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INTRODUCTION
Many biological materials respond in adaptive ways to
environmental humidity. For example, keratin in gecko toe pads
softens as humidity rises to increase toe adhesion (Puthoff et al.,
2010) and wheat awns shrink and swell cyclically with humidity
changes, burying seeds in the soil (Elbaum et al., 2007). High
humidity during the late evening or early morning hours when most
orb-weaving spiders construct their webs is crucial for configuring
a web’s prey capture threads (Fig.1) (Peters, 1986; Vollrath, 1992).
These sticky threads form the web’s capture spiral, which retains
insects that strike the web, giving a spider more time to locate and
subdue these prey before they escape from the web (Blackledge and
Zevenbergen, 2006; Chacón and Eberhard, 1980). The material that
forms these viscous threads issues from three spinning spigots on
each of the spider’s paired posterior spinnerets: a flagelliform gland
that spins a supporting protein axial fiber and two aggregate glands
that coat this fiber with an aqueous solution (Coddington, 1989).
When these coated fibers first merge to form a thread, their aqueous
covering forms a continuous cylinder. Salts and as many as 12 low
molecular weight compounds, such as GABamide, glycine and
choline (Edmonds and Vollrath, 1992; Fisher and Brander, 1960;
Higgins et al., 2001; Townley et al., 1991; Tillinghast and
Christenson, 1984; Townley et al., 2006; Vollrath et al., 1990) make
this coating hygroscopic, causing it to rapidly absorb atmospheric
moisture and be reconfigured by Rayleigh instability into droplets

(Edmonds and Vollrath, 1992). Within each droplet, ASG1 and
ASG2 glycoproteins condense into a viscoelastic core that is both
adhesive and extensible (Choresh et al., 2009; Sahni et al., 2010;
Tillinghast et al., 1993; Townley et al., 2006), properties that
combine to generate an effective adhesive delivery system (Opell
and Hendricks, 2007; Opell and Hendricks, 2009). The ASG1
protein contains a non-repetitive region rich in charged amino acids
and is considered to be hydrophilic (Choresh et al., 2009).

This hygroscopic legacy continues to impact a viscous thread
over the course of a day. Both the volume and extensibility of
Larinoides cornutus thread droplets are directly related to relative
humidity (RH) (Opell et al., 2011a). The extension bridge
mechanism by which viscous threads sum the adhesion of multiple
droplets relies on droplet extensibility (Opell and Hendricks, 2007;
Opell and Hendricks, 2009). Therefore,  these humidity changes
have the potential to alter viscous thread adhesion. Thread adhesion
can be gauged in two ways: the force required to pull a thread from
a surface (e.g. Agnarsson and Blackledge, 2009; Opell and
Hendricks, 2009) and the energy required to do so (Sahni et al.,
2011). The latter value gauges a thread’s ability to dissipate the
force of an insect struggling to free itself from a web. At rapid
extension velocities, an increase in RH from 15% to 40% resulted
in a 360% increase in the energy required to pull L. cornutus viscous
threads from a surface. However, this energy decreased by 67% at
90% RH, indicating that water uptake at intermediate humidity
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optimized glycoprotein performance, whereas at higher humidity
excess water over-lubricated the glycoprotein, causing it to more
easily pull from a surface (Sahni et al., 2011).

As a viscous thread’s response to humidity has the potential to
significantly affect thread performance, we hypothesized that
selection has optimized thread hygroscopicity to the humidity regime
of a species’ habitat. To test this hypothesis and to more fully
characterize the humidity responses of viscous thread droplets, we
examined the performance of threads spun by two species: Argiope
aurantia Lucas 1833, a species commonly found in exposed, weedy
vegetation (Carrel, 2008; Enders, 1977; Young and Edwards, 1990),
and Neoscona crucifera (Lucas 1839), a species that builds its webs
in forests and along forest edges (Adams, 2000; Edwards, 1984).
Neoscona crucifera can both be nocturnal and continue to use its
webs during daylight hours. We hypothesized that the viscous
droplets of A. aurantia are more hygroscopic than those of N.
crucifera, permitting them to remain optimally hydrated during the
drier times of the day. We tested this hypothesis by using an
expanded number of experimental humidities (20%, 37%, 55%, 72%
and 90% RH) that permitted us to more fully characterize droplet
response (Fig.2) and a new technique that permitted us to visualize
(Fig.3) and quantify a droplet’s glycoprotein core and to compute
glycoprotein volume-specific indices of droplet extension (Fig.4).

MATERIALS AND METHODS
Collecting viscous thread samples

We collected viscous threads from orb-webs constructed by 14 adult
females of each species between 06:00h and 08:00h from sites near
Blacksburg, Montgomery County, VA, USA, from 29 August to

30 September 2011. Argiope aurantia threads were collected from
webs constructed in weedy vegetation along the margins of a
meadow (Heritage Park) and N. crucifera threads from trees and
shrubs along the edge of a forest adjacent to a Virginia Tech
agricultural field. A Hobo data logger at each site recorded humidity
at 10min intervals during the 33days that web samples were
collected. To prevent theft, the data logger at the A. aurantia site
was situated in an area where the surrounding vegetation probably
maintained humidity at higher levels throughout the day than in
more exposed places where many A. aurantia were found. Therefore,
the humidity reported for this habitat is probably higher than some
or many A. aurantia experience.

Samples of two individuals’ webs were collected on each study
day and the positions of these webs marked with flagging tape to
prevent resampling. Images and videos from which measurements
of droplet extension were later made were completed by 12:00h
and photographs used to determine glycoprotein area were
completed by 16:00h of the same day. To minimize temporal effects,
we alternated the species studied, characterizing the threads of 2–4
individuals of one species and then switching to the other.

We collected an orb-web sector on a 17cm diameter aluminum
ring with a bar across its center. Scotch double-coated tissue tape
(Tape 4101T; 3M, St Paul, MN, USA) applied to the 5mm wide
rim of the ring and bar secured threads at their native tensions. After
transporting web samples to the laboratory in a closed container,
we placed 4mm wide brass bars covered with double-sided carbon
tape (product 77816, Electron Microscopy Sciences, Hatfield, PA,
USA) across the ring’s center bar and rim along the sample’s radial
threads. This allowed us to collect short spans of capture thread
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Fig.1. Viscous threads of Argiope aurantia (A) and
Neoscona crucifera (B), at the same magnification.

Fig.2. Viscous thread droplets of A. aurantia (A,B) and N.
crucifera (C,D) at 20% relative humidity (RH; A,C) and 90%
RH (B,D), at the same magnification.
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without damaging other regions of the web sample or altering the
native tension of adjacent viscous threads. We then collected
individual threads from the outer third of an orb-web’s capture region
using a pair of tweezers whose tips were covered with double-sided
carbon tape and blocked open to accommodate the support spacing
of thread samplers. We accomplished this by pressing the tweezer
tips against a thread and cutting it free using iris scissors. This thread
sector was then transferred to the carbon tape-covered rails of
adjacent brass, U-shaped supports glued at 4.8mm intervals to a
microscope slide to form a thread sampler [see fig.3 in Opell et al.
(Opell et al., 2011b)].

As adjacent droplets usually merged upon contacting the tip of
the probe used to extend a droplet, we isolated an individual thread
droplet near the center of each 4.8mm long thread span. Exhaling
gently on a thread span temporarily more fully hydrated its droplets,
allowing unwanted droplets to be pushed away from the focal droplet
using the moistened tip of a probe made from an insect minuten
pin. This procedure did not remove the thin aqueous layer that covers
axial fibers in inter-droplet regions and maintains their
supercontraction. After droplets were moved, small secondary
droplets, like those often found between the large primary droplets
of native threads (Fig.1B), reformed in the regions where larger
droplets had been.

Controlling humidity and observing threads
To control RH, we placed thread samplers in a humidity chamber
[see fig.4 in Opell et al. (Opell et al., 2011a)], which incorporated
a holder for the thread sampler and ports for air inlet and outlet
tubes, the droplet extension probe and the probe of a Fisher
Scientific Instant Digital Hygrometer (Waltham, MA, USA), whose
readings were updated in less than 10s. A sheet of anti-Newton
glass resting on a Sorbothane gasket sealed the top of this aluminum
chamber. We controlled humidity by placing a small Petri dish filled
with either silica gel beads or a Kimwipe moistened with distilled
water into the chamber. Humidity was then adjusted by either
exhaling into a tube connected to a chamber port to introduced humid
air or withdrawing air from the tube to introduce drier room air.
Temperature within the chamber was maintained at 23–24°C.

Samples were measured first at 20% RH and then at successively
higher values (37%, 55%, 72% and 90%). As described below, three
sets of measurements were required to assemble this study’s data.
Our ability to establish RH values within tight limits resulted in the
five experimental RH values being nearly identical for each set of
the three measurement sets (Table1).

Measuring droplet dimensions and extension
At each humidity a different isolated, suspended droplet from a
spider’s web was photographed (Fig.2) with a Canon T1i digital
camera attached to a Mitutoyo FS60 inspection microscope. An
image of a stage micrometer taken at the same magnification served
as a scale for measuring suspended droplet length (DL, dimension
parallel to the thread’s axial fibers) and droplet width (DW) with
ImageJ (Rasband, 1997-2012). Following an earlier study (Opell
and Schwend, 2007), we computed droplet volume (DV) according
to the following formula for a parabolic volume:

DV = (2π  × DW2 × DL) / 15 . (1)

After photographing a suspended droplet, we extended it using
procedures that are described in detail a previous paper (Opell et
al., 2011a) while a video was recorded at 60framess–1. Before each
trial we used 95% ethanol on a Kimwipe to clean the flat tip of the
single steel probe, which was used to contact and extend all droplets.
This probe was inserted through a port in the side of the chamber,
and its tip was aligned with and then brought into contact with the
droplet, advanced 500μm to firmly attach the glycoprotein core to
the probe’s flat tip, and then withdrawn from the droplet at a velocity
of 69.5μms−1, while a video was recorded. The last video frame in
which the extending droplet was attached to the probe’s tip was
captured (Fig.4) and the length of the droplet filament measured
with ImageJ using the probe’s 413μm wide tip as a scale.

The axial lines supporting some droplets at high humidities
extended beyond the camera’s field of view, although in all instances
we were able to observe the extending filament and identify a
droplet’s release from the probe. In these cases we used the position
of the time scale slider bar at the bottom of the video frame to
determine droplet extension. We first screened captured images of

Fig.3. Flattened droplets of A. aurantia (A) and N. crucifera (B,C)
showing the glycoprotein core of each droplet at 20% RH (A),
37% RH (B) and 90% RH (C), at the same magnification.

Fig.4. Extended droplets of A. aurantia (A,B) and N. crucifera
(C,D) at their maximum lengths prior to pull-off at 37% RH
(A,C) and 72% RH (B,D), at the same magnification.
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an extending droplet at the same enlargement at three points during
droplet extension: T1, the point just before droplet extension; T2,
the point at which the axial line disappeared from the frame; and
T3, the point at which the droplet filament was released from the
probe tip. We then measured the position of the slider with a digital
caliper to an accuracy of 0.5mm. For an average A. aurantia out-
of-frame droplet extension, measurements were obtained to an
accuracy of ±2%, ±0.6% and ±0.5% for positions T1, T2 and T3,
respectively. We also measured the length of the droplet filament
at time T2 (L1). For an average A. aurantia out-of-frame droplet
extension, this was done to an accuracy of ±20μm or ±0.6% L1
filament length. The length of droplet extension (DE) at pull-off
from the probe tip was computed as:

DE = [L1 / (T2 – T1)] × (T3 – T1). (2)

For a representative A. aurantia out-of-frame droplet extension
at 90% RH, the combination of measurement inaccuracies that
produced the most extreme DE values resulted in a maximum
deviation of ±161μm or 3.7% of the median DE computed for this
individual.

Determining glycoprotein volume
The glycoprotein core of droplets becomes visible when a glass
coverslip is placed on a thread that is suspended between the supports
of a thread sampler (Fig.3). Unlike similar preparations viewed with
a standard compound microscope (Fig.5A) (Opell and Hendricks,
2010), the epi-illumination of the Mitutoyo microscope used in this
study resolved the glycoprotein’s outline, but did not reveal the
smaller granule at its center (Fig.3). To flatten droplets without
opening the chamber after a desired RH was established and
suspended droplets were photographed, a 22mm diameter glass
coverslip was suspended over the thread in a device attached by
magnets to the underside of the chamber’s glass cover. After three
suspended droplets were photographed through the coverslip and
their positions recorded, a magnet triggered the coverslip’s release
onto the suspended thread. All coverslips used to flatten droplets
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Fig.5. Flattened viscous thread and water droplets on glass. Argiope
aurantia droplet at 50% RH viewed with Nomarski optics (A), a side view of
a distilled water droplet (B) and a side view of a flattened viscous droplet
modeled on a distilled water droplet (C).
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came from the same box and each was cleaned with a Kimwipe
moistened with 95% ethanol immediately before use.

To ensure that the coverslip was firmly and uniformly pressed
against the droplets, a probe was inserted through the port in the
side of the chamber, positioned over the coverslip and centered
between the supports of the microscope slide sampler, on which the
coverslip rested. The shaft of the probe was then pressed downward
until its movement was stopped by the lower edge of the slit in the
chamber’s side that permitted the probe to be moved along the length
of the chamber for alignment with the droplets. Thus, we believe
that the force applied in flattening droplets was standardized by three
factors: (1) coverslips of the same mass were dropped on to threads
from the same height, (2) the deflection of threads upon impact of
the coverslips was controlled by the uniform length of the suspended
thread spans, as determined by the equal spacing of thread sampler
supports, and (3) the final force applied to the coverslip was set by
the stiffness of the coverslip, the uniform width of the space into
which a coverslip deformed when pressed by the probe and the
uniform limit to downward movement of the probe, which was less
than that required to break a coverslip.

We used ImageJ to measure the flattened surface area of each of
the three droplets and of their glycoprotein cores. As an additional
control for droplet flattening, we divided droplet volume by flattened
droplet surface area to determine average flattened droplet thickness
and used only the two droplets with the most similar thicknesses in
subsequent computations. Flattened droplet measurements were not
made at 72% RH for the first three A. aurantia studied, but were
taken for all subsequent samples. Neoscona crucifera droplets were
more viscous than those of A. aurantia. Consequently, we were
unable to measure N. crucifera flattened areas at 20% RH and
obtained measurements of only six individuals’ threads at 37%.
Glycoprotein could not be clearly resolved in the droplets of one
A. aurantia individual at 90% RH or in the droplets of one N.
crucifera individual at 55% and 72% RH.

For each RH we determined glycoprotein volume by multiplying
the flattened area of a droplet’s glycoprotein core by the droplet’s
average thickness. Subtracting glycoprotein volume from droplet
volume yielded the volume of the droplet’s outer, aqueous material.
Because we could not both determine the volume of a droplet’s
glycoprotein core and extend this droplet, we inferred the volume
of glycoprotein within an extended droplet by multiplying the
droplet’s volume by the mean glycoprotein volume-to-droplet
volume ratio of the two flattened droplets of that individual’s thread
with the most similar droplet thicknesses. Indices of droplet
extension per glycoprotein volume and relative stress on extended
droplet filaments, as described below, were computed from a
droplet’s inferred glycoprotein volume, as this value was most
closely associated with the droplet’s performance.

We believe that this method provides a useful measure of
glycoprotein volume. Nomarski images of flattened droplets show
that the glycoprotein core extends above the level of the aqueous
material (Fig.5A). A side view of a 10μl droplet of distilled water
on glass shows the edges of the droplet to be tapered (Fig.5B), a
configuration that is consistent with that seen in a flattened droplet
(Fig.5A). Thus, a side view of a flattened droplet without its two
axial fibers would be similar to the reconstruction in Fig.5C. Actual
glycoprotein volume is probably slightly greater than that determined
from its surface area, although, after factoring out the volume of
axial fibers passing through the glycoprotein, these two volumes
should be similar. Increases in humidity appear to affect the
flattened surface areas of glycoprotein and aqueous material in a
similar manner. At higher humidity, glycoprotein plasticity increases

and droplet cores probably flatten to a greater extent. At higher
humidity, aqueous material becomes more dilute and less viscous
and forms a thinner layer on the glass coverslip. Therefore, we
believe that our method of determining glycoprotein volume was
not biased by humidity level.

Indices of droplet performance
We computed two indices of droplet performance at each humidity:
(1) extension per glycoprotein volume at pull-off (EGV) and (2)
relative glycoprotein stress at pull-off (RGS). We computed EGV
by dividing maximum droplet extension by glycoprotein volume.
Values of this index increase as absorbed water makes glycoprotein
more plastic, and decrease as absorbed water over-lubricates a
droplet’s contact footprint, allowing it to be pulled free with less
force. Our instrument was not equipped with a load cell to allow
us to directly measure the force on an extending droplet. Therefore,
as the stiffness of these two species’ axial fibers is similar (Young’s
modulus for A. aurantia E=0.009GPa, N. crucifera E=0.010GPa)
(Sensenig et al., 2010), we inferred the force on a glycoprotein
filament from the deflection of its supporting axial line, which we
measured from the screen capture of the extended droplet
immediately before pull-off using ImageJ (Fig.4 and Fig.6, angle
A). Subtracting this axial line angle (Fig.6, angle A) from 180deg
and dividing the result by 2 produces an angle (angle B, Fig.6),
whose sine is proportional to the force on the glycoprotein filament.

As noted previously, some droplets, predominantly droplets of
A. aurantia extended at 72% and 90% RH, did not release from the
probe until the axial lines had passed from the camera’s field of
view. In these cases, we measured axial line deflection in the last
frame where axial line angle could be determined. At this point, the
axial line angle of A. aurantia was nearly 180deg, averaging 175deg
at 72% and 178deg at 90%.

The RGS on an extended filament just prior to droplet pull-off
was then determined by dividing either the relative force (or the
humidity-corrected relative force, described below) by the cross-
sectional area of the glycoprotein filament, determined by dividing
glycoprotein volume by the length of the extended droplet at pull-
off. Although RGS is not an engineering grade index, it does allow
a general assessment and comparison of the two species’
glycoproteins.

An issue that may impact the estimation of relative force at droplet
pull-off is an apparent increase in axial fiber supercontraction as
relative humidity rises. This phenomenon of supercontraction is well
documented for dry dragline threads (Agnarsson et al., 2009;
Blackledge et al., 2009; Boutry and Blackledge, 2010; Work, 1981),

A

B

Fig.6. An extended droplet showing angles A and B used to compute
relative stress on the filament.
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but has not been studied in viscous threads. Although it might appear
that the already water-covered axial lines of viscous threads would
not further supercontract, when immersed in water they do (Gosline
et al., 1999) and become more taut. Three lines of evidence suggest
that even humidity alters viscous thread supercontraction. (1) Videos
of droplets extending at low humidities, particularly those of N.
crucifera droplets, often showed the thread’s axial line pair to be slack
and sometimes convoluted as it flew back upon droplet release,
whereas at higher humidities the supporting line remained taut. (2)
As building humidity dropped, viscous threads in a few web samples
showed some slackness, but became taut when gently exhaled upon,
suggesting that water uptake increased supercontraction. (3) We placed
four to six single droplet isolates on microscope slides so that we did
not have to open the humidity chamber during a trial series. At low
humidities these strands nearly always remained intact, but as
humidity increased an increasing number of them spontaneously
pulled from the adhesive holding them to the sampler’s supports. We
attribute this to two factors: increased supercontraction, which
increases axial line tension, and increased water content of the thread’s
aqueous layer, which lubricates axial lines allowing them to be more
easily pulled from the adhesive.

Interspecific differences in such supercontraction probably have
only minor impacts on our estimates of the stress on glycoprotein
filaments at pull-off and this phenomenon is tangential to the focus
of our study. However, because supercontraction increases the tension
on viscous threads, increased force is required to achieve the same
angle of axial line deflection as humidity increases. In an attempt to
account for this, we multiplied the sine of angle B by the humidity-
specific, supercontraction multiplier values shown in Table2. These
correction factors describe an exponential increase in super contraction
from zero at the lowest humidity (20% for A. aurantia and 37% for
N. crucifera) to a factor of 2 at 90% RH. The values used for the two
species differ because at 37% RH, N. crucifera droplets have just
become pliable enough to respond in a manner similar to those of A.
aurantia at 20% RH. These supercontraction-corrected relative stress
values are reported in Table2.

Analysis
We assembled, summarized and analyzed data using JMP (SAS
Institute, Cary, NC, USA), considering P≤0.05 as significant. As a
previous study determined that ambient humidity affects the volume
and extensibility of whole viscous thread droplets (Opell et al.,
2011a), this analysis capitalizes on the increased number of test
humidities to compare the response curves of aqueous material,
glycoprotein and glycoprotein-specific indices. If the mean value
of a feature at each RH was normally distributed (as shown by
Shapiro–Wilk W-tests with P≥0.05), we used ANOVA to test the
differences in mean values; these results are presented in Figs9–13.
If the mean at one or more humidites was not normally distributed,
we log-transformed data. In most cases the means then became
normally distributed. In four cases (glycoprotein volume at 20%
RH for A. aurantia, droplet extension at 20% RH for A. aurantia
and 37% RH for N. crucifera, and all relative stress values of A.
aurantia droplet filaments) mean values remained non-normal. For
the first three indices we performed both ANOVA and
Wilcoxon/Kruskall–Wallis tests of means. For the relative stress of
A. aurantia, we used only a Wilcoxon test.

The curves that describe changes in droplet features over the five
experimental humidities (e.g. Fig.9A,B) are accompanied by the
percentage change in mean values from those expressed at 20% RH
for A. aurantia and 37% RH for N. crucifera, whose computation
required a droplet to flatten (e.g. Fig.9B). When possible, the mean
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values at the five humidites were fitted to exponential or logarithmic
curves, whose formulas are provided. When these curves did not
adequately describe the values, polynomial curves were fitted. Below
each feature of these figures we provide a histogram of the
percentage maximum value of this feature, based on the greatest
value expressed by both species (e.g. Fig.9C,D).

RESULTS
From 11:00h to 18:00h, humidity was lower in the A. aurantia
habitat than in the N. crucifera habitat, being significantly different
from 12:00h to 16:00h (Fig.7). Table1 summarizes the volumes
and extensibilities of droplets and Table2 presents the values used
to compute relative droplet stress. For N. crucifera, features
computed from flattened droplet measurements were available only
for 37% RH and greater, although values inferred for 20% RH from
regression plots are given in brackets in Table1 and included in the
percentage histograms of Figs9–13.

Across the five RH values the relationship between flattened
droplet area (FDA) and flattened glycoprotein area (FGA) was
similar for the two species (Fig.8), showing that the species’ droplets
flattened in a similar manner and therefore would not bias our

computation of glycoprotein volume in favor of one of the species.
An insignificant effect of the interaction between FDA and species
on FGA (P=0.58) showed that the slopes of the species’ regressions
did not differ. However, a significant contribution of species
(P=0.0049) to the model ‘FGA=FDA×species’ showed that the Y-
intercept of A. aurantia was greater than that of N. crucifera, as
would be expected from the larger size of the former species’
droplets (Fig.1, Table1).

With the exception of N. crucifera droplets measured at 37% RH,
droplet volume increased as humidity increased, with A. aurantia
droplets being more hygroscopic than N. crucifera droplets (Table1).
At 90% RH, A. aurantia droplets were 258.5±26.5% (mean ± s.e.m.)
larger than at 20% RH, whereas N. crucifera droplets were only
160.6±8.5% larger at 90% than at 20% RH, a difference that was
significant (t-test, P<0.0014). The aqueous component of both
species’ droplets increased as humidity increased (Table1, Fig.9).
With the exception of A. aurantia droplets measured at 55% RH,
glycoprotein volume increased as humidity increased (Table1). At
37% and 55% RH, glycoprotein volume appeared to decrease or
stabilize in both species (Fig.10), although in N. crucifera the high
variance and narrow range of values made this difficult to assess.
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When viewing Figs9–13, which present the responses of
viscous droplets to increasing humidity, it is useful to remember
that viscous threads first experience high humidity during the early
morning hours and humidity decreases as the day progresses. In

each species, droplet extension increased with humidity, with the
two species reaching similar pull-off lengths at 90% RH, despite
the smaller volume of glycoprotein in N. crucifera droplets
(Table1, Fig.11). However, the exponential increase in N.
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Fig.10. Volume of a droplet’s glycoprotein core in
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values (±1 s.e.m.). A and B present actual values,
C and D the percentage maximum value
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crucifera droplet extension resulted in this species’ droplet
filaments being much shorter than those of A. aurantia at all other
humidities.

Pronounced differences were observed in the two species’ droplet
EGV (Table1, Fig.12). In A. aurantia, EGV increased in a linear
fashion from 20% to 55%, presumably as absorbed water increased
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Fig.12. Maximum droplet extension per glycoprotein
volume (EGV) of A. aurantia (A,C) and N. crucifera
(B,D) at five RH values (±1 s.e.m.). A and B present
actual values, C and D the percentage maximum
value expressed by both species.
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glycoprotein plasticity, and then declined as droplets became over-
lubricated and more easily released from the probe (Tukey HDS
test rank, from low to high index values: 20%, 37%=90%,
55%=72%). In contrast, N. crucifera EGV values increased
exponentially as humidity increased, reaching a maximum value at
90% RH that was 3.58 times the maximum value reached by A.
aurantia at 55% RH.

In A. aurantia, uncorrected RGS just prior to pull-off decreased
in a linear fashion as humidity increased, whereas RGS increased
logarithmically in N. crucifera (Table1, Fig.13A,B), reaching a
maximum value at 90% RH, 13.9 times the maximum value of A.
aurantia, which was observed at 20% RH. When corrected for
supercontraction, A. aurantia RGS did not differ among humidities

(Wilcoxon χ2, P=0.1582), whereas N. crucifera corrected RGS did
(ANOVA, P<0.0001), increasing exponentially (Y=1.596−7×X3.39)
and reaching a maximum value at 90% RH, 26.7 times the maximum
value of A. aurantia, which was observed at 37% RH (Table2).

DISCUSSION
Our results support the hypothesis that A. aurantia droplets are more
hygroscopic than N. crucifera droplets, permitting them to remain
hydrated and perform optimally, and adapting them to drier
environments and times of the day. However, like droplets of L.
cornutus (Sahni et al., 2011), those of A. aurantia become
progressively over-lubricated at RH greater than 55%, resulting in
decreased EGV (Fig.12A,C, Fig.14). In contrast, the EGV of N.
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Fig.14. Hydration of glycoprotein in the footprints of
A. aurantia and N. crucifera droplets at experimental
RH values and its relationship with low mid-
afternoon humidities in the two species’
environments. Lighter shading reflects greater
glycoprotein water content.
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crucifera increased exponentially as humidity increased, and showed
no evidence of over-lubrication (Fig.12B,D, Fig. 14). The lower
hygroscopicity of N. crucifera droplets also caused their glycoprotein
to remain more viscoelastic at higher humidity, resulting in an
exponential increase in the relative stress on the glycoprotein
filaments at pull-off (RGS) as humidity increased (Fig.13B,D). This
contrasts with the low and decreasing RGS of A. aurantia droplets
as RH increased. As RGS is an indicator of the energy required to
extend a droplet to pull-off, this suggests that increased humidity
enhances the ability of N. crucifera threads to absorb the energy of
struggling prey through extension, whereas it has a negative effect
on the ability of A. aurantia threads to absorb energy in this manner.

These interspecific differences in EGV and RGS are consistent
with the hypothesized environmental adaptiveness of droplet
hygroscopicity. At 14:00h–15:00h, when the humidity of both
species’ habitats was at its lowest (Fig.7), RH in the A. aurantia
habitat dropped to a mean of 66% and in the N. crucifera habitat
to 76%. For A. aurantia, this low humidity mark corresponds with
the humidity range at which droplets have reached their maximum
EGV and just begin to show signs of over-lubrication (Fig.12A,C,
Fig.14). In contrast, at times of lowest daily RH, N. crucifera
droplets exhibited only half of their maximum EGV (Fig.12B,D)
and over half of their maximum RGS (Fig.13B,D). Consequently,
when differences in EGV and supercontraction corrected RGS are
examined from mid morning to late afternoon (10:00h–18:00h), A.
aurantia droplets exhibited their maximum values during mid
afternoon and N. crucifera during the morning (Fig.15). Thus,
hygroscopic differences in the two species’ viscous threads appear
to adapt them to function optimally not only in different humidity
regimes (Fig.14) but also at different times of the day (Fig.15).
However, it is important to note that the minimum midday EGV of
N. crucifera was 1.9 times the maximum value for A. aurantia and

that the minimum midday RGS of N. crucifera was 23 times the
maximum value for A. aurantia.

As a biomimetic system, N. crucifera droplets appear to offer
more promise than A. aurantia droplets because N. crucifera EGV
and RGS increase exponentially and logarithmically, respectively,
as RH increases (Fig.11B, Fig.12B, Fig.13B). Moreover, N.
crucifera droplets attain a maximum EGV that is 3.6 times that of
A. aurantia and an RGS at 90% RH that is 64 times that of A.
aurantia at 90% RH. However, A. aurantia droplets illustrate how
an adhesive system might be engineered to fail at a desired
humidity. The simplest explanation for these interspecific differences
is that the aqueous material of A. aurantia is more hygroscopic than
that of N. crucifera as a result of having more and/or different low
molecular weight compounds. Argiope aurantia glycoproteins may
also be more hygroscopic, causing them to take up a higher
percentage of the atmospheric water provided by the aqueous
material and, thereby, become more extensible at a given RH than
the glycoprotein within N. crucifera droplets.

Although it is convenient to attribute increased droplet
extensibility at higher humidities to the dilution of glycoprotein by
absorbed atmospheric water, this may be an oversimplification given
the complex interactions that establish the three-dimensional
configuration of glycoproteins. Intramolecular hydrogen bonding
establishes most of the directional interactions that underpin protein
folding. However, the burial of hydrophobic (apolar) side-chains
within the molecule plays a key role in organizing and stabilizing
the folded molecule (Rose, 1993; Bolen and Rose, 2008). Residues
within these buried hydrophobic regions are themselves configured
by hydrogen bonding. Poor osmolytes, like water, disrupt
intramolecular hydrogen bonding and suppress secondary structure
because the strength of these bonds is weakened by competition
with water molecules that supply alternative bonding sites, thereby
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droplets from mid-morning to late
afternoon during the course of this
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reducing hydrogen bonding as water content increases. These
structural changes may increase glycoprotein unfolding as humidity
increases. Moreover, increased water content may also cause
additional apolar groups to be forced to the molecule interior, a
change that is associated with increased entropy and volume (Dill,
1990). The decrease in glycoprotein flattened area and volume
observed at 55% RH in A. aurantia and the probable stabilization
of N. crucifera glycoprotein flattened area and volume at
intermediate humidities (Table1, Fig.10A,B) may reflect such
changes in molecular configuration.

This study shows that a single model cannot explain the
performance of viscous threads produced by all orb-weavers and
suggests that the environmental responsiveness of these threads has
been shaped by natural selection. A full understanding of viscous
thread evolution and operation will require investigations that
characterize this diversity and address the impact of web
environment on a viscous thread’s molecular structure, material
properties and prey capture performance.
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