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INTRODUCTION
Contact of a marine invertebrate larva with an underwater surface
necessarily precedes its attachment to the surface. However, not all
larvae that contact a substrate attach to it. Therefore, the probability
of contact represents the upper bound of the probability of settlement.
The probability of contact is a quantitative characteristic of settlement,
which is of great interest in marine biology, particularly if attachment
follows the first contact event (Abelson and Denny, 1997; Mullineaux
and Butman, 1991; Mullineaux and Garland, 1993).

It is common to distinguish between the settlement of larvae on
substrates of infinite extent and settlement on bodies of finite size.
Because of the wide variety of larval forms and collector types, it
is also common to observe settlement of specific larvae (e.g.
bryozoan Bugula neritina) on relatively simple geometric forms,
such as plates (Mullineaux and Butman, 1991; Mullineaux and
Garland, 1993; Perkol-Finkel et al., 2008), cylinders (Harvey and
Bourget, 1997; Rittschof et al., 2007) or inner sides of tubes (Crisp,
1955; Qian et al., 1999; Qian et al., 2000). Here, we studied the
contact of B. neritina larvae with a long vertical cylindrical collector.

Most natural larval collectors are covered by microbial films (e.g.
Dexter, 1979) or biofilms (e.g. Maki et al., 1989). The effect of
microbial films and biofilms on bryozoan larval settlement has been
observed both in the laboratory and under natural conditions
(Brancato and Woollacott, 1982; Woollacott, 1984; Woollacott et
al., 1989; Maki et al., 1989; Callow and Fletcher, 1995; Bryan et
al., 1997). Generally, bryozoans are relatively indiscriminate settlers
that may also settle on clean surfaces (Ryland, 1976; Dahms et al.,
2004; Qian et al., 1999; Qian et al., 2000). We therefore used in
our experiments a clean cylindrical collector that does not induce
specific cues.

Chemical or physical cues play a central role in the behavioural
biotic approach to larval settlement. In this approach a larva is

attracted to a collector by cues and deliberately moves toward the
collector. In an alternative mechanistic approach to larval settlement,
a larva moves in the sea current as a drifter and collides with the
collector as a passive particle. The issue of passive versus active
contact has been intensively discussed in previous studies (Abelson
et al., 1994; Butman, 1987; Butman et al., 1988; Harvey and Bourget,
1997; Harvey et al., 1995; Mullineaux and Butman, 1991;
Mullineaux and Garland, 1993; Palmer et al., 2004).

However, the rich variety of models of larval contact with
collectors cannot be described solely in terms of the antonyms
‘active–passive’. Consider, for instance, a realistic scenario of a
swimming larva that is not aware of a collector. A swimming larva
is active by definition, but in the absence of biotic factors influencing
its contact with a collector, the larva moves as a mechanical object,
i.e. as a microswimmer (e.g. Kirbøe, 2008). Nonetheless, the
hydrodynamics and dynamics of such a microswimmer can be rather
complex and difficult to describe in detail. Therefore, mathematical
modelling of the motion of a larva as a mechanical object is
inevitably associated with considerable simplifications, which
should, however, retain the most relevant problem parameters, such
as the Reynolds number of the cylinder (Rec) and the Stokes number
(St) of the particle–cylinder hydrodynamic system (Fuchs, 1964;
Friedlander, 1977).

The Reynolds number Rec=ρfU∞Dc/μ represents the ratio of the
inertial and viscous forces acting on a cylinder. It depends on the
fluid density ρf, its viscosity μ, the flow velocity far from the cylinder
U∞ and the diameter of the cylinder Dc. The Stokes number
represents the ratio of inertial and viscous forces acting on a particle
that moves in the velocity field of the cylinder. The Stokes number
depends on the parameters that determine Rec and additionally on
the parameters that determine a particle’s inertia, its characteristic
size dp and its mean density ρp. A measure of the ratio of inertial
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and viscous forces acting on a particle is its stopping distance,
lp=ρpd2

pU∞/18μ, the distance at which a particle that starts its motion
in a stagnant fluid with speed U∞ will be stopped by the drag force
exerted on the particle by the fluid (Fuchs, 1964). The dimensionless
Stokes number is the ratio of the stopping distance of a particle to
the characteristic size of the collector, St=lp/Dc (Fuchs, 1964).
Whereas the shape of a collector and its Reynolds number determine
the collector’s streamlines, the Stokes number characterises the
degree of deviation of an inertial particle from the streamlines. The
lower the Stokes number, the more a particle is ‘embedded’ in the
fluid. Low-inertia particles (St<~0.1) follow streamlines rather
closely and can be considered as inertialess particles, which follow
streamlines exactly (Fuchs, 1964; Friedlander, 1977).

In contrast with passive particles, even an inertialess self-
propelled microswimmer does not follow streamlines exactly.
Zilman and colleagues (Zilman et al., 2008) theoretically studied
the motion of a three-dimensional spherical microswimmer moving
in a linear shear flow, in a channel flow and in a Poiseuille tube
flow and calculated the probability of contact of the microswimmer
with the walls bounding the flows. Crowdy and Samson (Crowdy
and Samson, 2011) and Zöttl and Stark (Zöttl and Stark, 2012)
studied trajectories of a two-dimensional and three-dimensional
microswimmer moving in linear and Poiseuille shear flows, and took
into account not only the re-orientation effect reported by Zilman
and colleagues (Zilman et al., 2008) but also the direct hydrodynamic
interaction of the microswimmer with a plane substrate.

In this work, we considered a previously unstudied problem, the
motion of a low-inertia microswimmer (St<<1) in the velocity field
of a large cylinder (Rec=102–105). The aim of our study was to clarify
how self-propulsion may influence the probability of contact of a
microswimmer with a cylinder that does not induce biotic cues.

We observed the motion of B. neritina larvae in the velocity field
of a cylinder and formulated a mathematical model of motion of a
larva–microswimmer near the cylinder. We parameterised this
mathematical model using experimental data, and calculated the
probability of contact of larvae with a cylinder for a wide range of
realistic problem parameters.

MATERIALS AND METHODS
We collected sexually mature colonies of B. neritina (Linnaeus
1758) from floating docks at the Tel-Aviv Marina in spring 2011,
2012. Larvae of B. neritina were maintained in laboratory conditions
as described elsewhere (Qian et al., 1999; Wendt, 2000). The shape
of B. neritina larvae is close to a prolate spheroid, with a length-
to-maximal-width ratio of approximately 1.1. Such a spheroid can
be approximated by a sphere of volume equal to the volume of the
larva of interest. The diameter of the equivalent sphere
approximating B. neritina larva varies as dp=200–350μm (Kosman
and Pernet, 2009; Wendt, 2000). The sinking velocity of an
immobilised B. neritina larva is approximately Vt=1mms–1 (Koeugh
and Black, 1996). Correspondingly, the ratio of the mean larva
density ρp to the water density ρf is ρp/ρf=1.02–1.04.

The motion of B. neritina larvae was observed in a transparent
experimental flow tank (Fig.1). Larvae were gently pipetted into
the tank, and their trajectories were recorded, both from above and
from the side of the tank, using an Optronis (Kehl, Germany) video
system with two synchronised digital video cameras (500framess–1

and 1280×1024 pixel sensors) equipped with Nikkor (Nikon, Tokyo,
Japan) 60mm/f2.8 or 100mm/f2.8 macro lenses. The trajectories
were digitised using the Matlab Image Processing Toolbox and an
open source software package (http://physics.georgetown.edu/
matlab).

The flow velocity in the experimental flow tank was measured
using the particle image velocimetry system from TSI (Shoreview,
MN, USA), which comprises a dual Nd:YAG laser Solo120XT
(532nm, 120mJpulse–1, New Wave Research Inc., Fremont, CA,
USA), a 4096×2048 pixel CCD camera with dynamic range 12bits
and a Nikkor 60mm/f2.8 macro lens. Images were analysed using
standard fast Fourier transform (FFT)-based cross-correlation
algorithms and open-source software (http://www.openpiv.net) for
verification purposes.

RESULTS
Experimental results
Tank without a cylinder

Typical trajectories of B. neritina larvae in still and moving water
are shown in Fig.2. In still water, a B. neritina larva moves for
distances of the order of a few centimetres along a helix-like
trajectory with an approximately straight axis but may also
randomly change its direction of motion (Fig.2A). The helical
portions of a larva’s trajectory can be approximated by a regular
helix with a straight axis ox that points in the direction of the 
vector of the larva’s swimming velocity VS. A larva moves along
a helical trajectory with linear velocity Vh and rotates with angular
velocity γ.

In a Cartesian coordinate system, oxyz, the coordinates xh, yh, zh
of the centroid of a larva moving along a helical path vary with
time t as xh=VSt, yh=0.5dhsin(γt) and zh=0.5dhcos(γt), where dh is
the diameter of the helix. The projections of the total velocity of a
point of a helix Vh(t) on the axes of the coordinate system oxyz can
be found as the time derivatives of the coordinates of the point of
a helix, dxh/dt, dyh/dt and dzh/dt, thereby yielding the relationship
VS=√(Vh

2–dh
2γ2/4).

The diameter of the helix dh and its temporary period T can be
estimated experimentally, as illustrated in Fig.2B. When a larva
moves approximately horizontally, its swimming velocity VS can
be calculated directly. When the trajectory of a larva does not belong
to the plane of a lens, Wendt (Wendt, 2000) suggested estimating
Vh by filming the motion of the larva in a shallow depth of the field
of the lens such that only a small portion of the trajectory is in focus.
By calculating the velocity of a larva along this portion, one can
estimate Vh.
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Fig.1. The experimental setup (not to scale). (1) Top-view video camera;
(2) cylinder; (3) flow tank; (4) water pump; (5) pipette with larvae.
Transparent Plexiglas plates form a channel of length ~1.7m, width 20mm
and height 40mm. A Plexiglas cylinder of diameter Dc=10mm and height
30mm can be mounted in the middle of the channel. A solution of artificial
seawater was circulated in the channel using a pump driven by an electric
motor. The flow velocities were controlled in the range 1–6cms–1.
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According to our measurements, VS≈3–6mms–1, which is
consistent with Wendt (Wendt, 2000). Once VS, dh and γ=2π /T are
known, the projections of the velocity Vh on the axes of the
coordinate system oxyz can be found as time derivatives of the
coordinates of the point of the helix dxh/dt, dyh/dt and dzh/dt.

When a larva moves in a unidirectional flow for which the
velocity is much greater than the larva’s swimming velocity, the
helical trajectory of the larva stretches, straightens and becomes
rather close to rectilinear streamlines (Fig.2C). Seemingly, in such
a case, a larva moves as a passive particle. However, the contact

problem relates to larval motion in non-uniform velocity fields of
a collector, where streamlines are curvilinear and the fluid velocity
may be of the same order of magnitude as the swimming velocity
of a larva. In the next sections, we compare the motion of a larva
and of a passive particle in the velocity field of a cylinder.

Tank with a cylinder
We studied trajectories of larvae, not the process of their attachment,
because as stated in the Introduction, attachment depends on the
physiochemical properties of the surface of a collector. Fig.3A
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Fig.3. Fluid velocity in a tank with a
cylinder, and trajectories of beads and
larvae (Dc=0.01m, flow velocity far from
the cylinder U∞=0.03ms–1, Reynolds
number of a cylinder Rec=300).
(A)Velocity field at the distance
h1=27mm measured from the bottom of
the flume. The velocity fields in the
planes h2=22mm and h3=15mm are
similar to those presented here.
(B)Trajectories of spherical beads
approaching the cylinder.
(C)Trajectories of Bugula neritina in the
velocity field of a cylinder, which are
similar to the trajectories of beads.

Fig.2. Trajectories of larvae in a flume
without a cylinder. (A)Still water. The cross
denotes the beginning of the trajectory.
Phototactile larvae biased their movements
(from left to right in the figure) towards the
illuminated side of the tank. (B)Enlarged
part of trajectory 03695852. Open circles
denote the consequent position of a larva
at a resolution of 1/24s. Filled red circles
depict the estimated transverse
displacement of larvae in the direction
perpendicular to the direction of swimming
measured in larval diameters. The radius of
the diameter of a helix (dh) can be
estimated as approximately six larval
diameters, the temporal period of the helix
T can be estimated as ~1s. The angular
frequency of helical motion can be
estimated as ~6.3rads–1. (C)Motion of
larvae in running water. The root mean
square (RMS) deviation of the larva from a
straight path is of the same order of
magnitude as the deviation of a larva from
the axis of a helix.

THE JOURNAL OF EXPERIMENTAL BIOLOGY



2792

illustrates that the fluid velocity field in front of the cylinder is
laminar and does not vary significantly between the horizontal planes
h=15mm and h=27mm, where h is measured from the bottom of
the channel. Spherical polystyrene beads of dp=430μm diameter and
ρp=1.05gcm–3 density were pipetted into the flow and allowed to
circulate in the tank before settling on the bottom.

Fig.3B shows typical trajectories of beads. A typical trajectory
is characterised by smooth variation of its slope and smooth
variation of its curvature; the latter changes the sign at a single
inflection point of the trajectory. Using these criteria alone, one can
infer that, on many occasions, larvae also move along typical
trajectories (Fig.3C). This similarity does not mean that a larva
moves as a passive particle but only that the trajectory of a larva
and that of a passive particle resemble one another as long as their
slopes and curvatures vary in a similar manner.

However, in addition to the typical trajectories of larvae, we also
observed a significant number of trajectories that we signify as
atypical (n=23 in 560 tests) (Fig.4). The atypical trajectories are
characterised by an abrupt change in their slope at the points at
which the distance between a larva and a cylinder’s surface is
minimal. No passive particle moves along such a trajectory. Thus,
we suggest that atypical trajectories result from larval self-
propulsion. Although the number of atypical trajectories is relatively
small, they constitute the most salient qualitative manifestation of
the influence of self-propulsion on larval trajectories in a non-
uniform flow. Therefore, the atypical trajectories represent a
considerable interest for our study. One of the aims of this work is

to formulate a mathematical model of larval motion that is able to
describe not only typical but also atypical trajectories.

A mathematical model of larval contact with a collector
A long vertical cylinder of diameter Dc is placed in an unbounded
two-dimensional rectilinear current. The vector of current velocity
U∞ is normal to the cylinder’s axis and lies in the horizontal plane.
The Reynolds number of the cylinder varies between 102 and 105,
which implies that the flow at the front part of the cylinder is laminar
(Schlichting, 1979). For the further analysis we use the following
assumptions. (1) There is no hydrodynamic interaction between
individual larvae. (2) A larva is small compared with a collector
and with the characteristic linear scale of the spatial flow variations
that are induced by the collector in a uniform current. (3) A small
larva does not change the velocity field of the cylinder. (4) The
sinking velocity of a larva is small compared with the fluid velocity
and can be disregarded in the problem of larval contact with the
vertical surface of a cylinder. (5) A larva’s relative velocity with
respect to shear flow is equal to the larva’s relative velocity with
respect to the stagnant fluid. (6) The velocity field of the cylinder
is two-dimensional; the vector of the fluid velocity U lies in the
horizontal plane (Fig.5). (7) The vector of a larva’s swimming
velocity (VS) is perpendicular to the axis of the cylinder and lies in
the plane of flow (Fig.5); the direction of VS does not vary with
respect to the rotating larva’s body either in stagnant or in moving
water. (8) In addition to an intrinsic self-induced rotation, a larva
rotates as a small rigid sphere because of the shear-induced viscous
torque.

Three primary mechanisms determine the collision of a passive
particle: Brownian diffusion, inertial impaction and direct
interception (Fuchs, 1964; Kirbøe, 2008). If the diameter of the
particle dp>>1μm (which is always true for B. neritina larvae),
Brownian diffusion does not influence the contact phenomenon
under consideration (e.g. Kirbøe, 2008). The inertial impact is
determined by the Stokes number of the problem. For the problem
parameters adopted here, the Stokes number is much less than the
threshold value 1/8, below which inertial impact of a spherical
passive particle with a cylinder does not occur (Fuchs, 1964).
Correspondingly, in our work, we consider only the mechanism of
direct interception. Within the framework of this mechanism a larva
follows the streamlines of a collector exactly and collides with the
collector because of the larva’s finite size.

For the subsequent analysis, we adopt a mathematic model of
larval helical motion suggested by Brokaw and generalised by
Crenshaw (Crenshaw, 1989), in which the vectors of a larva’s
swimming velocity VS and of its angular velocity γ are collinear
and are directed along the same axis ox (Fig.5). Because the vector
VS lies in the horizontal plane, the vector γ is parallel to the
horizontal plane. The vector of the angular velocity of the shear-
induced rotation, ω=2–1rotU (Lamb, 1945), is perpendicular to vector
of fluid velocity U. For a two-dimensional horizontal flow, ω is
perpendicular to the horizontal plane and, thus, is perpendicular to
γ. The orthogonality of γ and ω implies that shear-induced rotation
of a larva does not change its intrinsic rotation about the axis ox.

In the earth-fixed frame of references, the direction of the larva’s
swimming velocity vector re-orients because of the larva’s shear-
induced rotation (Zilman et al., 2008). The re-orientation effect of
a larva’s motion in the shear flow of a cylinder is illustrated in Fig.6.
In the velocity field of a cylinder a larva moves along a curvilinear
trajectory that cannot be described as a helix with a straight axis,
i.e. as a regular helix. In this respect, the shear flow influences the
helical pattern of motion.

The Journal of Experimental Biology 216 (15)
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Fig.4. Motion of a passive particle and a larva near a cylinder for the
problem parameters given in Fig.3. The lines with circular symbols indicate
larvae. The lines without symbols indicate simulated trajectories of passive
particles. (A,B)Trajectory of a larva with contact and attachment, viewed
from above (A) and the side (B). After contact, the larva remains on the
cylinder. (C)A larva approaches the cylinder closely but without
attachment; the view is from above. A passive particle and a larva that start
their motion at the same point move along different trajectories.
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To calculate the fluid velocity field near the front part of a
cylinder, we use the boundary layer (BL) theory and von
Kármán–Pohlhausen method, which is explained in detail elsewhere
(Schlichting, 1979). In Fig.5, we provide a brief description of this
method.

In the cylinder-fixed Cartesian coordinate system OXY (Fig.5),
the linear velocity V=U+Vh of a massless swimmer can be
represented as the time derivative of the radius vector of the centre
of the swimmer r[X(t)Y(t)]:

The angular velocity of a larva ω about a vertical is equal to the
time derivative of the track angle ϕ(t), the angle between the
directions of the vectors U and VS (Fig.5):

Eqns1 and 2 determine the trajectory of a self-propelled
larva–microswimmer in the two-dimensional velocity field of a

=
t
r

V r
d
d

( ) . (1)

φ = ω
t

r
d
d

( ) . (2)

collector. For prescribed initial conditions of a swimmer X(0)=X0,
Y(0)=Y0 and ϕ(0)=ϕ0, we solve the differential Eqns1 and 2
numerically using the 4th-order Runge–Kutta method with an
adaptive time step.

Theoretical results versus experimental observations
The degree of deviation of a microswimmer from the trajectory
of a corresponding passive particle depends on the swimmer’s
velocity and on its initial conditions. Systematic numerical
simulations show that depending on initial conditions, swimmers
may move along typical or atypical trajectories. To calculate the
trajectory of a microswimmer and compare it with an experimental
trajectory of a larva, we must know the initial conditions of the
larva’s motion. Whereas the coordinates (X0, Y0) can be measured
with high accuracy, measurement of the course angle ϕ0 is
difficult. Therefore, we compare the computed trajectories of a
microswimmer with the experimental trajectories of a larva for
the same measurable coordinates (X0, Y0) but for the track angle
ϕ0 estimated iteratively as a problem parameter (Eykhoff, 1974).

Similarities between the calculated trajectories of a
microswimmer and the observed trajectories of larvae (Fig.7)
suggest that the main features of larval motion in the velocity field
of a cylinder are faithfully captured by the mathematical model
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Fig.5. Velocity field induced by the cylinder. The origin O of the cylinder-
fixed coordinate system OXYZ coincides with the centre of the cylinder.
The axis OX is collinear with the velocity vector U∞. The coordinates of the
centre of a microswimmer are defined by the radius vector r. The
orthogonal coordinate system oxyz translates with the velocity of the centre
of the microswimmer V and rotates with the shear-induced angular velocity
ω. The vector of the swimming velocity VS of the microswimmer is directed
along the axis ox and constitutes with the axis OX the course angle ϕ. The
vector angular velocity of the microswimmer γ is collinear with VS. Rotation
of a spherical microswimmer about the axis ox does not influence the
trajectory of the microswimmer in the plane OXY. The auxiliary polar angle
θ=arctan(Y/X) is used here for calculating the velocity field around the
cylinder. Outside the boundary, the fluid can be considered as inviscid and
its motion as irrotational. Thus, the velocity field of a cylinder can be
calculated as for a potential flow (Lamb, 1945). In the boundary layer, the
fluid velocity component parallel to the contour of the cylinder is defined as
uθ=U(θ)[F(η)+ᴧ(θ)G(η)], where U(θ) is the fluid velocity at the contour of the
boundary layer of thickness δ(θ), F(η) and G(η) are given polynomials of a
non-dimensional coordinate η=(r–Dc/2)/δ, and the tabulated values of δ(θ)
and ᴧ(θ) are provided elsewhere (Schlichting, 1979). Once uθ is known, the
fluid velocity component vr in the direction normal to the contour of the
cylinder can then be obtained using the equation of mass conservation.
Projecting (uθ, vr) onto the axes of the coordinate system OXY, we obtain
U and ω=2–1rotU, which are involved in Eqns1 and 2.

Rotation Rotation 

Trajectory of a passive particle

Trajectory of a swimmer

 Swimming
Fluid ve

locity

Resulting velocity

Rotation due to vorticity

Boundarylayer 

Cylinder

LarvaLarva BeadBead

Fig.6. Schematic trajectories of motion of a larva. Motion of a passive
particle (grey symbols) and a microswimmer (red symbols) in the boundary
layer of a collector. The linear velocity of a microswimmer is the
geometrical sum of the flow velocity and the velocity of the swimmer.
Because of translation, the microswimmer does not move along the
trajectory of a passive particle. Additionally, both the microswimmer and the
passive particle rotate as a result of boundary layer vorticity. The vector of
the angular velocity of the shear-induced rotation is normal to the plane of
the paper. For a spherical particle, the rotation does not influence its
trajectory. A rotating microswimmer re-orientates and further deviates from
the trajectory of a passive particle (Zilman et al., 2008). A small passive
particle in the velocity field of a large collector moves along a streamline,
which does not cross the cylinder. Deviation of a swimmer from the
trajectory of a passive particle may result in its contact with the cylinder
with much higher probability than the probability of contact with the cylinder
of a passive particle.
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presented here. Although for each atypical trajectory the match
between theoretical and experimental data was obtained for a
particular initial angle ϕ0 and a particular coordinate Y0, the general
character of atypical trajectories is determined by the local fluid
mechanics in the closest vicinity of a collector, i.e. in its BL.

The trajectory of a larva defines a contact event. Thus, using the
same mathematical model we can calculate the trajectory of a larva
and the probability of its contact with a cylinder.

The probability of contact of a microswimmer with a collector
In the theory of aerosols (Fuchs, 1964), one of the methods of
evaluating the probability of contact (collision) of passive particles
with a collector (E0), is based on the analysis of their trajectories.
The trajectory analysis is applied here to calculate the probability
of contact of a microswimmer with a collector (ES). The
mathematical details of the trajectory analysis are provided in Fig.8.
Satisfactory agreement between the theoretical and available

experimental data of contact probability for passive particles,
illustrated in Fig.9, suggests that the mathematical model we used
to calculate the contact probability of passive particles can also be
used to calculate the contact probability of microswimmers.

Now, we return to the central question of our work: how does a
larva’s self-propulsion influence the probability of its contact with
a collector if the larva is not aware of the collector? We characterise
this influence as the ratio η=ES/E0, which is plotted in Fig.10 for
a wide range of realistic problem parameters adopted here.

DISCUSSION
Here, we observed trajectories of larvae B. neritina and of passive
particles that mimic larvae in the velocity field of a vertical cylinder
(Figs3, 4). We revealed a considerable number of larval trajectories
that differed markedly from the trajectories of passive particles
(Fig.4). We attributed such trajectories to larval self-propulsions.
To explain our experimental observations, we formulated a
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mathematical model of a larva’s motion in the two-dimensional
laminar velocity field of a long cylinder (102<Rec<105). The
validity of our mathematical model was confirmed by satisfactory
qualitative agreement between the experimental trajectories of
larvae and the simulated trajectories of a microswimmer (Fig.7)
and by satisfactory quantitative agreement between simulated and

measured probabilities of contact of passive particles with a
cylinder (Fig.9).

Using trajectory analysis and Monte Carlo simulations, we
calculated the probability of contact of a microswimmer with the
front part of a cylinder. Mathematical modelling revealed a
considerable increase in the probability of contact of the
microswimmer with a cylinder compared with the probability of
contact with the same cylinder of the same microswimmer but with
zero swimming velocity, η=ES/E0 (Fig.10). Regarding orders of
magnitude, this increase can be estimated as follows: for
VS/U∞≈0.01, η≈1; for VS/U∞≈0.1, η≈10; and for VS/U∞≈1, η≈102.
For instance, because of self-propulsion, larvae of B. neritina with
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dp/Dc=0.015
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Fig.9. Probability of contact of passive particles (dp=194μm). Solid lines
are our numerical simulations. Symbols pertain to experimental values
obtained by Palmer et al. (Palmer et al., 2004), who observed capture of
spherical particles of diameter dp≈194μm on a long vertical cylindrical of
diameter of 0.63–2.54cm in laminar flow (dp/Dc=0.008 to 0.031, Rec=68 to
486). The conditions of the Palmer et al. (Palmer et al., 2004) experiment
match the assumption of our mathematical model. A discrepancy between
the theoretical and experimental results can be observed in the range of
Reynolds numbers less than 100, where the theory of the boundary layer is
not expected to be accurate (Friedlander, 1977).

Fig.8. Geometrical definition of the probability of contact (not to scale). The
motion of particles (yellow circles) is tracked in the control volume
ABB′CB′BA, which is fully penetrable except at the contour of the cylinder.
Contact is assumed to occur if the distance from the centre of a particle to
the cylinder is equal to the radius of the particle. Red lines and red circles
represent the limiting (grazing) trajectories that for passive particles can be
calculated iteratively, thereby yielding an estimate of the probability of
contact E0=ln/LN, where LN=Dc+dp and ln is the distance between the two
limiting (grazing) trajectories. The method of grazing trajectories cannot be
applied for swimmers because they start their motion with random angles
of swimming. Instead, Monte Carlo simulations can be used as an
alternative method of calculating of the probability of contact. It is possible
to calculate the number of particles that contact the collector by tracking
the trajectories of N particles that start their motion far from a cylinder with
random uniformly distributed initial coordinates –R<Y0<R (R=Dc/2). The
ratio of n particles that contact the cylinder to the total number of the
particles N determines the probability of contact, E0=n/N. To compare the
probability of contact of passive particles E0 with that of swimmers ES, we
must account for the randomness not only of the initial coordinate of the
swimmer Y0 but also of the initial track angle ϕ0. Assume now that NS
microswimmers start their motion with random uniformly distributed
coordinates –R<Y0<R and random uniformly distributed angles 0<ϕ0<2π.
Then, the ratio of nS microswimmers that collide with the collector to the
total number of the microswimmers NS yields an estimate of the probability
of contact of microswimmers, ES=nS/NS (Sobol, 1994). To obtain robust
results, we repeated Monte Carlo simulations by doubling the number of
testing points until the error of the estimate of the probability of contact was
less than 5%. To obtain this degree of accuracy, we used NS�105 test
microswimmers.

0 0.2 0.4 0.6 0.8 1100

101

102

103

Vs/U∞

E
S
/E

0

 

 

dp/Dc=0.00250

dp/Dc=0.00357

dp/Dc=0.00500

Fig.10. Simulated probability of contact of microswimmers normalised by
the probability of contact of passive particles (VS=0.005ms–1, dp=250μm,
Rec=2.5×102 to 104). In this figure the numerical simulations are performed
for parameters of a regular helix dh=6dp, γ=6.3rads–1. Systematic
numerical simulations show that for dh=0 the results presented here remain
approximately the same. That implies that for the problem parameters
presented here, the helical motion, including its irregularities, does not
significantly affect the probability of contact.
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swimming velocity ~5mms–1 may increase their probability of
contact with a cylinder 10-fold in a sea current of ~5cms–1 and
100-fold in a sea current ~2.5cms–1. Although sea currents of
2.5–5cms–1 are rare, our theoretical prediction is consistent with
the observations of Qian et al. (Qian et al., 1999; Qian et al., 2000):
in tubes with laminar flow, larvae of B. neritina preferred to settle
in low-speed currents U≈2.5cms–1; whereas for U>~8cms–1, the
probability of settlement drastically decreased. It should also be
noted that some biofouling marine larvae swim much faster than
larvae of B. neritina (Table1). For those larvae, the ratio VS/U∞>0.1,
which provides a ~10- to 100-fold increase in the probability of
contact, may correspond to frequent currents of the order of tens of
cms–1 (Table1). In contrast, within the framework of a mechanistic
approach and according to the results of our mathematical modelling,
larvae with VS<~2mms–1 that move in sea current U∞>5cms–1 make
contact with a collector as passive particles.

We formulated the problem of larval contact with a collector for
a spherical microswimmer moving with low Reynolds numbers.
However, such a small sphere and a small spheroid of moderate
slenderness ~1.5–2.0 (such as the larvae listed in Table1) move in
a linear shear flow along similar trajectories (Zöttl and Stark, 2012).
Given that a BL without separation can be approximated by a linear
shear flow for qualitative estimates (Schlichting, 1979), it is not
unlikely that a spheroidal swimmer may move in the two-
dimensional BL approximately as a spherical swimmer.

We formulated the problem of contact of a microswimmer with
a cylinder for laminar flows Rec>>1. Experimental data regarding
settlement (not contact specifically) of marine larvae on a cylinder
in a natural turbulent environment were reported by Rittschof and
colleagues (Rittschof et al., 2007). We did not find experimental or
theoretical work in which the probability of contact of swimmers
with a cylinder in turbulent flows was measured or calculated for
St<<1 and Rec>>1. For such flow parameters the available and rather
limited experimental data pertain only to contact of passive particles
with a cylinder. Asset and colleagues (Asset et al., 1970) and
Stuempfle (Stuempfle, 1973) reported that for Stokes and Reynolds
numbers such as those studied here, incoming upstream turbulence
with an intensity of less than 7–8% practically does not affect the
probability of contact of passive particles with a cylinder. In strong
turbulence, the swimming speed of a larva may be small compared
with the turbulent fluctuations of the fluid velocity. In such cases,
a larva’s self-propulsion may have little effect on its trajectory except
in the vicinity of the collector, where the fluid velocity and its
turbulent fluctuations are low (Schlichting, 1979).

The hydrodynamic model of contact of a microswimmer with a
cylinder proposed here may be relevant for self-propelled larvae
and aquatic larval collectors, such as kelp stems, sea grasses, small
artificial reefs, pillars, columns and other engineering structures,
that are located in a relatively slow sea current of low-to-moderate
turbulent intensity (Abelson et al., 1994). Mathematical modelling

of the motion of a larva in the velocity field of a collector located
in a fully turbulent environment is beyond the scope of our present
work.

In conclusion, the results of our investigation, which are presented
in Fig.10, suggest that for the problem parameters presented here,
self-propulsion may greatly increase a larva’s odds of making contact
with the collector even if the larva does not detect the collector
remotely.

LIST OF SYMBOLS AND ABBREVIATIONS
BL boundary layer
Dc diameter of a cylinder
dh diameter of a helix
dp equivalent diameter of a larva or particle
E0 probability of contact of a particle with a collector
Es probability of contact of a microswimmer with a collector
ln distance between the two limiting (grazing) trajectories
lp the stopping distance a particle (lp=ρpd2

pU∞/18μ)
n number of particles that contact the cylinder
N total number of particles used in Monte Carlo simulations
nS number of microswimmers contacting the cylinder
NS total number of microswimmers used in Monte Carlo

simulations
oxyz helix-fixed Cartesian frame of reference
OXYZ earth-fixed Cartesian frame of reference
r radius vector of the centre of the particle
R radius of a cylinder
Rec the Reynolds number of a cylinder (Rec=ρfU∞Dc/μ)
St the Stokes number (St=lp/Dc)
t time
T time period of a helix
U flow velocity
U∞ flow velocity far from the collector
V velocity of motion of a larva or particle
Vh velocity of helical motion
VS swimming velocity of a larva
Vt sinking velocity of a larva
X0, Y0 initial coordinates of a larva or particle
γ intrinsic angular velocity of a larva’s helical motion
η normalised probability of contact of a larva, ES/E0
μ water viscosity
ρf water density
ρp mean density of a larva or particle
ϕ course (track) angle of a larva
ϕ0 initial course angle of a larva
ω shear-induced angular velocity of a larva or particle
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Swimming Current velocity corresponding Current velocity corresponding 
speed to η=10cms–1 to η=100cms–1

Taxon (cms–1) Source (cms–1) (cms–1)
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η, normalised probability of contact of a larva with the collector.
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