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INTRODUCTION
One of the most ubiquitous environmental conditions that broadly
impacts organisms is temperature (Dorts et al., 2012). In 2007, the
Intergovernmental Panel on Climate Change projected an average
global air temperature increase of 1.1–6.4°C by the end of the 21st
century (IPCC, 2007), potentially exceeding the rate of warming at
any point in the fossil record (Allan et al., 2005). In particular, global
warming may have a significant physiological impact on tropical
ectotherms because these species tend to be adapted to fairly constant
external temperatures and have a narrow temperature performance
breadth (Deutsch et al., 2008; Angilletta, 2009; Dillon et al., 2010).
Additionally, the effects of global warming may be exacerbated
because many ectotherms live in warm environments and are closer
to their thermal tolerance limit (Stillman, 2003). Thus, even a small
increase in temperature is likely to have a serious negative impact
on their physiological processes. The projected increase in
temperature is also likely to have ecological impacts, including
reduced food availability, which can be confounded by thermally
induced increases in the metabolic rate of ectotherms. Consequently,
less energy may be available for other important functions, including
reproduction, potentially altering the demographics of populations
(Deutsch et al., 2008; Daufresne et al., 2009; Dillon et al., 2010).

The biological impacts of climate change have already been
documented (Angilletta, 2009); for example, the level of warming
has caused many species to shift their ranges or alter their
phenology (reviewed in Parmesan, 2006). Indeed, almost 60% of
nearly 1600 species studied have exhibited a shift in their ranges
or phenology over the past 20–140years, predominantly in the
direction expected from climate change (Parmesan and Yohe,
2003). However, for many species there are barriers to dispersal

such as mountain ranges or dams. These organisms will instead
have to cope by adapting to the increased temperature or face
extinction (Fuller et al., 2010). Organisms can adapt genetically
or rely on phenotypic plasticity to cope in the warmer
environment. Phenotypic plasticity is the first response to climate
change and will be the only response for many long-lived species
(Bradshaw and Holzapfel, 2006; Fuller et al., 2010). Therefore,
understanding the extent of plasticity is of crucial importance to
better understand the fate of organisms in warming environments
(Somero, 2010).

Sexual traits including sperm performance are key determinants
of male reproductive success but exposure to elevated temperatures
has the capacity to alter these traits (Alavi and Cosson, 2005; Dorts
et al., 2012). Increased temperatures have been shown to result in
decreased sperm motility (e.g. Williot et al., 2000), decreased sperm
number (e.g. Zeh et al., 2012) and, in one study, increased sperm
length (e.g. Blanckenhorn and Hellriegel, 2002); most other stressors
have, in contrast, been shown to lead to decreased sperm length
(e.g. Dey et al., 2009; Immler et al., 2010). These changes
subsequently can have a significant impact on male reproductive
success (Billard, 1978; Stoss, 1983; Gage et al., 2004; Alavi and
Cosson, 2005). In addition, temperature may affect secondary sexual
characters that are important sexual traits because they act as an
honest signal of male quality and aid females in choosing mates
(Kortet et al., 2004). Borg found that the decline of secondary sexual
characters during the summer is accelerated by high temperatures
in the three-spined stickleback, Gasterosteus aculeatus (Borg,
1982). Furthermore, Brian et al. found that an optimum temperature
for male secondary sexual characteristics exists in the fathead
minnow (Pimephales promelas) (Brian et al., 2011). Therefore,
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temperature may have the potential to affect both pre- and post-
copulatory processes during reproduction.

A rise in temperature is also predicted to result in an increase in
the transmission, growth rate and virulence of parasites and
pathogens (Harvell et al., 2002; Marcogliese, 2008; Harvell et al.,
2009; Dang et al., 2012). The immune system is highly sophisticated
and has evolved to defend hosts against the debilitating effects of
pathogens and parasites (Møller and Saino, 2004). However,
variation in temperature can have marked effects on immunological
function and effectiveness: increased temperatures can affect the
antibacterial activity, antimicrobial activity and parasite resistance
of a host (e.g. Collazos et al., 1996; Lamková et al., 2007; Dang et
al., 2012). Indeed, Collazos et al. found that the immune response
to phytohaemagglutinin (PHA) is compromised at higher
temperatures in the tench, Tinca tinca (Collazos et al., 1996). PHA,
a protein derived from red kidney beans, is commonly used as a
novel antigen to test T-cell proliferation (e.g. Collazos et al., 1996;
Bayyari et al., 1997; Ardia and Clotfelter, 2006). The PHA-induced
immune response has also been linked directly to parasite resistance
(Bayyari et al., 1997). Exposure to PHA thereby provides a simple
but effective test of an organism’s innate immune response.

The projected change in air temperature will also result in a
change in water temperature (e.g. Stefan and Preudhomme, 1993;
Caissie et al., 2001). The magnitude of the change in water
temperature, however, will depend upon several factors including
the location and volume of the water body. Small, shallow streams
are likely to experience similar changes to air temperature, whereas
large water bodies, such as oceans, will take longer to respond (Ficke
et al., 2007). Indeed, long-term increases in river and stream water
temperature are strongly correlated to long-term increases in air
temperature (Kaushal et al., 2010). Consequently, global warming
will be more problematic for obligate freshwater organisms. For
fish, this problem is further compounded because of their
poikilothermic nature whereby their basic physiology is directly
dependent on the temperature of their environment. Given the
potential negative impacts that global warming might have, studies
addressing the short- and long-term effects of the increased
temperature are needed.

Here, we used the Trinidadian guppy (Poecilia reticulata, Peters
1860) as a model poikilothermic fish to examine the effects of
increased temperature, as projected for 2100. Guppies are a small,
polygamous, live-bearing fish native to north-eastern South America
and the Caribbean. They inhabit small freshwater streams and pools
that flow through lowland and montane rain forests (Houde, 1997).
Currently, the mean air temperature in Trinidad is 27.7°C and
fluctuates by 2.0°C annually between the coldest months (January
and February, 26.5°C) and the warmest month (May, 28.5°C), while
the diel temperature fluctuates by ~8.4°C (mean values calculated
between January 1992 and December 2012; weatheronline.co.uk).
Because of the physical nature of water, short-term temperature
variations in water are usually smaller than short-term temperature
variations in air (Caissie et al., 2001; Kaushal et al., 2010). The
mean water temperature of rivers in Trinidad is ~25°C and ranges
between 20 and 28°C (Alkins-Koo, 2000). Over the past 60years,
Trinidad has experienced a mean rise in air temperature of 1.5°C
(Singh, 1997), and the temperature is projected to increase by
1.0–3.5°C by the end of the 21st century (Water Resources Agency,
2001). However, variation in temperature is set to decrease as night-
time and winter temperatures are projected to increase more than
daytime and summer temperatures (IPCC, 2007). Geographical
barriers, such as waterfalls and oceans, mean that natural dispersal
for individuals within Trinidadian streams is unfeasible. Therefore

guppies, like many other poikilotherms, will largely have to rely on
phenotypic plasticity in order to respond to global warming.

The objective of this study was to assess brood survival and to
detail the phenotypic plasticity of sperm length, sperm velocity, male
ornamentation and immune response in guppies exposed to increased
temperatures. We exposed guppies from birth to one of four
temperature treatments: 23°C to represent a cooler climate, 25°C
(control), and 28 or 30°C to represent average or upper projected
temperatures for the year 2100, respectively. We hypothesized that
there would be an effect of increased temperature on survivorship
and reproductive traits. We predicted that exposure to increased
temperatures would result in decreased brood survival, sperm
length, sperm velocity, male ornament quality and immune response.

MATERIALS AND METHODS
Experiments were conducted following ethical guidelines as
implemented by the Canadian Council of Animal Care and were
approved by the Animal Use Subcommittee at the University of
Western Ontario. Guppies used in this experiment were descendants
of fish that were collected in 2003 from a tributary of the Paria
River in the Northern Range, Trinidad (10°44′42″N; 61°15′42″W).
All guppies were kept at a constant temperature of 25±0.6°C to
represent natural conditions (Alkins-Koo, 2000). Pregnant females
were put into individual 10l tanks until they gave birth. The number
of offspring at birth and again after 3months was recorded in order
to get an estimate of brood survival. Approximately 24h after the
females gave birth (allowing time for the birth of the entire brood)
they were removed from the tanks so only the offspring remained.
The temperature in the tanks was then set to one of four temperatures:
30°C to represent the upper range of future climate predictions for
the end of the century, 28°C to represent average future climate
predictions for the end of the century, 25°C to act as a control and
23°C to represent a cooler climate.

Sperm analysis
At 3months of age (mean ± s.d. age: 95.8±7.0days), a subset of
males were removed from their tanks and put into individual
isolation chambers set at the temperature in which they were
acclimated for 3days to ensure full sperm reserves (Pilastro et al.,
2002). Males were then anaesthetized with MS-222 and ‘pat-dried’
to remove all excess MS-222 from their skin. The males were placed
under a dissection microscope with their gonopodium swung
forward and 40μl of sperm extender medium (207mmoll–1 NaCl,
5.4mmoll–1 KCl, 1.3mmoll–1 CaCl2, 0.49mmoll–1 MgSO4,
10mmoll–1 Tris, pH7.5) was added to the base of the gonopodium
(Evans, 2009). Gentle pressure was applied to the side of the
abdomen, anterior to the base of the gonopodium, to release all sperm
bundles into the extender medium. The sperm was then activated
using 40μl of 150mmoll–1 KCl solution with 2mgl–1 BSA, which
helps to prevent sperm from sticking to the slide. Two 15μl aliquots
of the sperm solution were immediately placed in a 2X-CEL sperm
analysis chamber (Hamilton Thorne, Beverly, MA, USA) and put
under a microscope. Digital images were recorded using an SI-
C400N microscope video camera (Costar Imaging, Lakewood, CA,
USA) for velocity analysis. Following methods outlined previously
(Breckels and Neff, 2010), we extracted images from the recorded
video at 10framess–1 and determined the two-dimensional
coordinates using NIH ImageJ software (http://rsbweb.nih.gov/ij).
Using the Pythagorean theorem, the distance travelled (μm) by a
sperm cell in 1s was calculated as the sum of the distances travelled
between the 11 consecutive frames in that second. The total distance
travelled by each sperm in 1s is called the curvilinear velocity (VCL,
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μms−1). We then calculated the straight line velocity (VSL) of the
sperm by determining the distance travelled between the first and
the last of the 11 consecutive frames. Finally, we calculated the
path linearity by dividing the VSL by the VCL. A path linearity value
of 0 represents a sperm that started and ended at the same point
whereas a value of 1 represents a sperm that travelled in a straight
line (see Stoltz and Neff, 2006; Kime et al., 2001). We measured
the VCL, VSL and path linearity of 10 sperm per individual.

Next, a 20μl aliquot of the sperm solution was put onto a slide
and covered with a coverslip. The slide was viewed under a
microscope at 400× magnification and digital images were taken.
Images were analysed in UTHSCSA Image Tool software v. 3.0
(http://compdent.uthscsa.edu/dig/itdesc.html). The tail length,
including flagellum and mid-piece, of 30 sperm per male was
measured.

Ornament analysis
Female guppies tend to respond favourably to males with larger and
more intense orange spots on their body (Kodric-Brown, 1985;
Kodric-Brown, 1989; Houde, 1997). Thus, we examined the impact
of temperature on both orange spot area and colour intensity. At
the same time as the sperm analysis measurements, a photograph
was taken of each guppy on a white background with a dark blue
paint chip and a ruler, which acted as a scale. Images were then
analysed using ImageJ in order to calculate the length of each fish
and the proportion of orange on their bodies. For length
measurements, fish were measured from the tip of the snout to the
end of the caudal peduncle. For the proportion of orange
measurements, the outline of the fish was traced in order to get an
estimate of the area. Then, each orange spot on the body of the fish
was traced and summed to obtain total orange cover. All
measurements were repeated three times and then averaged. The
value was then divided by the mean fish area to express the cover
as a proportion of body size.

To measure the hue, saturation and brightness (HSB) of the orange
pigmentation, pictures were analysed using Adobe Photoshop CS3
(San Jose, CA, USA). Each photograph was standardized for
lighting conditions (see Villafuerte and Negro, 1998) by recording
mean values of red, green and blue (RGB) for the light background
and the dark paint chip. Next, the mean RGB values were recorded
for the orange pigmentation on the guppies and standardized. From
these values we were able to calculate the standardized HSB values
for each guppy (Villafuerte and Negro, 1998).

Immune response
To evaluate the immune response, a separate subset of fish from
each temperature treatment were injected with PHA and their
swelling response was recorded. The PHA swelling response
provides a measure of T-cell proliferation and has also been linked
to parasite resistance (Bayyari et al., 1997; Ardia and Clotfelter,
2006). After roughly 8months of age (mean ± s.d. age: 236±43days),
both male and female guppies were anaesthetized using MS-222
and length measurements were taken as detailed above. Next, the
guppies were placed under a dissection microscope and the width
of the caudal peduncle, in line with the end of the dorsal fin, was
measured independently three times for accuracy with a digital
calliper (0.01mm accuracy). The guppies were then injected in the
same area with 4μg PHA, in 2μl phosphate-buffered saline (PBS)
using a 10μl, 26 gauge syringe (Hamilton Company, Reno, NV,
USA). Another subset of guppies, reared at 25°C, were either
injected with the needle only or received a dose of PBS without
PHA and acted as control groups. The guppies were then put in
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isolation chambers to avoid contact with other fish, with the
temperature set to the temperature that they had been acclimated
to, for 24h. The fish were then anaesthetized again and the caudal
peduncle was re-measured as above to determine the swelling
response. The immune response of each individual was recorded as
the difference in swelling between post- and pre-injection.

Statistical analyses
All statistical analyses were performed using SPSS v. 20 (SPSS
Inc., Chicago, IL, USA) or Microsoft Excel 2010 (Microsoft
Corporation, Redmond, WA, USA) and all presented P-values are
two-tailed probabilities. Brood survival, orange cover and sperm
path linearity were transformed using logit transformations. A one-
way ANOVA was performed to compare brood survival among the
four temperature treatments. General linear mixed models (GLMMs)
were performed to compare male body length, sperm length, VCL,
VSL, path linearity, orange cover, HSB and immune response
among the four temperature treatments. Family identification (ID)
was included as a random factor and body length was included as
a covariate for all tests. Because there was variation in the age of
the fish tested in the immune response trials and because we used
both sexes, we included sex as an additional fixed factor and age
as a covariate. For post hoc analysis we used a Tukey’s b-test.
Finally, we preformed linear contrast analyses for the four different
sperm traits in order to determine whether there was a linear
relationship with temperature.

RESULTS
The number of families reared at 23, 25, 28 and 30°C was 13, 21,
12 and 21, producing mean brood sizes of 6.7, 4.9, 4.8 and 5.5
offspring, respectively. There was no difference in brood survival
among the four temperature treatments (mean ± s.d. brood survival:
23°C, 0.81±0.21; 25°C, 0.72±0.29; 28°C, 0.94±0.12; and 30°C,
0.74±0.28; F3,63=1.4, P=0.258). A total of 82 fish were used for the
sperm trials and ornament analysis (23°C, N=11; 25°C, N=27; 28°C,
N=19; and 30°C, N=25). Family ID had a significant effect on male
body length at 3months of age (F13,65=2.0, P=0.040) and there was
also a significant effect of temperature (F3,65=5.0, P=0.003).
Interestingly, males in the 23 and 28°C treatments were significantly
longer than those in the 25 and 30°C treatments (mean ± s.e.m.
length: 23°C, 15.2±0.6mm; 25°C, 13.9±0.3mm; 28°C,
15.1±0.4mm; 30°C, 13.9±0.2mm).

Sperm analysis
Male body length had no effect on sperm length, VCL or VSL, and
neither body length nor family ID had an effect on sperm path
linearity across the four treatments (P>0.05 for all). However, family
ID had a positive effect on sperm length, VCL and VSL (F13,64=2.3,
P=0.008; F13,59=1.9, P=0.047; and F13,59=2.2, P=0.023,
respectively). There was a significant decrease in average sperm
length with increasing temperature (F3,64=38.3, P<0.001), with the
30°C acclimated fish producing significantly shorter sperm than the
28°C acclimated fish, which in turn produced significantly shorter
sperm than both the 23 and 25°C acclimated fish (Fig.1A). Similarly,
there was a significant decrease in VCL and VSL with increasing
temperature (F3,59=7.8, P<0.001 and F3,59=8.0, P<0.001,
respectively), with 30°C acclimated fish showing significantly
decreased VCL and VSL compared with those of fish from the other
three temperatures (Fig.1B,C). Sperm path linearity also decreased
significantly with increasing temperature (F3,59=3.8, P=0.015;
Fig.1D), with the 23°C acclimated fish displaying a greater path
linearity than both the 28 and 30°C acclimated fish. Additionally,
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sperm length, VCL, VSL and path linearity all declined linearly with
increasing temperature (F1,78=75.9, P<0.001; F1,73=15.7, P<0.001;
F1,73=17.7, P<0.001; and F1,73=12.0, P=0.001, respectively).

Ornament analysis
There was no effect of family ID on orange cover, saturation or
brightness, nor was there an effect of body length on orange cover,
hue or saturation (P>0.005 for all). There was also no effect of
temperature on orange cover or saturation (mean ± s.e.m. orange
cover: 23°C, 5.2±0.6%; 25°C, 6.3±0.5%; 28°C, 5.6±0.6%; and 30°C,
6.3±0.6%; F3,64=0.7, P=0.548; mean ± s.e.m. saturation: 23°C,
0.87±0.01; 25°C, 0.91±0.02; 28°C, 0.82±0.03; and 30°C, 0.86±0.02;
F3,64=2.0, P=0.120). There was, however, an effect of family ID
(F3,64=2.9, P=0.002) and temperature on hue (F3,64=17.5, P<0.001;
Fig.2), with the 28°C fish displaying a significantly greater hue than
fish from all other treatments. The 25°C fish displayed a significantly
greater hue than the 30°C fish, whereas the 23°C fish did not show
a significant difference in hue from either the 25 or 30°C fish. There
was an effect of body length on brightness (F1,64=7.2, P=0.009),
but temperature had no effect (mean ± s.e.m. brightness: 23°C,
0.45±0.02; 25°C, 0.45±0.01; 28°C, 0.44±0.01; and 30°C, 0.41±0.01;
F3,64=1.0, P=0.487).

Immune response analysis
A total of 156 fish were used from 65 families in the immune response
trials (control, N=13; PBS control, N=10; 23°C, N=38; 25°C, N=35;
28°C, N=27; and 30°C, N=33). Age, length and family ID had no
effect on PHA swelling response (P>0.05 for all). Although there
was a significant increase in PHA swelling response between the two
controls and the four temperature treatments (F5,121=4.4, P=0.001;
Fig.3), there was no difference in swelling response among the four
temperature treatments. Additionally, males produced a significantly
larger swelling response than did females (F1,121=4.8, P=0.031).

DISCUSSION
Climate change, particularly the increased temperature predicted for
the end of the century, has the potential to alter many life history
traits, including juvenile survival (e.g. Zeh et al., 2012) (reviewed
in Pepin, 1991). Although temperature can impact many aspects of
natural ecosystems (reviewed in Ficke et al., 2007; IPCC, 2007),
establishing its direct effect on physiology and survival is a crucial
first step in discerning the impact of climate change on natural
populations. A previous study suggested that guppies have lower
juvenile survival rates at temperatures of 29°C and above (Karayucel
et al., 2008). However, in our study we found no difference among
temperature treatments in terms of brood survival. This discrepancy
may be because the other study (Karayucel et al., 2008) used
commercial aquarium fish that had been selectively bred for their
elaborate pigmentation and fins (Karayucel et al., 2006), whereas
we used guppies caught from the wild and maintained in a large
stock population without any artificial selection. Taken together,
our study and that of Karayucel and colleagues (Karayucel et al.,
2008) suggest that the elaboration of sexual ornaments affects
survival, particularly in warmer environments, indicating that they
are costly (Andersson, 1994). The discrepancy between the two
studies may also reflect differences in genomic diversity, as
aquarium guppies tend to be highly inbred as a result of selective
breeding whereas wild-caught guppies have a much higher level of
genetic variation (e.g. Bleakley et al., 2008). Thus, wild-caught
guppies could potentially have broader thermal limits than aquarium
fish, allowing them to survive at higher temperatures. Regardless,
we found no evidence to suggest that temperature increases as
predicted for the end of the century will have a significant effect
on brood survival in guppies.

Secondary sexual characters influence female mate choice
because they can act as an honest signal of male quality (Andersson,
1994). Brian and colleagues found that there was an optimum
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Fig.1. Sperm measurements of guppies (Poecilia
reticulata) reared from birth at one of four
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(P<0.05) according to a Tukey’s b HSD test.

THE JOURNAL OF EXPERIMENTAL BIOLOGY



2662

temperature for ornamentation in fathead minnows that was slightly
higher than the native temperature (Brian et al., 2011). Our results
show that ornament hue was highest at 28°C, higher than the mean
natural temperature of 25°C. While it has been documented that
hue is an important factor in female mate choice for many species
[e.g. Chinook salmon, Oncorhynchus tshawytscha (Neff et al., 2008)
and the blue crab, Callinectes sapidus (Baldwin and Johnsen, 2009)],
its role in mate choice for guppies is less well known. One study
at least suggests that female guppies instead prioritize the area of
orange and colour saturation over hue (Karino et al., 2010), yet we
found no effect of temperature on those two aspects of
ornamentation. It is conceivable that ornamentation traits subject to
intense sexual selection become canalized from environmental
stressors such as the increased temperature in our study. This then
brings into question whether the signals are, in fact, honest. Indeed,
Candolin found that the condition of male three-spined sticklebacks
displayed a curvilinear relationship with ornament quality; males
of both good and poor condition had larger ornaments than males
of intermediate condition (Candolin, 1999). Our results show that
male guppies reared at higher temperatures had lower quality sperm
(a key component of fertility in the guppy) (e.g. Boschetto et al.,
2011) but their ornament, as measured by orange colour and
saturation, was unaffected, suggesting that these aspects of the
secondary sexual character may not be honest signals of quality.

Zeh and colleagues have claimed that the ‘Achilles’ heel’ for
tropical ectotherms will be reproduction in a warming climate (Zeh
et al., 2012). They (Zeh et al., 2012) found that with slight increases
in temperature (3.5°C), male neotropical pseudoscorpions,
Cordylochernes scorpioides, produced half the sperm load of
controls, and females failed to reproduce at all. Lahnsteiner and
Mansour similarly found that sperm velocity decreased in both
brown trout, Salmo trutta, and burbot, Lota lota, as temperature
increased across a biologically relevant range (Lahnsteiner and
Mansour, 2012). We found that increased temperature significantly
decreased sperm length, VCL and VSL. Sperm length and velocity
are key determinants of fertilization in many ectotherms (Billard,
1978; Stoss, 1983; Gage et al., 2004; Alavi and Cosson, 2005).
Indeed, a positive relationship has been found for sperm velocity
and fertilization success in internally or externally fertilizing fish
(Gage et al., 2004; Casselman et al., 2006; Gasparini et al., 2010).
Additionally, sperm length is often positively correlated to sperm

The Journal of Experimental Biology 216 (14)

velocity (e.g. Gomendio and Roldan, 1991; Malo et al., 2006;
Fitzpatrick et al., 2009). Thus, our results indicate that reproduction
could be compromised in a warmer environment, supporting the
claim that reproduction is the Achilles’ heel for tropical ectotherms
(Zeh et al., 2012).

Many studies suggest that global warming has the potential to
negatively affect the immune system (e.g. Collazos et al., 1996;
Dang et al., 2012). Indeed, Collazos and colleagues found that
seasonal variation in temperature affects the immune response to
PHA in the tench, with the increased summer temperatures
experienced by the fish causing a decreased immunological response
compared with winter temperatures (Collazos et al., 1996). However,
Le Morvan-Rocher and colleagues found no effect of increased
temperature on the PHA response in carp, Cyprinus carpio (Le
Morvan-Rocher et al., 1995). Our results agree with those of Le
Morvan-Rocher and colleagues (Le Morvan-Rocher et al., 1995) as
we found no evidence of a reduced PHA swelling response at
increased temperatures. This apparent difference in results from
those of Collazos and colleagues (Collazos et al., 1996) may reflect
the experimental manipulation of our studies whereas Collazos and
colleagues studied the effects of natural, seasonal variation. Tench
breed in the summer so their immune system may be downregulated
during this period as resources are shifted to reproduction (e.g.
Fedorka et al., 2004; Whitton, 1982; Moret and Schmid-Hempel,
2000). Regardless, our results suggest that the innate immune system
of guppies may be able to cope with the projected temperature
increase for the end of the century, at least as measured by the
swelling response to a novel antigen.

In our study, we found that increased temperatures affected some
sexual traits (sperm characteristics and ornament hue) but not aspects
of immune function or survival. It is possible that, at the elevated
temperatures, guppies channel resources to upregulate their immune
system, which then leaves their reproductive system more
susceptible to immunological attack (Folstad and Sharstein, 1997).
Indeed, the immunocompetence handicap hypothesis (Folstad and
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Fig.2. Ornament hue of P. reticulata reared from birth at one of four
temperatures. Shown are means ± s.e.m. Error bars with different letters
are significantly different (P<0.05) according to a Tukey’s b HSD test.

Fig.3. Phytohaemagglutinin (PHA) swelling response of P. reticulata
controls (C1, needle only; C2, phosphate-buffered saline injection) and
those reared from birth at one of four temperatures. Shown are means ±
s.e.m. Error bars with different letters are significantly different (P<0.05)
according to a Tukey’s b HSD test.
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Karter, 1992) states that sperm cells are considered non-self and
are therefore subject to attack from the immune system (reviewed
in Kosuda and Bigazzi, 1987). To counter attacks on sperm cells,
males can release elevated levels of gonadal androgens, which act
to downregulate the immune system (Folstad and Sharstein, 1997).
We did not, however, directly measure immune cell proliferation
or circulating androgen levels in our fish and therefore cannot
confirm whether our data support the immunocompetence handicap
hypothesis. Our results might also just reflect a trade-off between
reproduction and immunity (and potentially other life history traits)
with the latter taking precedence over reproductive traits in guppies
that are thermally stressed.

In conclusion, the results of our study suggest that the temperature
rise predicted by the end of the century has no effect on immunity
or survival in the guppy. Conversely, the increased temperature could
have a significant impact on reproduction in this fish. We found
that increased temperatures resulted in decreased sperm length and
motility, which are key aspects of fertility. Our study thereby
indicates that key sexual traits are more sensitive to elevated
temperatures than are traits linked to survival. Future work might
emphasize long-term experiments that examine potential maternal
environmental effects (e.g. McAdam et al., 2002), epigenetic effects
(e.g. Miller et al., 2012) and genetic adaptations (e.g. Réale et al.,
2003) that could all help to ameliorate the negative impacts of
climate change.
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