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INTRODUCTION
The labeling of specific molecules and their artificial control in living
cells are powerful techniques for the investigation of intracellular
molecular dynamics. To use these techniques, various substances
such as fluorescent dyes, caged compounds and plasmid vectors are
loaded into the cells.

The application of electric field pulses to cells induces transient
permeabilization of the plasma membrane: this process is called
electroporation (Chang and Reese, 1990; Kinosita and Tsong, 1977;
Zimmermann et al., 1976). Electroporation techniques are employed
to load membrane-impermeant molecular compounds into cells. For
typical applications using a conventional commercially available
electroporator, electric pulses are applied to a cuvette, typically
several tens of microliters in volume, containing the cell suspension
and the sample to be loaded into the cell. Thus, application of this
type of electroporator requires the adherent cells to be removed from
the substratum.

To avoid causing physiological damage by this process, several
electroporation techniques have been developed in which electric
pulses are applied to the adherent cells directly, without removing
them from the substratum (Boitano et al., 1992; Raptis et al., 2008;
Teruel and Meyer, 1997; Yang et al., 1995; Zheng and Chang, 1991).
A technique using a special glass slide coated with transparent
conductive indium–tin oxide (ITO) was developed by Raptis and
co-workers (Raptis et al., 2008). As this device can be placed on
the stage of an inverted microscope, cells loaded with a sample can
be observed via the objective lens of the microscope. This is a great
advantage, because a particular colony of cells to which the electric

pulses need to be applied can be selected. However, this technique
requires an expensive specially coated slide and a large sample
volume. Using a small amount of sample with no special tools has
an important advantage in that it reduces the cost of experimentation.
Teruel and Meyer (Teruel and Meyer, 1997) developed another
device that requires a very small volume of sample, 0.5–2μl, for
electroporation of adherent cells, although the device could not be
placed on a microscope stage.

We have developed a new electroporator that has both of the
above favorable characteristics, i.e. it can be set on the microscope
stage and requires a very small sample volume. Fish epidermal
keratocytes are used as a model system for studying the mechanics
of crawling cell migration (Lee et al., 1993). Here, we describe
our new electroporator and give examples of its ease of use for
loading a filamentous actin (F-actin) probe, Alexa Fluor
phalloidin, into migrating keratocytes to investigate the
relationship between cell migration and the actin cytoskeleton.
Samples could be loaded into keratocytes, HL-60 cells and
Dictyostelium cells on a coverslip, and keratocytes on an elastic
silicone substratum. The new device should be useful for a wide
range of adherent cells and allow electroporation for cells on
various types of the substrata.

MATERIALS AND METHODS
The overall setup for the new electroporator is shown in Fig.1A.
The device is composed of a high-voltage source, a large capacitor,
an electric circuit and an electroporation cuvette that is equipped
with an auto-pipette tip.
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Preparation of electroporation cuvette
The electroporation cuvette (Fig.1B,C) was made from an acrylic
board using an NC milling machine (Cobra 2520; Original Mind,
Nagano, Japan). The actual electroporated area is a 5×5×0.1mm
region with two platinum sheet electrodes placed on two of its sides.
There is a hole at the top of the cuvette, to which a commercially
available 10µl short tip of an auto-pipette is connected.

Preparation of keratocytes on a coverslip
Primary cultures of fish epidermal keratocytes were prepared as
described previously (Mizuno and Sekiguchi, 2011; Mizuno et al.,
2003), with small modifications. Briefly, a goldfish, Carassius
auratus (Linnaeus 1758), was anesthetized with Tricaine. Fish scales
were extracted with tweezers and washed in culture medium –
DMEM supplemented with 10% fetal calf serum and
antibiotic/antimycotic solution (Sigma-Aldrich, St Louis, MO,
USA). The scales were placed external side up on the bottom of a
square chamber (18×18mm and 2mm in depth), the bottom of which
was made of a 22×22mm coverslip (No. 1, Matsunami, Osaka,
Japan), then covered with another coverslip and allowed to adhere
to the bottom coverslip for 1h in 5% CO2 at 37°C. Then, after
removal of the upper coverslip, culture medium was added to the
chamber and the scales were kept at 5% CO2 and 37°C again
overnight to allow the cells to spread from the scale and begin to
migrate as single cells.

Preparation of keratocytes on an elastic substratum
Elastic sheets, 22mm×40mm×200μm, were made from
polydimethylsiloxane (Sylgard 184, Dow Corning Toray, Tokyo,
Japan) according to the methods described previously (Iwadate and
Yumura, 2009; Iwadate et al., 2013). Both 22mm sides of the sheet
were fixed. The surface of the sheet was coated with collagen
(Cellmatrix I-C, Nitta Gelatin, Osaka, Japan). Keratocytes were
prepared on the elastic sheet in the same manner as those on the
coverslip.

Electroporation medium
A fluorescent dye, Oregon Green 488 BAPTA-1 dextran, potassium
salt, 10,000MW (O-6798; Life Technologies, Carlsbad, CA, USA),
was dissolved in Ginzburg Fish Ringer’s solution (GFR, mmoll–1:
111.3 NaCl, 3.35 KCl, 2.7 CaCl2 and 2.3 NaHCO3, pH7.6) including
0.5mmoll–1 MgSO4, resulting in a final concentration of 1mmoll–1

Oregon Green. In this study, we used the dye as a large, 10,000MW,
load with a fluorescent tag rather than as a Ca2+ indicator. Alexa
Fluor 546 phalloidin (A22283; Life Technologies) was dissolved
in DMSO and then diluted 20 times with GFR containing
0.5mmoll–1 MgSO4, resulting in final concentrations of 100µmoll–1

Alexa phalloidin and 5% DMSO.

Electroporation of keratocytes
The culture medium in the chamber was carefully replaced with
Dulbecco’s phosphate-buffered saline with Ca2+ and Mg2+ (PBS++).
The tip of an auto-pipette, into which 2μl of electroporation
medium had been sucked beforehand, was inserted into the
electroporation cuvette (Fig.1D; supplementary material Movie1).
The auto-pipette was carefully lowered by hand until the bottom of
the cuvette attached to the surface of the coverslip on which the
cells had adhered (supplementary material Movie2). Just after the
discharge of the electroporation medium into the space (enclosed
by the cuvette), electric field pulses were applied to the medium
between the electrodes (Fig.1B) using a simple self-made electric
circuit (Fig.2A–D).

Electric charge from a high-voltage source (MP-7812N,
Oriental Instruments, Sagami, Japan) was stored in a large
10,000μF capacitor (C in Fig.2A) (EKMH251LGC103MEE0M,
Nippon Chemi-Con, Tokyo, Japan). The charge was then applied
to the medium between the electrodes, connected to E in Fig.2A,
through the photoMOS relay (AQV216, Panasonic, Tokyo, Japan)
by pushing the switch of the electric circuit (SW0 in Fig.2A).
The time of application was optimized using a one-shot multi-
vibrator circuit (gray in Fig.2A except AQV216) with an
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Fig.1. Diagram of the new electroporator. (A)Overall setup.
The device is composed of a high-voltage source, a large
capacitor (10,000μF), an electric circuit and an
electroporation cuvette equipped with a commercially
available 10μl short tip of an auto-pipette. (B,C)Cross-section
and top view of the electroporation cuvette. The
electroporation area is a 5×5×0.1mm region with a pair of
platinum sheet electrodes placed on two of its sides. There is
a hole at the top of the cuvette, to which the tip of an auto-
pipette is connected. (D)Application of the electroporator. The
cuvette is attached to the coverslip to which cells are adhered
by lowering the auto-pipette by hand. Immediately after
discharge of electroporation medium (2μl) into the space
enclosed by the cuvette, electric field pulses are applied to
the medium between the electrodes.
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operational amplifier, LM358 (Texas Instruments, Dallas, TX,
USA). The current across the electrodes was measured via a 10Ω
resistor using a digital storage oscilloscope (PDS5022S, Owon,
Xiamen, China), connected to O in Fig.2A. To understand the
complicated real circuit (Fig.2A), a simplified schematic diagram
and pictures of the real circuit are shown in Fig.2B–D. Switches,
SW2 and SW3, in Fig.2B are equivalent to SW1 and the gray area,
respectively, in Fig.2A. Fig.2D is an enlarged view of the area
outlined in gray in Fig.2C.

The total time from the sucking up of electroporation medium
to the application of electric pulses can be kept to less than 1min.
Just after the application of electric pulses, PBS++ was replaced
with the culture medium for recovery of cells and subsequent
observation. After about 5min, cells were allowed to recover for
observation.

Electroporation of HL-60 cells
Neutrophil-like HL-60 cell line, a model of human promyelocytic
leukemia, was grown in RPMI 1640 medium supplemented with
10% FBS, 100Uml–1 streptomycin and 100Uml–1 penicillin G. To
induce differentiation of the cells, they were transferred into culture
medium containing 1.3% DMSO. After 4days, cells showed
neutrophil-like migration. The electroporation procedure for HL-
60 cells was same as that for keratocytes.

Electroporation of Dictyostelium cells
Dictyostelium discoideum cells were cultured in HL5 medium [1.3%
(w/v) bacteriological peptone, 0.75% (w/v) yeast extract,
85.5mmoll–1 D-glucose, 3.5mmoll–1 Na2HPO4, 3.5mmoll–1

KH2PO4, pH6.4] and developed until they became aggregation
competent in BSS (10mmoll–1 NaCl, 10mmoll–1 KCl, 3mmoll–1

CaCl2) (Iwadate et al., 2013). The cell line used was AX2 cells
(referred to as wild-type cells but actually an axenic derivative of

the wild-type strain NC4). In electroporation of Dictyostelium cells,
BSS was used instead of the PBS++ and culture medium used for
keratocytes. Electric charge was applied in the same manner as for
keratocytes.

Microscopy
The migrating keratocytes loaded with fluorescent dye (Oregon
Green or Alexa phalloidin) by electroporation were observed using
an inverted microscope (Ti; Nikon, Tokyo, Japan) equipped with a
laser confocal scanner unit (CSU-X1; Yokogawa, Tokyo, Japan)
with a 100× objective lens (CFI Apo TIRF 100×H/1.49; Nikon,
Tokyo, Japan). The fluorescence images were detected using an EM
CCD camera (DU897; Andor, Belfast, UK).

Estimation of loading efficiency
Loading efficiency was estimated using the method of Teruel and
Meyer (Teruel and Meyer, 1997) with slight modification. Briefly,
the approximate loading efficiency of Oregon Green molecules into
the cytosol was determined by comparing the confocal fluorescence
intensity of Oregon Green in each cell with that of dilutions of the
electroporation medium placed between two coverslips. The
electroporation medium was diluted with a medium that included
10mmoll–1 EDTA (pH7.3, adjusted with NaOH). EDTA was used
to chelate any free Ca2+ that might increase the fluorescence intensity
of Oregon Green. For example, in the case when the fluorescence
intensity of Oregon Green in a cell was same as that of a 0.2-fold
diluted electroporation medium, the loading efficiency was
determined to be 20% (Fig.3D).

Estimation of rates of leading edge expansion and retrograde
F-actin flow by fluorescence speckle microscopy

The use of our electroporation device allowed us to perform
fluorescence speckle microscopy (FSM). To be able to compare the
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rate of leading edge expansion and retrograde F-actin flow at the center
with that at the sides of the lamellipodium, the ‘center’ and ‘side’
positions were defined as shown in Fig.4F. First, a circle (the dashed
line in Fig.4F) was drawn by extending the arc line of the leading
edge of a migrating keratocyte in a differential interference contrast
(DIC) image of a particular time (t=t0). A straight line (lC in Fig.4F)
was drawn parallel to the migrating direction from the center (o in
Fig.4F) of the circle. Another straight line (lS in Fig.4F) was drawn
30deg from lC, in a counter-clockwise direction. A 3×5μm rectangle
was then drawn (‘Center’ in Fig.4F). The midpoint of the top side
of the rectangle (c0) was the intersection of lC and the leading edge
of the cell at t=t0. A side rectangle (‘Side’ in Fig.4F) and s0 were
drawn in the same manner as the center rectangle and c0. In each
rectangle, the average rate of bright dots of Alexa phalloidin was
defined as that of retrograde F-actin flow there.

The intersections of lC and the reading edge at t=t0+10s was
defined as c1. That of lS and the reading edge at t=t0+10s was s1.
The rate of leading edge expansion at the center at t=t0 was defined
as a value obtained by dividing the distance between c0 and c1 by
10s. The rate of leading edge expansion at the side was defined in
the same manner as for the center using s0 and s1.

RESULTS
Efficiency of electroporation using the new device

To confirm the usefulness of the new electroporator (Fig.1) for
loading membrane-impermeable substances into adherent cells, we
first tried to load a fluorescent dye, Oregon Green dextran
10,000MW, into migrating keratocytes.

Immediately after replacement of the culture medium in the
chamber by PBS++, the chamber was placed on the stage of the
inverted microscope. A colony of migrating cells was then set at
the center of the visual field of the microscope by manipulating the
stage. At this point, the cells became slightly rounded due to
replacement of the medium (Fig.3A). Electroporation was then
performed using the procedure shown in Materials and methods.
Electric field pulses of 300Vcm–1 amplitude and 30ms duration
were applied to the medium between the electrodes twice at an
interval of 20s. The pulse showed a clear square waveform without
exponential decay (Fig.2E).

Fig.3B,C shows a DIC image and a fluorescence image of
migrating keratocytes, 5min after application of the electric pulses.
Most of the cells in Fig.3B had a large expanded lamellipodium,
which is typical of keratocytes, and actively migrated without
detachment from the substratum as a result of the shock of the
electric pulses (compare Fig.3A and 3B). Fluorescence from Oregon
Green was detected in 76 of 83 cells that had been subjected to the
electric pulses (Fig.3C). The loading efficiency of all cells from
three experiments is summarized in Fig.3D. The mode and mean
of the histogram are 10% and 15%, respectively.

Staining of stress fibers with Alexa phalloidin in live
keratocytes using the new electroporator

We planned to apply the new electroporator to study the cell
migration of keratocytes. Electroporation medium that included
100µmoll–1 Alexa Fluor 546 phalloidin was prepared and electric
field pulses were applied in the same manner as above. A typical
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migrating keratocytes. Electric field
pulses of 300Vcm–1 amplitude and
30ms duration were applied to the
medium between the electrodes twice,
at an interval of 20s. (A)Differential
interference contrast (DIC) image of
migrating keratocytes just after the
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PBS++. The cells are slightly rounded
because of replacement of the
medium. (B)DIC image of
electroporated cells 5min after
application of the electric pulses. In
response to the shock of the electric
pulses, the cells returned to a fan-
shaped morphology and began active
crawling migration without detaching
from the substratum. (C)Fluorescence
image of the same cells as in B.
(D)Histogram of the Oregon Green
concentration in each cell, shown as a
percentage of its concentration in the
electroporation medium (i.e. loading
efficiency).
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cell subjected to electric pulses is shown in Fig.4A and
supplementary material Movie3. The focus was kept at a height
of 1.5μm from the bottom of the cell body throughout the
recording. Stress fibers are seen connecting the left and right ends
of the cell (right-hand image in Fig.4A). The dynamics of the stress
fibers were estimated by constructing a kymograph (Fig.4B) from

thin image strips (white rectangle in Fig.4A) taken from 35
consecutive images. In the kymograph, white lines (arrowheads
in Fig.4B) reflecting the movement in the longitudinal direction
of the stress fibers are aligned horizontally, indicating that the stress
fibers do not move with respect to the lab frame of reference during
cell migration. The bright slope (dashed arrow in Fig.4B) is the
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Fig.4. Loading of Alexa Fluor 546 phalloidin into migrating keratocytes for observation of actin dynamics. (A,B)Observation of stress fibers in the cell body. 
A 2µl sample of electroporation medium including 100µmoll–1 Alexa phalloidin was discharged into the space enclosed by the cuvette and the coverslip on
which cells were adhered. Electric field pulses of 300Vcm–1 amplitude and 30ms duration were applied twice at an interval of 20s. Thirty-five consecutive
images were recorded every 10s (supplementary material Movie3). A DIC image and a fluorescence image at 20s (A) were selected from the consecutive
images. A kymograph (B) was constructed from image strips (white rectangle in A) taken from consecutive images. Arrowheads, stress fibers in the middle of
the cell; dashed arrow, cell rear end including accumulated stress fibers. (C–H) Fluorescence speckle observation of retrograde F-actin flow in lamellipodium.
A 2µl sample of electroporation medium including 25µmoll–1 Alexa phalloidin was discharged into the space enclosed by the cuvette and a coverslip on
which cells were adhered. Electric field pulses of 300Vcm–1 amplitude and 30ms duration were applied twice at an interval of 20s. Forty-eight consecutive
images were recorded every 2s (supplementary material Movie4). A DIC image and a fluorescence image at 36s (C) were selected from the consecutive
images. A region including the center of the leading edge (white rectangles in C) of the consecutive images is shown in D and E. The leading edge moved
ahead (black arrows in D), while the bright spots showed retrograde movement (white arrows in E). The center and the side areas in the lamellipodium were
defined as two rectangles (‘Center’ and ‘Side’ in F), with length 3μm and width 5μm (see Materials and methods for details). Rates of leading edge
expansion (N=9) and retrograde F-actin flow (N=9) are shown in G and H, respectively (means ± s.e.m.). The rate of leading edge expansion at the center
area was faster than that at the sides (P=0.002, t-test), whereas the rate of retrograde F-actin flow showed the opposite pattern (P=1x10−5, t-test).
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cell rear edge including accumulated stress fibers. The accumulated
fibers moved forward as the cell advanced.

Speckle staining of F-actin with Alexa phalloidin in live
keratocytes using the new electroporator

To visualize speckle staining of F-actin to estimate the rate of
retrograde F-actin flow, Alexa phalloidin was adjusted to a
concentration of 25µmoll–1 by diluting the electroporation medium
with the GFR, including 0.5mmoll–1 MgSO4, and electric field
pulses were applied in the same manner as above. A typical cell
subjected to the electric pulses is shown in Fig.4C and
supplementary material Movie4. The focus was kept at the bottom
of the lamellipodium throughout the recording. Many small bright
dots are clearly seen throughout the cell (right image of Fig.4C).
From the sequential images, small regions including the center of
the leading edge (the white rectangles in Fig.4C) were cropped and
aligned sequentially (Fig.4D,E). The leading edge moved forward
(Fig.4D), while the dots showed retrograde movement (Fig.4E),
indicating that the movement of the dots tracked the retrograde F-

actin flow. If keratocytes migrate in accordance with the graded
radial extension (GRE) model (Grimm et al., 2003; Lee et al., 1993;
Mizuno et al., 1996; Mogilner and Keren, 2009), expansion of the
leading edge at the center should be faster than that at the sides,
whereas retrograde F-actin flow at the center should be slower than
that at the sides. The rate of retrograde flow (Fig.4H) at the center
(‘Center’ in Fig.4F) and side (‘Side’ in Fig.4F) of the cell was
inversely proportional to the rate of expansion (Fig.4G), as seen in
previous studies (Barnhart et al., 2011; Jurado et al., 2005; Vallotton
et al., 2005).

Electroporation of keratocytes on an elastic substratum
If it is possible to load samples into cells on various types of
substrata, the versatility of the new electroporator increases
significantly. We tried to load Oregon Green dextran 10,000MW
into keratocytes on an elastic substratum that had been used for an
experiment involving cyclic stretching of the substratum (Iwadate
and Yumura, 2009; Iwadate et al., 2013). Electric field pulses were
applied in the same manner as above. Fluorescence from Oregon
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(E)DIC image of electroporated Dictyostelium cells
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and 30ms duration were applied to BSS between
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(F)Fluorescence image of the same cells as in E.
Only a few cells were rounded as a result of the
shock of the electric pulses (black arrows).
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Green was detected in 208 of 253 cells (total from three experiments)
that had been subjected to the electric pulses. Fig.5A,B shows a
DIC image and a fluorescence image of typical keratocytes, 5min
after application of the electric pulses. Fluorescence of Oregon Green
was detected in all cells, although the cell indicated by an arrow in
Fig.5A was rounded by the shock of the pulses. The other cells
actively migrated.

Electroporation of HL-60 cells and Dictyostelium cells using
the new electroporator

In conventional electroporation, the electroporation conditions, e.g.
the composition of the electroporation medium and the electric pulse
conditions, affects its efficiency. The optimal condition is different
in different cell types. We tested whether Oregon Green dextran
10,000MW can be loaded into HL-60 and Dictyostelium cells using
the new electroporator. Electric field pulses were applied to the
medium between the electrodes twice at an interval of 20s. The
amplitude and the duration of the pulses were 400Vcm–1 and 30ms
for HL-60 cells, and 300Vcm–1 and 30ms for Dictyostelium cells,
respectively. Fluorescence from Oregon Green was detected in 147
of 197 cells (total from three experiments) for HL-60 cells and 187
of 209 cells (total from three experiments) for Dictyostelium cells
that had been subjected to the electric pulses. Fig.5C–F shows a DIC
image and a fluorescence image of typical HL-60 cells (Fig.5C,D)
and Dictyostelium cells (Fig.5E,F), 5min after application of the
electric pulses. Both cells actively migrated, indicating that our new
electroporator can be used for various cell types.

DISCUSSION
We have developed a new electroporator that can be set on a
microscope stage and requires very small samples. The efficiency
of electroporation with our new device (Fig.3D) is comparable to
that of a normal volume electroporator that requires the adherent
cells to be removed from the substratum (Usaj et al., 2010; Yumura
et al., 1995).

Fluorochrome-conjugated phalloidin is used for staining of actin
filaments (F-actin) in both fixed and live cells (Barnhart et al., 2011;
Ofer et al., 2011; Okeyo et al., 2009a; Okeyo et al., 2009b). To
visualize stress fibers in live keratocytes, we loaded Alexa phalloidin
into the cells using the new electroporator. Several stress fibers were
aligned perpendicular to the migrating direction in the cell body, as
seen in previous studies (Miyoshi and Adachi, 2012; Okeyo et al.,
2009a; Svitkina et al., 1997), indicating that loading Alexa phalloidin
with the new device can be used to visualize F-actin in live cells
without causing physiological damage.

The current consensus is that actin polymerization takes place at
the leading edge of the lamellipodium during crawling cell migration
(Iwadate and Yumura, 2008; Svitkina et al., 1997; Wang, 1985).
The force generated by this actin polymerization induces expansion
of the leading edge and retrograde flow of the polymerized F-actin.
Fluorescence speckle microscopy (Jurado et al., 2005; Okeyo et al.,
2009b; Schaub et al., 2007; Watanabe and Mitchison, 2002;
Waterman-Storer and Salmon, 1997; Yam et al., 2007) is one of
the most successful methods of estimating the rate of retrograde F-
actin flow. Using our new electroporator, it was a simple matter to
dilute the concentration of Alexa phalloidin in the electroporation
medium from 100 to 25µmoll–1 to observe speckle staining of F-
actin (Fig.4C–H), indicating that the intracellular concentration of
the probe can be easily regulated by changing its concentration in
the electroporation medium.

Using our electroporator, Oregon Green could be loaded into
keratocytes adhered not only to coverslips but also to an elastic

silicone substratum without causing physiological damage
(Fig.5A,B). This suggests that the new device may allow
electroporation for cells on various types of substrate, such as
microstructured surface (Nikkhah et al., 2012), nanofibrous substrate
(Tutak et al., 2013) and gels with different stiffness (Kawano and
Kidoaki, 2011).

Oregon Green could be loaded into not only keratocytes but also
HL-60 and Dictyostelium cells (Fig.5). Optimal values of the electric
field for each cell type are limited in a narrow range from 300 to
400Vcm–1. This may be due to the use of electroporation medium
with the same composition: Oregon Green with GFR. It is well
known that the optimal amplitude and duration of the electric pulse
in electroporation is strongly dependent on the composition of the
electroporation medium. The narrow range of the electric field will
be very useful for users, enabling them to adjust it for their particular
cell types.

The application of electric pulses using our new electroporator
did not cause keratocytes to peel off from the substratum (compare
Fig.3A and 3B). These results suggest that the new device is
potentially useful not only for migrating cells but also for other non-
migrating adherent cells, as the adhesive force of non-migrating cells
is greater than that of keratocytes.

Using the new device, samples can be loaded into adherent cells
on the stage of an inverted microscope while continuing to observe
them. Thus, the new device has considerable promise as a tool for
studying cells with limited numbers, such as primary cells, explanted
directly from the donor organism, and particularly for examining
small colonies of differentiated cells derived from induced
pluripotent stem (iPS) cells. Because it is operated by connection
to a commercially available auto-pipette, the new device is applicable
for general rather than specialized use.
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