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INTRODUCTION
Understanding the physiological tolerances of an organism to its
environment has long been a focus of ecophysiology. Oxygen is a
fundamental requirement of most organisms, and its availability may
be limiting across a range of habitats (Pörtner, 2010; Verberk et al.,
2011; Ferguson et al., 2013). For over 30years, measures of oxygen
tolerance have accumulated in a wide variety of taxa with variation
evident at a range of scales (Greenlee and Harrison, 2004a; Mueller
and Seymour, 2011; Lease et al., 2012; Ferguson et al., 2013).
Surprisingly, no clear consensus over how to estimate oxygen
tolerance exists, and for the most part, modern statistical approaches
have not been brought to bear on this problem.

The most common estimate of oxygen tolerance is the critical
partial pressure of oxygen for aerobic metabolism (Pc), which
represents the lowest level of oxygen at which aerobic metabolism
is independent of the ambient partial pressure of oxygen (PO2)
(Hochachka and Somero, 2002). At levels of PO2 below Pc,
metabolism cannot be supported by aerobic processes entirely, and
metabolic rate decreases, and/or anaerobic processes that are
relatively inefficient and produce potentially toxic end-products
become increasingly important (Hochachka and Somero, 2002). The
original method for estimating Pc is the ‘broken stick’ regression
(BSR) approach (Yeager and Ultsch, 1989) – an approach that
remains the most common today. The broken stick approach to
estimating Pc has been applied in a range of contexts, and been used
to demonstrate, for example, that the Pc of a species is generally
matched to the minimum oxygen level encountered in the
environment in which it lives (Childress and Seibel, 1998; Nilsson,

2007; Ferguson et al., 2013), and that mobile species show
behavioural avoidance of oxygen levels below their Pc (Burleson
et al., 2001). Nonetheless, not all species show clear break points
in the relationship between the rate of oxygen consumption (VO2)
and PO2, which complicates efforts to assess the regulatory ability
these species (Mueller and Seymour, 2011).

The traditional BSR approach (piecewise linear regression) makes
a number of unsupported assumptions about the underlying
relationship between oxygen availability and respiration rate. First,
it assumes that the functional response of an organism to decreasing
PO2 is biphasic, that is, it consists of two linear elements with a clear
break between these two phases. Above Pc, VO2 is assumed to be
characterised by a linear function that is completely flat, while below
Pc, VO2 decreases linearly with PO2 with an abrupt transition between
these two functions (Chiu et al., 2006). Of course, in reality, rates of
respiration are likely to be a continuous function between these two
phases, and furthermore, concentration-dependent reaction kinetics
make a linear relationship between VO2 and PO2 highly unlikely. As
such, the BSR approach does not reflect the underlying structure of
the data, violating the basic assumptions of the regression approach
(Quinn and Keough, 2002). Our discussion here should not be taken
as a criticism of the original progenitors of these approaches: when
they were developed, those analyses represented the best approach
available with the statistical and computational tools of the time.
Today, however, more sophisticated approaches are available that
better reflect the underlying processes that generated the data.

Since the development of the BSR technique, there have been
a number of other ways in which authors have attempted to
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estimate Pc. These approaches have largely been subjective and
lack repeatability (e.g. Portner et al., 1991; Greenlee and Harrison,
2004a; Greenlee and Harrison, 2004b; Lease et al., 2012). Ideally,
any technique for estimating Pc should both represent the
mechanistic process by which the data were generated and be
repeatable. More generally, there are compelling reasons for
describing continuous traits with functional relationships, rather
than taking isolated point measures (Stinchcombe and Kirkpatrick,
2012). For example, Mueller and Seymour (Mueller and Seymour,
2011) fit a nonlinear function to estimate the ability of organisms
to regulate oxygen consumption beyond simple oxy-conformity
across a range of oxygen values: they propose a ‘regulation index’,
which estimates a relative measure of oxyregulatory ability using
either linear, quadratic (y=a+bx+cx2) or one-phase association
[y=y0+(ymax–y0)(1–e–kx)] fits. Here, we apply a similar logic for
estimating Pc that meets the above criteria – a nonlinear regression
approach coupled with simple differential calculus. We then
evaluate the performance of this new method relative to the most
widely used approach to date, BSR, across real-world data and
explore a broader parameter space using simulations to compare
the sensitivity and reliability of these two approaches. Finally,
we examine the statistical power of the two techniques to
distinguish differences in oxygen tolerance among groups.

MATERIALS AND METHODS
Fits to published data

After examining the form of many published relationships between
VO2 and PO2, we settled on six candidate functions that approximated
the general relationship well and were reasonably tractable
analytically (Table1). While other forms could also fit the data and
we encourage investigators to explore alternatives (e.g. a power
function with an intercept), we chose these forms as, on first
inspection, they appeared to fit real-world data reasonably well and
consistently. We used standard nonlinear regression (NLR) to fit
these functions to published data. It is beyond the scope of this paper
to describe the general theory and approach of NLR, but we

recommend Quinn and Keough [see p.150 (Quinn and Keough,
2002)] for a general introduction and Ritz and Streibig (Ritz and
Streibig, 2008) for an excellent primer on how to implement this
analysis in the freely available statistical software R (R Development
Core Team, 2012). The NLR analysis provides estimates of between
two and four parameters (or even more if a selected function has
more): with these values the relationship between VO2 and PO2 can
be visualised. For ease of use and comparison among studies,
however, a single metric that best represents Pc is desirable. Such
a metric must be repeatable and objective. We based our metric on
the underlying principles of what Pc seeks to describe: the point at
which VO2 is no longer strongly affected by PO2. In other words,
when the slope of the function begins to flatten out and approach
zero. As the absolute values of a slope will vary according to the
maximum oxygen consumption rate of that particular organism, we
first standardised our data by the maximum VO2 observed for any
set of values (VO2,max=1). By standardising, we can choose one slope
value and compare where that value occurs among individuals,
species and studies.

The slope across function is, of course, given by the first
derivative of the original function and the derivative for each
function is shown in Table1. After rearranging we can solve for Pc,
at any slope value (here, denoted m), and these are shown in Table1.

We explored a range of values of m and found that a slope of
m=0.065 best approximates Pc such that the solved values for Pc
are shown in Table2.

We coupled this formula to our NLR estimates of a, b, c and d
as appropriate to estimate the value of Pc for a range of published
data from the literature (see Table2). NLR relationships with additive
error structures were fitted using the ‘nls’ function in R v2.15.0 (R
Development Core Team, 2012), and NLR relationships with
multiplicative error structures were fitted using the ‘gnls’ function.
The NLR and BSR fits to each data set were then compared on the
basis of Akaike’s information criterion (AIC) as a measure of model
fit; the fit with the lowest AIC was considered the best of the
candidate set of models, given the data (Burnham and Anderson,

 
Table 1. Compilation of functions (and their derivatives) fit to relationships between partial pressure of oxygen (PO2) and oxygen 

consumption (VO2), where a, b and c are constants to be estimated 
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All have approximately similar forms and all fit published data reasonably well. We also present the function for calculating a particular slope (m; see main 
text for details) for calculating the critical oxygen value (Pc). 

Note: Because there is no unique Pc for any given value of m in the Weibull functions, Pc is estimated numerically for these functions by finding the value of 
PO2 closest to the highest in the data set where the calculated derivative is equal to m.
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2008). We then also compared the performance of the NLR
approach with the BSR method across a range of parameter values
to evaluate how each approach coped with differences in variation
and sampling resolution with a simulation approach.

Simulation methods
We explored the influence of a suite of characteristics of the
relationship between VO2 and PO2 on NLR- and BSR-derived
estimates of Pc using Monte Carlo simulations. We began by
generating a function relating VO2 to PO2 that was explicitly
biphasic, incorporating two linear portions (one that increased with
PO2 until PO2=Pc, and a second that was independent of PO2 at PO2
levels greater than Pc). Pc was set at 5kPa and VO2 above Pc was
set at 1. We then repeatedly simulated the process of sampling these
data, and estimating the value of Pc by fitting both the BSR and
NLR. We elected to use a biphasic function because it reflects the
underlying assumption of the BSR approach, and because fitting
such data should represent the greatest challenge to NLR. Put simply,
if NLR outperforms BSR, even when the function is biphasic, then
there can be little justification for preferring BSR over NLR, and
as such our approach was highly conservative. We sampled the
relationship between VO2 and PO2 at a range of resolutions (0.125,
0.25, 0.5 and 1kPa). To each VO2, we then added a normal deviate
with a mean of zero and a coefficient of variation (CV=s.d. divided
by VO2) of 0.025, 0.05, 0.1, 0.15 or 0.20. These values for the CV
of VO2 were selected to span the range of observed values of CV
in real data (N=10, mean=0.09, range: 0.04–0.21; see references in
Table1). One thousand such data sets were generated for each
combination of sampling resolution and CV, and Pc was estimated
using both NLR and BSR techniques. NLR estimates of Pc were
derived as described above by fitting a Weibull function to each
data set (excluding that of Cryptobranchus as the model would not
converge) using the ‘nls’ function in R v2.15.0 (R Development
Core Team, 2012) to obtain a non-linear least squares fit using a
Gauss–Newton algorithm. We used the Weibull function as this
function best fit the most published relationships in the literature
(see Results). BSR estimates of Pc were obtained by simultaneously
fitting two linear regressions constrained to meet at a specified PO2,
i.e. Pc. The slope of the linear regression below the specified Pc
was a free parameter, whereas the slope above the specified PO2
was set at zero. Beginning at the third-lowest PO2 in the data set, a
series of specified values of PO2 were trialled, with each successive
PO2 being 0.01kPa greater than the last until the third-highest PO2
in the data set was reached. The value of the PO2 break point that
minimised the sum of squared deviations from the biphasic function
was considered to represent Pc.

Testing for differences among groups
We compared the ability of our best-fitting NLR and BSR to identify
differences among groups that differ in Pc with Monte Carlo
simulations. For two groups of six simulated data sets, each with
PO2 values sampled at 1kPa resolution, we generated a relationship
between VO2 and PO2 that included a break point (Pc) at either 6.5kPa
(group 1) or 8.5kPa (group 2). As a conservative measure, these
values of Pc were deliberately chosen to be different from the Pc at
which NLR performs best. As above, for each data set VO2 increased
linearly with PO2 to equal 1 when PO2=Pc. For values of PO2 above
Pc, VO2 was independent of PO2 and equal to 1. To each value of
VO2 we then added a normal deviate with a mean of zero and CV
of 0.10. We then estimated Pc for each of the data sets using BSR
or NLR with m=0.065, and tested for differences among groups
using t-tests. We also tested for differences among groups using the

best-fitting NLR regression by pooling data sets for each group,
and testing for the significance of a fixed grouping factor using
likelihood ratio tests. This simulation procedure was repeated 1000
times, and statistical power was estimated by calculating the
proportion of tests that reported a significant difference among
groups with α set at 0.05.

RESULTS
Fits to published data

Both techniques provide a good fit to real-world data (Fig.1), and
the predicted Pc based on NLR was strongly correlated with the Pc
estimates based on BSR (R2=0.82, N=13, P<0.001), though the
relationship was not precisely one to one (regression equation:
Pc(NLR)=0.646 × Pc(BSR) + 1.12). Neither consistently over- or
underestimated the other; rather, the relationship between the two
was idiosyncratic (Fig.2). In eight out of the 13 cases, the NLR
approach provided a better fit to the data than did the BSR approach
(Table2). For the remaining five cases where the BSR approach
had a lower AIC, the differences in AIC between the BSR and NLR
approaches were equivocal (ΔAIC around 2) in two cases. For nine
out of 13 cases, the Weibull function (either with or without an
intercept) provided a better fit to the data than any other nonlinear
function. For the four remaining cases, each of the other four
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Fig.1. Relationship between partial pressure of oxygen (PO2) and oxygen
consumption (VO2) for (A) Necturus maculosus and (B) Crinia georgiani
tadpoles. Black lines show predicted lines of best fit from nonlinear
regression (NLR); dashed lines show lines of best fit from broken stick
regression (BSR); red and blue lines show critical oxygen value (Pc) as
estimated by BSR and NLR approaches, respectively.
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nonlinear functions provided the best fit for one case, suggesting
that all should be considered candidate functions in future studies.

Simulations
The best-fitting NLR was far more robust to variation in the data
than was the BSR (Fig.3). While both performed well when
variation was very low and sampling resolution very high, the broken
stick technique was far more likely to dramatically misestimate Pc
when variance was high. The NLR also coped with lower sampling
resolution relative to the BSR: at sampling resolutions greater than
0.5kPa, the error rate of the BSR increased dramatically, with this
approach being far more likely to misestimate Pc. For the BSR, the
effects of sampling resolution and error interacted such that the most
error-prone estimates came from simulated data with high levels of
variation and low sampling resolutions (Fig.3). In contrast, neither
resolution nor variation had strong effects on the error rate of the
NLR technique.

The Journal of Experimental Biology 216 (12)

Testing for differences among groups
Power to detect differences among groups was lowest for t-tests
comparing BSR-derived estimates of Pc (0.63), and was higher for
t-tests comparing best NLR-derived estimates of Pc (0.74); power
was also relatively higher for comparisons of pooled data made using
likelihood ratio tests (0.83).

DISCUSSION
For both real-world and simulated data, an NLR approach to
estimating tolerance to decreasing availability to oxygen was
superior to a BSR approach in almost every regard. The NLR
approach was more robust to variation in the data and reductions
in sampling resolution, as well as offering a more powerful means
of detecting differences between groups. Our simulations suggest
that BSR has a tendency to overestimate Pc when data are
variable, sampling resolutions are low and the underlying ‘true’
Pc is low. It is possible therefore that some species may be more
tolerant to low oxygen conditions than is currently appreciated.
NLR performed less well in simulations when the underlying Pc
was close to the highest Pc measured in the study, and in this
instance, BSR was a more accurate indicator of the Pc. The poor
performance of NLR in this parameter space was due to the
relationship between VO2 and PO2 being linear in our simulations
(recall that we used an artificially biphasic function) and as such,
it was inevitable that the nonlinear function fit the data poorly.
We therefore favour the use of NLR over BSR despite this
shortcoming because in nature, very high values of Pc are very
rare, and genuinely linear relationships between VO2 and Po2 are
similarly rare. Nevertheless, we suggest that visual inspections of
the data be conducted before Pc is estimated, and on the rare
occasions when the relationship between VO2 and PO2 appears to
be linear, linear regression be used instead of NLR. In other words,
as for any statistical model-fitting exercise, the underlying form
of the relationship should dictate the form of the model that is fit
(Quinn and Keough, 2002).

The use of NLR to estimate tolerance to low oxygen carries the
additional advantage of allowing formal testing for differences
among groups within the same statistical framework. Traditionally,
comparisons of Pc among species, individuals or groups have
involved estimating Pc within groups using the BSR approach, using
these estimates of Pc as individual data points and then using a
separate statistical test to detect differences (e.g. Ferguson et al.,
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2013). There are a number of disadvantages to this two-stage
approach. First, estimating the Pc as a summary statistic for the entire
function results in significant loss of information – essentially, a
large amount of data is collected to estimate a single point, and then
the bulk of the data are ignored in the hypothesis test (Stinchcombe
and Kirkpatrick, 2012). Second, using the Pc summary statistic
ignores error and variance associated with this estimate, and the
subsuming of error will result in hypothesis tests that are more
susceptible to Type I errors (Hadfield et al., 2010). In contrast, formal
hypothesis tests of differences across entire functions among groups
allow the use of the full complement of data that were collected as
well as incorporating the appropriate error into the hypothesis test
of interest (Stinchcombe and Kirkpatrick, 2012). Furthermore, the
NLR method could be extended to include random effects, whereby
error associated with different experimental equipment or different
measurement days could be partitioned, increasing the sensitivity
of this analytical approach and providing much greater scope to
incorporate additional factors.

As well as the statistical advantages described above, the use of
NLR affords practical advantages for comparisons among studies
and meta-analyses. For example, studies from different research
groups may not sample VO2 at identical values of PO2 and may
sample with different resolutions. Our simulations show that
differences in sampling resolution will result in systematic
differences in the estimate of Pc, and furthermore, the estimate of
Pc will be a product of the PO2 at which VO2 was measured. In
contrast, an NLR approach is robust to these differences in sampling
regime, allowing more comparable estimates of Pc among studies,
as well as estimates of VO2 across a greater parameter space.
Furthermore, no single function fit the data best such that
comparisons among studies could be problematic. The retention of
an estimate of Pc in the context of our approach provides a means
of comparing equivalent slopes among studies that have fit very
different functions.

We chose a point (where dV/dP=m=0.065) on our function that
best approximated the Pc estimated by the BSR approach. We chose
this point so that future studies can provide estimates of oxygen
tolerance that are comparable with traditional measures of Pc. In
practice, we recommend that future studies that utilise the NLR
approach present estimates of not only Pc, but also estimates of
function parameters (i.e. estimates of a, b, c and d, as appropriate),
as well as their associated error, as these values will allow
comparisons across the entire range of oxygen partial pressures.
Standardised estimates of parameters in selection in evolutionary
biology have facilitated important insights from meta-analyses
(Kingsolver et al., 2001), and we hope similarly valuable insights
might become available via the widespread use of the standardised
approach we recommend here.

The use of approaches such as BSR to estimate biological
‘thresholds’ in nonlinear responses more generally is increasingly
being scrutinized. The estimation of ecological thresholds using
BSR techniques has been called into question (Toms and
Lesperance, 2003), as has the distillation of continuous functions
into single points in evolutionary studies (Stinchcombe and
Kirkpatrick, 2012). Generally, the failure to use nonlinear
functions to describe nonlinear traits results in less powerful, less
accurate estimates (Griswold et al., 2008). BSR techniques are
also used to estimate changes in developmental rates across
temperatures (Stanwell-Smith and Peck, 1998), as well as cardinal
temperatures (estimates of maximum, minimum and optimal
temperature), and we suspect that NLR techniques may be more
appropriate in these settings as well. While BSR techniques were

once a pragmatic recognition of limited computing power and
statistical programming, today we have unprecedented access to
powerful statistical estimation techniques with freely available
statistical software. We join others (Stinchcombe and Kirkpatrick,
2012) in calling for the increased uptake of ‘function-valued’
approaches to estimating continuous traits such as the relationship
between VO2 and PO2.
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