similar conclusions for comparative
growth.

In a study on comparative growth in adults, if a curved line is
obtained it is interesting to evaluate whether a quadratic curve is
appropriate to describe the phenomenon; if the match is good enough,
the ‘growth’ rate, indicated by the quadratic factor, could help us to
make assumptions about larger and/or smaller values. The term
allometry can be continued, although it can be mathematically
formulated by a quadratic curve instead of a power curve.
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Fig. 1. Diagram representing the measurements obtained by Huxley
(modified from Huxley, 1932) of the males of the fiddler crab (Uca pugnax);
the dashed line is the calculated quadratic parabola.

Response to ʻRemarks on the article of Packard: Julian Huxley, Uca pugnax and the
allometric methodʼ

Professor Geraert and I agree on the importance of examining
arithmetic data instead of logarithmic transformations but we disagree
on other issues pertaining to the fitting of statistical models in bivariate
allometry. The most important of our differences concerns the utility
of quadratic equations, which sometimes provide better fits than power
functions to observations in bivariate displays. However, a quadratic
equation is an unrealistic representation of allometric variation because
the quadratic term in the model causes the fitted curve to assume the
shape of a parabola (see Finney, 1989) (http://www.mathopenref.com/
quadraticexplorer.html). When the coefficient in the quadratic term is

positive, the curve has a minimum and both ends point upwards. When
the coefficient is negative, the curve has a maximum and both ends
point downwards. The problem with a parabolic curve may not be
immediately apparent when the tracing is limited to the range of data
in the sample (as in the case of Uca pugnax), but coefficients in the
statistical model are biologically uninterpretable in any case (Gould,
1966; Finney, 1989).

Moreover, a quadratic model is not as good a fit to data for chela
mass versus body mass in Uca pugnax as the two- and three-parameter
power functions that were reported in my essay (Packard, 2012a). All

THE JOURNAL OF EXPERIMENTAL BIOLOGY



536

three models satisfy tests for normality and constant variance (Table
1), and all three of the mean functions closely follow the path of the
observations [see fig. 4A in my study (Packard, 2012a) and fig. 1 in
the accompanying Correspondence (Geraert, 2012)]. However, PRESS
statistics indicate that both the power functions are substantially better
fits than the quadratic model (Table 1). Thus, the quadratic equation in
this case is not favored on statistical grounds any more than it is favored
on biological grounds.

Professor Geraert also believes that a three-parameter power
function has no biological meaning, owing presumably to the term
for an intercept. It is worth remembering here that Huxley himself
argued in favor of using a three-parameter function as the theoretical
starting point in allometric analyses [see p. 241 of Huxley (Huxley,
1932)]. Huxley went on to suggest that the intercept might be
relatively unimportant in the scheme of things, so that an investigator
might revert to a two-parameter model with minimal loss of fit or
relevance. Of course, this argument may have been a convenience
for Huxley because he did not have ready access at that time to a
procedure for fitting a three-parameter power model to bivariate
data.

Professor Geraert is correct when he suggests that I have no
biological interpretation to attach to the negative intercept for the three-
parameter power function describing the scaling of chela mass to body
mass in fiddler crabs. Thus, it might be advisable to revert to the
simpler, two-parameter power function (which still shows that the
allometric exponent does not change with body size). However,
Professor Geraert’s assertion that a three-parameter power model
generally is meaningless is incorrect, because a non-zero intercept

frequently has biological as well as statistical significance when
enough is known about the system under study (Bales, 1996; Sartori
and Ball, 2009; Packard, 2012b).
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Table 1. Diagnostics for three statistical models fitted to arithmetic values for chela mass versus body mass in fiddler crabs

Predictive equation Normality test Constant variance test PRESS

Quadratic polynomial: Ŷ = −45.006 + 0.420X + 0.000097X2 P=0.476 P=0.559 5756
Two-parameter non-linear: Ŷ = 0.044X1.343 P=0.090 P=0.795 5507
Three-parameter nonlinear: Ŷ = −19.695 + 0.067X1.288 P=0.924 P=0.274 4934

The Kolmogorov-Smirnov test was used to assess normality, and the Spearman rank correlation between absolute values for residuals and observed values
for the response variable was used to test for constant variance. The smallest value for PRESS (i.e. the Predicted Residual Error Sum of Squares) identifies
the best of the candidate models (Kutner et al., 2004).
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