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Introduction
Brain activity is thought to account for a significant fraction of the
whole-animal resting metabolic rate: estimated at 5–7% in fish to
20% in humans (Mink et al., 1981). The high energetic cost is
primarily due to the maintenance of membrane potentials,
generation of action potentials and synaptic transmission (e.g.
Attwell and Laughlin, 2001; Lennie, 2003; Niven and Laughlin,
2008; Harris et al., 2012). Weakly electric fish generate an electric
signal to sense their environment and communicate with
conspecifics over their entire lifetime. Because these signals are
large relative to a typical neuronal action potential, it is reasonable
to hypothesize that they would be metabolically costly. In fact, one
previous study suggests that signalling in one species of electric
fish is responsible for 60% of resting energy consumption (Nilsson,
1996). That said, other studies of these fish have not found a strong
association between energy consumption and electric discharge
properties (e.g. Julian et al., 2003). To better understand these
apparent contradictions, as well as the role energetics may have
played in the evolution of bioelectrogenesis and electrosensory
processing in weakly electric fish, we present a bottom-up analysis
of the associated energetic costs, followed by a comparative
analysis of electric signal features.

Weakly electric fishes
The defining feature of weakly electric fish is that they generate an
electric field around their body by discharging a specialized electric
organ (EO) and sense perturbations of their self-generated electric
field with electroreceptor organs distributed over their skin. They
use this active electrosense to detect objects in their environment

as well as the electric organ discharges (EODs) of conspecifics
(Lissmann, 1958; Lissmann and Machin, 1958; Hopkins, 1988). As
a prime example of convergent evolution, active electrosensation
has evolved independently in two groups of teleost fishes, the
African Mormyriformes and the South and Central American
Gymnotiformes (Bullock et al., 2005). Depending on whether their
EOD is a quasi-sinusoidal oscillating signal or whether the EOD
pulses are separated by pauses that can be of variable duration,
species of both the African and American clades are assigned to
one of two categories, wave-type and pulse-type electric fishes,
respectively (Fig.1). Our review focuses on the gymnotiform
fishes, for which considerably more data on energetics are
available.

Control and generation of the EOD
The EOD of weakly electric fish is under the control of a pacemaker
nucleus (PN) in the hindbrain whose action potential output shows
a one-to-one relationship to the electrical pulses generated by the
EO (Fig.2) (see Markham, 2013). The PN consists of pacemaker
neurons, which are intrinsic to the nucleus, and relay neurons,
whose axons transmit action potentials down the spinal cord, where
they activate spinal motor neurons. Pacemaker neurons and relay
neurons are electrotonically coupled via gap junctions supporting
synchronous firing among all PN neurons (Moortgat et al., 2000a).
The activity of the PN is under the control of two prepacemaker
nuclei, the sublemniscal prepacemaker nucleus (SPPN) and the
prepacemaker nucleus (PPN), whose input can gradually or rapidly
accelerate EOD frequency and, in some species, decelerate EOD
frequency or even cause cessation of EO firing (Heiligenberg et al.,
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1981; Heiligenberg et al., 1996; Kawasaki and Heiligenberg, 1989;
Keller et al., 1991; Metzner, 1993; Metzner, 1999).

In the gymnotiform family Apteronotidae, the EO is composed
of the specialized terminals of spinal motor neurons. In all the
remaining gymnotiforms and in the African mormyriforms, the EO
consists of electrocytes that are derived from muscle tissue, and
these muscle-derived electrocytes are innervated by spinal motor
neurons. Accordingly, the apteronotid EOD is called neurogenic
and the EOD of all the remaining weakly electric fishes is called
myogenic (Table1) (Bennett, 1971).

In the simplest case of myogenic electric organs, only the
posterior face of the electrocyte is equipped with voltage-gated Na+

channels and able to fire an action potential leading to a head-
positive, monophasic EOD. This is the case for the electric eel,
Electrophorus electricus, and several pulse-type and wave-type
gymnotiform species (e.g. Eigenmannia; Fig.1). If both faces of the
electrocytes contain voltage-gated sodium channels, then the
depolarization resulting from firing the posterior face may spread
to the anterior face, causing an action potential there. In this case,
the EOD is biphasic with an initial head-positive phase caused by
the action potential of the posterior face followed by a head-
negative phase due to the action potential of the anterior face (e.g.
Brachyhypopomus; Fig.1). More elaborate EOD waveforms can
arise in some groups of gymnotiform fish because of the presence
of accessory EOs as well as variation in electrocyte size and
innervation within the EO (e.g. Bennett, 1971; Caputi et al., 2005).

In Apteronotus, the EO is situated just ventral of the spinal cord
(Fig.1). Upon entering the EO, each electromotor neuron axon
turns anterior and then makes a hairpin turn to terminate at
approximately the same rostrocaudal level at which it entered the
EO. The head-positive and head-negative phases of the EOD are
produced by current flowing along the part of the hairpin pointing
in the anterior direction and by current flowing along the hairpin
part pointing in the posterior direction, respectively (see sketch in
Fig.1) (Bennett, 1971; Waxman et al., 1972).

The cost of generating the EOD we are interested in for the
purpose of this article is the performance cost. We therefore
disregard any differences between fish in the cost of developing or
maintaining the electrogenerating mechanism. Immediately
relevant costs are incurred through, first, the ionic flows across the
cell membranes of neurons in the PN, spinal cord and EO, all of
which fire action potentials at the rate of the EOD; second, the
action potentials of the sensory neurons driven by the EOD and its
perturbations; and third, synaptic mechanisms in both the
electromotor and electrosensory circuits.

Electrosensory circuitry
The self-generated electric field and its perturbations are sensed by
~15,000 tuberous electroreceptor organs distributed over the surface
of the fish (Carr et al., 1982). The axons of the corresponding primary
afferent neurons project to the electrosensory lateral line lobe (ELL)
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Fig.1. Electric organs (EOs), electric organ
discharges (EODs) and electrocytes for
three genera of gymnotiform fish. Top row:
Brachyhypopomus gauderio (a pulse-type
electric fish); middle row: Eigenmannia sp.
(a wave-type electric fish); bottom row:
Apteronotus albifrons (a wave-type electric
fish). Left column: outlines of fish body and
approximate location of EO (grey); centre
column: EOD trace with time scale (for B.
gauderio, the upper trace shows a pulse
train and the lower trace a single EOD
pulse). Right column: sketch of an
electrocyte indicating the location of Na+

channels for B. gauderio and Eigenmannia
sp.; for A. albifrons, the hairpin shape of
the axon of the spinal motor neuron inside
the EO is shown schematically, with the
direction of current flow indicated by
arrows.

Fig.2. Simplified electrosensory and electromotor circuitry. Primary
electrosensory afferent fibres (green) carry information about perturbations
of the fish’s electric field to the hindbrain, where each fibre trifurcates to
terminate in each of the three topographic electrosensory lateral line lobe
(ELL) maps of the body surface: centromedial segment (CMS),
centrolateral segment (CLS) and lateral segment (LS) (grey). The output
neurons of the three maps project to the torus semicircularis (TS) (grey).
Additional electrosensory and feedback nuclei have been omitted. The
activity of the pacemaker nucleus (PN) is controlled by two prepacemaker
nuclei, the sublemniscal prepacemaker nucleus (SPPN) and the central
posterior/prepacemaker nucleus (CP/PPN). The axons of the PN relay cells
project to the spinal cord, where they activate spinal motor neurons (small
black arrow), which, in turn, innervate the EO (red). Black, motor circuitry.
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of the hindbrain, where each fibre trifurcates to terminate in each of
three somatotopic maps (Fig.2) (Carr et al., 1982; Heiligenberg and
Dye, 1982). In addition to the afferent input, the ELL receives a vast
amount of feedback from higher areas including the cerebellum. The
ELL output neurons project to the midbrain torus semicircularis from
where further projections reach the optic tectum and other higher
processing centres (for reviews, see Berman and Maler, 1999; Bell
and Maler, 2005).

EOD-related energy budget: theoretical considerations
In this section, we consider some of the individual factors involved
in EOD-related energy consumption, beginning with the electric
field itself and then followed by the energetics of action potential
generation in cells involved in electrogenesis and electrosensory
processing.

The electric field
Although the temporal features of electric fish EODs differ
significantly among species (e.g. pulse-type and wave-type; see
Fig.1), the spatial aspects of the resulting electric fields all resemble
those of a distorted dipole (Fig.3). At the most basic level, one can
ask how much energy is required to assemble the charge necessary
to produce a three-dimensional electric field similar to that of an
electric fish. From electrostatics, we can calculate the energy of a
simple dipole directly (Griffiths, 1981); the minimum energy (or
work) required to bring two point charges Q (one positive, one
negative) within a distance d of one another is proportional to Q2/d.
For an electric field strength similar to that of the wave-type electric
fish, Apteronotus leptorhynchus, with a peak voltage of ~10mV
(measured near the head with respect to distant ground) (Assad et
al., 1999), the dipole energy is of the order 10−13J (note that this is
in water; a similar calculation in a vacuum would be two orders of
magnitude larger because of the much larger dielectric constant of
water). In a biological context, 10−13J is equivalent to the energy
released when a phosphate is cleaved from each of 106 molecules
of ATP (6×1023 ATP molecules provide about 50kJ) (Horton,

2006). Note that the dipole energy scales with the square of the
dipole charge, so a doubling of Q (which is proportional to the
dipole potential) requires four times the energy. Thus, for EODs of
higher amplitude, the energy demand is expected to be
disproportionately greater. For example, the energy required for a
dipole field similar to that of the pulse-type fish Gymnotus carapo,
with an EOD amplitude of 40mV (Assad et al., 1999), is almost
10−11J, or about 108 ATP molecules. There is also a wide range of
EOD frequencies across species. If we assume our energy estimates
pertain to each EOD cycle and that each cycle is independent, then
the energetic cost is also expected to increase proportionately with
EOD frequency.

Similar estimates of energy are found for more realistic multi-
pole electric field models (Chen et al., 2005) (J.E.L., unpublished
observations). But more important is the fact that we have only
considered one phase of the EOD waveform, and so the estimates
do not reflect the cost of the entire EOD cycle nor do they consider
the efficiency of the underlying biophysical processes generating
current. Nonetheless, they provide a reference point for the
energetic cost of an EOD cycle.

Action potential energetics
As mentioned earlier, each EOD waveform is associated with the
synchronous firing of action potentials by cells in the PN, spinal
cord and EO. Thus, to provide a biological context for the electric
field estimates, we next consider the energetic cost of action
potential generation in neurons. It is generally agreed that this cost
arises primarily from the Na+/K+-ATPase, which hydrolyzes one
molecule of ATP to pump three Na+ ions out for every two K+ ions
into the cell, thus maintaining the ion gradients that drive Na+ and
K+ flux during membrane depolarization and repolarization
(Laughlin et al., 1998; Attwell and Laughlin, 2001; Lennie, 2003).
Although direct measurements of energy use can be problematic,
estimates are typically based on Na+ flux during an action potential,
a quantity that can be measured electrophysiologically; this Na+

current determines how much activity is required by the Na+/K+-
ATPase, and thus is directly related to energetic cost (e.g. Alle et
al., 2009; Sengupta et al., 2010). Such estimates suggest that each
action potential consumes between 107 and 109 ATP molecules
depending on neuron type (Attwell and Laughlin, 2001; Lennie,
2003; Sengupta et al., 2010; Hallermann et al., 2012; Harris et al.,
2012). Thus, an action potential in just a single neuron can consume
an order of magnitude more energy than the minimal amount
required to assemble the electric field, suggesting that the actual
cost of EOD generation must be several orders of magnitude higher
than this theoretical lower bound.

Electromotor networks: pacemaker nucleus
Next, we consider the energy required by the central brain region
that sets the timing of the EOD: the PN. To estimate energy
consumption by the neurons of the PN, we must consider their Na+

currents, but data are lacking in this area. However, in the case of
A. leptorhynchus, we can take advantage of the ionic-based model
of the PN developed by Moortgat and colleagues (Moortgat et al.,
2000a; Moortgat et al., 2000b). This model adopts the
Hodgkin–Huxley formalism to describe the ionic currents
underlying action potential generation in this network.

The PN comprises ~120 pacemaker (P) neurons and 30 relay
(R) neurons in A. leptorhynchus (Moortgat et al., 2000a) with
some variation of the P/R ratio between species (Ellis and Szabo,
1980). These neurons form a gap junction-coupled network and
fire synchronous action potentials that propagate via the R axons
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to drive the EOD in a one-to-one manner. The Moortgat model
describes the full network of 150 P and R neurons, with each
neuron modelled by a soma and an axon compartment, as well
as a distribution of Na+, K+ and leak currents (Moortgat et al.,
2000b). Fig.4A,B shows an example action potential trace and
associated Na+ and K+ currents for one P neuron (soma
compartment). From the total Na+ flux during an action potential
in both somatic and axonic compartments, and using standard
methods (e.g. Alle et al., 2009; Sengupta et al., 2010), we
calculate the cost of a single action potential in a P neuron to be
about 109 ATP molecules (Fig.4C); this is similar to, but on the
high end of the range of, previous estimates for other neurons
(Attwell and Laughlin, 2001; Lennie, 2003; Hallermann et al.,
2012). Note that such estimates depend strongly on the relative
gating kinetics of the Na+ and K+ channels and can vary
significantly between neurons (Sengupta et al., 2010). Of
particular interest in the present context is the energy consumed
by the entire PN: calculating Na+ flux over all the P and R
neurons in the model network results in a cost of 2×1011 ATP
molecules per action potential (i.e. per EOD cycle).

Electromotor networks: electrocytes
The PN drives production of the EOD through activation of the EO,
which comprises electrocytes that fire action potentials in
synchrony with the PN neuron population. Electrocyte action
potentials involve Na+ currents in the μA range (McAnelly and
Zakon, 1996; Markham et al., 2009), 20 times larger than that
estimated for the model P neuron (peak Na+ currents near 50nA).
As energetic cost is expected to scale similarly, an electrocyte
action potential should consume about 2×1010 ATP molecules
(Markham et al., 2013). Given EO and electrocyte morphology,
there are probably almost 1000 electrocytes in the Eigenmannia EO
(Schwartz et al., 1975); this translates to about 2×1013 ATP
molecules per EOD cycle, or 8×1015 ATPs–1 (1.7×10−6Js–1) for an
EOD frequency of 400Hz.

Electrosensory networks
The neural circuitry involved in the production of the EOD is not
the only energy consumer. Sensory pathways may also be a
significant contributor to overall energy consumption. For
example, in high-frequency wave-type fish (e.g. A. leptorhynchus
with EOD frequencies near 1000Hz), electroreceptor afferents
have very high firing rates: T-units fire at the EOD frequency and
P-units on average at 1/3 the EOD frequency (Scheich et al., 1973;
Bastian, 1981; Nelson et al., 1997; Gussin et al., 2007). There are
relatively few T-units, so we can consider the 15,000 or so P-units
alone (Hopkins, 1976; Carr et al., 1982), firing on average at
around 300Hz. If we assume a conservative cost per action
potential of 107 ATP molecules, this electroreceptor
subpopulation alone could nonetheless use more than 1010 ATP
molecules per EOD cycle.

In addition, other neurons in the early sensory pathways will also
fire at high rates. For example, the population of spherical cells
(~600 in total) (Maler, 1979) of the ELL firing at the EOD
frequency could play a significant role in action potential-related
costs. Other neurons involved in electrosensation fire action
potentials at much lower rates than spherical cells. The spontaneous
firing rates of the ~5000 pyramidal cells in the ELL (Maler, 2009)
range from 3 to 50Hz (Bastian and Nguyenkim, 2001; Krahe et al.,
2008). The torus semicircularis, in particular, is a large and cell-
rich structure, but many of its neurons display extremely sparse
response properties (Chacron et al., 2011). Therefore, even though
a large percentage of the brain of gymnotiforms seems to be
dedicated to electrosensory processing, the performance cost of
higher electrosensory processing may be relatively modest. Further,
action potential production is not the only energy-consuming
process. Indeed, recent estimates suggest that synaptic processing
comprises as much as half of the nervous system energy budget
(Lennie, 2003; Niven and Laughlin, 2008; Harris et al., 2012).
Relatively little is known about the synaptic processing involved in
EOD generation, though comparing species with neurogenic and
myogenic mechanisms could provide insights if it is possible to
control for differences in EOD frequency. That said, accounting for
synaptic processing could effectively double the estimates of
overall cost made through consideration of action potential firing
alone.

EOD energetics and the whole-animal energy budget
So far, we have discussed energetic costs in terms of ATP
consumed, which is common in the field of neuroenergetics (e.g.
Attwell and Laughlin, 2001; Sengupta et al., 2010; Harris et al.,
2012). In contrast, whole-animal studies typically involve measures
of oxygen consumption (Julian et al., 2003; Salazar and Stoddard,
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2008; Reardon et al., 2011). By making a few assumptions, we can
convert oxygen consumption (MO2) into the equivalent breakdown
of ATP molecules. First, we assume that the dominant fuel source
is glucose, and its availability is not limited. Next, we assume that
oxidative phosphorylation is the dominant energy system involved,
with relatively little contribution from anaerobic processes.
Oxidation of a single molecule of glucose requires six molecules
of O2 and yields about 30 molecules of ATP; thus five ATP
molecules are provided for every molecule of O2 consumed (e.g.
Harris and Attwell, 2012; Horton, 2006). From this, we can convert
MO2 from the typical units (e.g. μmolg−1h−1) to O2 moleculess–1

(assuming the appropriate fish mass) and then multiply this by 5
ATPO2

–1 to get the rate of ATP use. Oxygen consumption varies
widely depending on species and body mass (Julian et al., 2003)
(see Table1), but here we consider the two species for which we
have the most data, the wave-type Eigenmannia cf. virescens
(Moorhead, 2010; Reardon et al., 2011) and the pulse-type
Brachyhypopomus gauderio (Salazar and Stoddard, 2008). Under
routine conditions with a continuously active EOD, MO2 for a male
Eigenmannia is about 7μmolg−1h−1 (Table1); for a 5g fish with
an EOD frequency of 400Hz that translates to 3×1016 ATPs–1

(2.5×10−3Js–1) or 7×1013 ATPcycle–1. For Brachyhypopomus,
routine MO2 with EOD is 3.7μmolg−1h−1, translating to about
4×1016 ATPs–1 (3.5×10−3 Js–1) for a 14g fish; assuming a 25Hz
pulse frequency, the cost would be 1.7×1015 ATPpulse–1. Note that
although the routine energy consumption per pulse or cycle differs
by more than an order of magnitude between the two species, the
energy use per unit time is very similar. This suggests there may
be a trade-off between EOD amplitude and frequency, with higher
amplitude signals balanced by lower discharge rates.

These estimates will vary depending on the actual fuel source
utilized; the oxidation of fatty acids can play an important role in
powering moderate swimming in fish (e.g. Magnoni and Weber,
2007). As the ATP yield per unit time for fat metabolism is about
65% of that from carbohydrate metabolism (Weber, 2011), more
accurate fuel source combinations may reduce estimates of ATP
consumption accordingly.

We now consider how EOD-specific costs fit in with the whole-
animal energy budget for weakly electric fish. In their study of
Brachyhypopomus, Salazar and Stoddard have provided the most
detailed experimental breakdown to date of the energy budget in
an electric fish (Salazar and Stoddard, 2008). By pharmacologically
partitioning the energy budget, they estimated that a male fish
spends 11–22% of its energy on EOD-related signalling over a 24h
period (reductions in EOD amplitude reduce costs during the
daytime). Although similar studies have not yet been possible in a
wave-type fish, we can consider the theoretical estimates in
previous sections and add up all EOD-related components (Fig.5).
Remarkably, the result for all EOD-related components is about
30% of routine consumption. This suggests that the EOD comes at
a relatively high cost. It is important to note that this is relative to
routine levels, which in gymnotiforms are about 50% lower than in
temperate teleosts (Julian et al., 2003). Julian and colleagues also
showed that much of the variation in metabolic cost could be
explained by scan swimming (exhibited only by wave-type fish)
rather than EOD type (Julian et al., 2003). Such moderate
swimming (about 1–1.5 body lengthss–1) results in a 3- to 5-fold
increase in MO2 from routine levels (Julian et al., 2003; Moorhead
2010). In the context of this higher level of energy expenditure, the
fractional costs of the EOD may be closer to 5–10%. Regardless,
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this comparison between species at routine levels suggests that
wave- and pulse-type fish invest similar energetic effort to produce
their EODs. It also provides evidence for energetic trade-offs
between EOD amplitude and frequency.

Electromotor–sensory costs: evolutionary and ecological
implications

In our final section, we consider the relationship between EOD-
specific costs and the whole-animal energy budget with the
environmental demands and evolutionary and ecological
constraints acting upon weakly electric gymnotiform fish. Based on
the latest phylogenetic analyses using molecular and morphological
characters from over 215 documented species, gymnotiform fish
constitute a clade of three pulse-type families (Gymnotidae,
Rhamphichthyidae and Hypopomidae), and two wave-type families
(Sternopygidae and Apteronotidae) (Table1) (Albert, 2001; Albert
and Crampton, 2005; Crampton, 2011). Evidence from anatomical
and phylogenetic studies suggests that the wave-type EOD strategy
is a derived trait that evolved from a pulse-type ancestor (Bennett,
1971; Albert and Campos-da-Paz, 1998; Albert, 2001; Albert and
Crampton, 2005). In addition, EOD waveform and baseline
frequency vary significantly across the different gymnotiform
families. For instance, the EOD waveforms of pulse-type
gymnotiform families display high diversity in the number of
phases (Crampton, 1998b; Stoddard, 2002b). Although
phylogenetic evidence indicates that multiphasic pulse-type EODs
evolved from a monophasic pulse-type ancestor, several species
within the Gymnotus clade, the most speciose pulse-type
gymnotiform genus, have followed the opposite evolutionary trend,
displaying EOD waveforms with fewer phases (Lovejoy et al.,
2010). Predation pressure has been hypothesized to be a strong
driving force in the evolution of multiphasic pulse-type EODs,
because they shift the spectral content of the signal to higher
frequencies and out of the range of sensitivity of certain
electroreceptive predators (Stoddard, 1999; Stoddard, 2002a;
Stoddard, 2002b). Evidence for a role of predation in shaping EOD
waveform has also been reported for African weakly electric fish
(Hanika and Kramer, 1999; Hanika and Kramer, 2000). As the
monophasic Gymnotus cylindricus lives in habitats that are
relatively free of predators, Lovejoy and colleagues (Lovejoy et al.,
2010) speculated that monophasy in Gymnotus may have evolved
to save energy costs associated with EOD multiphasy when
predation pressure is relaxed. When looking at the diversity in EOD
baseline frequencies, some clear differences also emerge across
gymnotiform families (Table1). For instance, within the pulse-type
gymnotiform species, members of the family Rhamphichthyidae
display the highest EOD frequencies (up to ~120Hz) (Crampton,
1998a; Albert, 2001). Within the wave-type gymnotiform species,
however, members of the family Apteronotidae display EOD
frequencies as high as 2200Hz (Crampton, 1998a; Albert, 2001;
Albert and Crampton, 2005). Interestingly, the gymnotiform
species with the highest EOD baseline frequencies dominate in
well-oxygenated, fast-flowing water habitats such as large, deep
river channels, and display little to no tolerance to experimental
severe hypoxia and anoxia (Table1) (Crampton, 1998a; Crampton,
1998b). Higher EOD frequencies may confer higher temporal
acuity, an advantage when living in fast-flowing water habitats.
Although it is not clear whether EOD frequencies exceeding a few
hundred Hz can be exploited by individual electrosensory neurons,
population-level computations could play a role, as in the well-
studied jamming-avoidance response (Heiligenberg, 1991). Based
on our calculations, high EOD frequencies are also energetically

costly and may come at the expense of a reduction in other EOD
properties, such as EOD amplitude. In fact, when compared with
other gymnotiform families, apteronotids generate EODs at higher
frequencies but smaller amplitudes (Hopkins, 1976; Rasnow et al.,
1993; Rasnow and Bower, 1996; Assad et al., 1999), perhaps
sacrificing their detection range for higher temporal resolution.
Although predation pressure seems like a plausible explanation for
the evolution of high EOD frequencies, there is no sufficient
evidence to date to strongly support this connection. For instance,
analyses of the stomach contents of several electroreceptive catfish
showed not only that gymnotiforms are a common prey item for
these catfish but also that gymnotiform species with either low or
high EOD frequencies are equally preyed upon (Barbarino Duque
and Winemiller, 2003). Taken together, this wide taxonomic EOD
waveform and frequency diversity seems to reflect the combined
adaptive responses to energetic demands, predation pressure and
electroreceptive demands associated with foraging and habitat
characteristics.

To fully understand the extent to which the energetic costs of
electromotor and electrosensory processing differ across weakly
electric gymnotiform species, a comparative approach is necessary
while measuring this relationship (1) in breeding individuals, (2) in
males and females for species with sexually dimorphic EODs, (3)
across the low and high states of EOD plasticity for species capable
of short-term rapid EOD changes, and (4) within a framework that
compares species with extreme habitat constraints, foraging
behaviours and predation pressures as it pertains to the particular
respiratory physiology and metabolic needs. As previously
mentioned, Julian and colleagues (Julian et al., 2003) found no
significant relationship between routine MO2 and EOD-related
properties across gymnotiform species. Although this study
represents the most exhaustive dataset measuring routine MO2 in 33
individuals from 23 species across all five gymnotiform families,
two additional aspects related to EOD plasticity in gymnotiform
fish need to be considered to advance our understanding of the
interspecific differences in the energetic cost of bioelectrogenic
properties, such as EOD amplitude, duration and baseline
frequency. First, we need to consider the effect of breeding state
on the EOD. In many gymnotiform species, when compared with
non-breeding individuals, the EOD waveform’s amplitude and
duration and the EOD baseline frequency are significantly
increased in breeding individuals (Meyer et al., 1987; Westby,
1988; Zakon, 1993; Stoddard, 2002a; Stoddard, 2002b; Crampton
and Hopkins, 2005; Cuddy et al., 2012). In addition, a comparison
between the EOD-related energetic cost of non-breeding and
breeding individuals can help us to understand differences between
the energetics of electrolocation and electrocommunication.
Previous studies suggest that such a distinction can be made in the
pulse-type species Brachyhypopomus pinnicaudatus (Salazar and
Stoddard, 2008). Although in this species the enhanced EOD
waveforms associated with breeding state are significantly more
pronounced in males than in females (Hopkins et al., 1990; Silva
et al., 1999; Stoddard, 2002a), this difference does not translate to
males having better electrolocating capabilities (Stoddard, 2002b).
Because the focus of the study by Julian and colleagues (Julian et
al., 2003) was to sample as many species as possible, individuals
in both non-breeding and breeding states were probably involved,
possibly contributing to the high variance in the routine MO2 values
within species (Table1) (Julian et al., 2003). Accordingly, this
approach could potentially underestimate differences in routine
MO2 between species with different bioelectrogenic properties.
Second, we also need to consider the role of sexual dimorphism
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and short-term signal plasticity in the EOD waveform and
frequency across gymnotiform species. Sexual dimorphism in EOD
waveform and frequency is pervasive in species of three of the five
gymnotiform families, Hypopomidae, Sternopygidae and
Apteronotidae (Table1). For instance, in the brachyhypopomid
species Brachyhypopomus occidentalis, B. pinnicaudatus and B.
gauderio, breeding males produce larger and longer EOD
waveforms than females (Hagedorn, 1988; Hopkins et al., 1990;
Silva et al., 1999; Stoddard, 2002a). And in the wave-type species
Sternopygus macrurus, Eigenmannia cf. virescens and Apteronotus
albifrons, females display higher EOD baseline frequencies than
males (Hopkins, 1972; Hopkins, 1974; Dunlap et al., 1998), and
the opposite is true in A. leptorhynchus (Dunlap et al., 1998). In
addition, in several gymnotiform species from the
Rhamphichthyidae, Hypopomidae and Sternopygidae families,
individuals can alter their EOD waveforms reversibly within
minutes to hours (Table1) (Silva et al., 1999; Franchina and
Stoddard, 1998; Markham et al., 2009; Goldina, 2011). For
instance, the EOD waveforms of B. gauderio are enhanced from
day to night, following a circadian rhythm (Franchina and
Stoddard, 1998; Stoddard et al., 2007). This EOD circadian
plasticity is also sexually dimorphic, with males displaying larger
and longer EOD waveforms at night when compared with females
(Franchina and Stoddard, 1998; Stoddard et al., 2007). Moreover,
males enhance the magnitude of the circadian swing of their EOD
waveforms even more in the presence of competing males, and
suppress these enhancements if they are socially isolated for a few
days (Franchina et al., 2001). Whereas apteronotids are not known
to display circadian rhythms of EOD amplitude or waveform, they
are able to increase their EOD frequency by several Hz and
maintain this elevated frequency for several hours in response to
extended exposure to a conspecific EOD mimic of similar
frequency (Oestreich and Zakon, 2002).

Accordingly, studies that have examined the energetic cost of
electric signals within the context of EOD plasticity have found a
significant relationship between EOD-related MO2 or metabolic
stress and specific EOD properties (Salazar and Stoddard, 2008;
Reardon et al., 2011; Stoddard and Salazar, 2011). Salazar and
Stoddard found that the night-time EODs of B. gauderio males are
energetically expensive when compared with their daytime
counterpart, and with other components of their energy budget
(Salazar and Stoddard, 2008). Females do not display such extreme
day-to-night increases in their EOD-related energetic costs. As
such, when compared with females, male B. gauderio have far more
expensive EODs. The occurrence of a marked circadian EOD
change in males and its associated reduction in energetic expense
may be an adaptive response that ensures the signal’s waveform
and frequency are enhanced at night to facilitate foraging, mate
attraction and intrasexual competition, and reduced by day to
maintain basal electrolocation and electrocommunication
(Hopkins, 1999). In addition, the enhanced nocturnal EOD of male
B. gauderio may incur other costs as it is more conspicuous across
the detection range of natural electroreceptive predators, such as
the electric eel (E. electricus) and catfishes, who track their prey’s
electric signals (Westby, 1988; Stoddard, 1999; Stoddard, 2002b).
These electroreceptive predators can readily detect the low-
frequency (DC) components of the EOD power spectrum of weakly
electric fish (Hanika and Kramer, 1999; Hanika and Kramer, 2000;
Stoddard, 1999). For instance, the African catfish Clarias sp., an
electroreceptive predator, more readily detected EODs with longer
durations, and to a lesser extent with higher pulse frequencies, of
the only wave-type mormyriform fish, Gymnarchus niloticus

(Lissmann and Machin, 1963). In the case of B. gauderio, the
nocturnal EOD duration increase, but not the nocturnal EOD
amplitude or pulse frequency enhancement, exaggerates the second
phase of their biphasic EODs making them significantly
asymmetrical around zero voltage (Franchina and Stoddard, 1998;
Stoddard, 2002b). This asymmetry will increase the low-frequency
spectral properties of the male EODs, potentially making them
more detectable by the ampullary electroreceptors of Neotropical
catfish, such as Pseudoplatystoma tigrinum (reviewed by Stoddard
and Markham, 2008). If predation pressure is the major driving
force for the existence of EOD circadian rhythms in male B.
gauderio, we would not expect to find pronounced EOD amplitude
and frequency rhythms, as these two parameters do not seem to be
major contributors to the increased risk of detection by predators.
Thus, we can hypothesize that only the daytime reduction of the
EOD duration seems to be a direct response to predation risk while
the daytime reduction of EOD amplitude and frequency may be a
response to energetic constraints and, to a lesser extent, predation.
Reardon and colleagues used a different strategy to evaluate the
relationship between EOD plasticity and EOD-related metabolic
demands (Reardon et al., 2011). They measured changes to the
EOD amplitude and frequency of individuals from two wave-type
species, E. cf. virescens and A. leptorhynchus, during incremental
hypoxic stress. In both species, the EOD amplitude and, to a much
lesser extent, EOD frequency decreased in response to a gradual
drop from normoxia to hypoxia. Yet, when compared with A.
leptorhynchus, E. cf. virescens displayed higher tolerance to
hypoxic stress, and greater EOD amplitude reduction. Reardon and
colleagues’ study highlighted how gymnotiform species with
plastic EODs, such as Eigenmannia, can use this to their advantage
to meet metabolic demands (Reardon et al., 2011). Understanding
the energetic costs associated with different signal components, the
detectability of these components by electric fish predators, and the
female preference for such signal components should ultimately
help us to understand the selective advantage of EOD plasticity
across the gymnotiform clade.

Conclusion
We have deconstructed the various factors that contribute to EOD-
related energy costs. Using our current knowledge on the anatomy
and physiology of the electromotor/electrosensory processing
pathways in gymnotiform fish, we calculated estimates of energy
consumption for some of the main structures involved. We then
compared the combined estimate of energy consumption for all
energetically salient electromotor/electrosensory structures with
whole-animal MO2 values for the various gymnotiform species
where data are available. Such a comparison highlights the
mismatch in MO2 values, where higher estimates result from our
bottom-up reconstruction of energy costs when compared with
empirically measured EOD-related MO2 values. Performance-
related costs of EOD generation are surprisingly high, at up to 30%
of routine MO2. Our comparative analysis also highlights the need
for future studies to identify anatomical substrates and
physiological processes that may account for energy consumption
efficiencies in the electromotor/electrosensory pathways. The
dependence between EOD-specific features and routine MO2
remains unclear, and a trade-off between EOD amplitude and
frequency may make this relationship difficult to characterize.
Indeed, a complete understanding may require characterization of
the full cost–benefit relationship in terms of bioenergetics,
detection range, conspicuousness to predators, and communication
(among other factors) (Nelson and MacIver, 2006; MacIver et al.,
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2010). Nevertheless, we emphasize how current knowledge on
EOD plasticity and the metabolic constraints of the various
preferred habitats of gymnotiform species can stimulate future
comparative studies looking at such trade-offs. For instance,
additional research looking at (1) hypoxia-induced changes in EOD
waveform, frequency, and communication-related modulations of
EOD frequency across hypoxia-tolerant and hypoxia-intolerant
gymnotiform species, and (2) changes in routine MO2 due to
changes in EOD amplitude and frequency in highly plastic
gymnotiform species can help us to further understand the role of
EOD plasticity in energy conservation.
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