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SUMMARY
The simplest model possible for bouncing systems consists of a point mass bouncing passively on a mass-less spring without
viscous losses. This type of spring—mass model has been used to describe the stance period of symmetric running gaits. In this
study, we investigated the interaction between horse and rider at trot using three models of force-driven spring (~damper)-mass
systems. The first system consisted of a spring and a mass representing the horse that interact with another spring and mass
representing the rider. In the second spring—damper—-mass model, dampers, a free-fall and a forcing function for the rider were
incorporated. In the third spring—damper—mass model, an active spring system for the leg of the rider was introduced with a
variable spring stiffness and resting length in addition to a saddle spring with fixed material properties. The output of the models
was compared with experimental data of sitting and rising trot and with the modern riding technique used by jockeys in racing.
The models show which combinations of rider mass, spring stiffness and damping coefficient will result in a particular riding
technique or other behaviours. Minimization of the peak force of the rider and the work of the horse resulted in an ‘extreme’
modern jockey technique. The incorporation of an active spring system for the leg of the rider was needed to simulate rising trot.
Thus, the models provide insight into the biomechanical requirements a rider has to comply with to respond effectively to the

movements of a horse.
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INTRODUCTION

For every role the horse has served since its domestication, from
warfare, agriculture and transport to modern-day use as a sports and
leisure animal, load carriage has been an important task of these
animals. This load carriage has an energetic cost. Taylor and
colleagues observed that the metabolic cost increases in direct
proportion with the load that an animal has to carry (Taylor et al.,
1980). For example, if a horse’s load is 20% of body mass, the rate
of energy consumption increases by 20%. However, Pearson and
colleagues found that, as the load increased, the energy cost per unit
mass of the load decreased (Pearson et al., 1998). They suggested
that it is more efficient in terms of energy expenditure to carry loads
equivalent to 27-40kg/100kg of body mass than to carry loads of
less than 20kg/100kg body mass.

Marsh and co-workers reviewed studies investigating the
metabolic response to trunk or head loading (Marsh et al., 2006).
Most studies of trunk loading in humans during walking have found
that the ratio of the loaded to unloaded net metabolic rate (metabolic
ratio) is greater than the ratio of the total mass (of load and body)
to the unloaded mass. The studies that have measured the cost of
load carriage in humans during running report lower net metabolic
ratios than those of the majority of walking studies, but the net
metabolic energy ratios are generally greater than the mass ratios.
As with the walking data, the trend across these studies is for

metabolic energy ratios to approach 1.0 with relatively light loads,
indicating that carrying a low load is more efficient, which is in
contrast with the study of Pearson and colleagues (Pearson et al.,
1998).

In studies of load carrying by humans, strategies to reduce energy
expenditure have been identified. African women seem to carry loads
on their heads with remarkable efficiency by using their body as a
pendulum during locomotion (Heglund et al., 1995). Nepalese
porters are able to carry loads in excess of their own body mass up
the mountains but the mechanism that enables them to do so is still
unknown (Bastien et al., 2005). Abe and colleagues found effects
of both walking speed and load position on the energetics of load
carriage (Abe et al., 2004; Abe et al., 2008); an energy-saving
phenomenon was observed when the load was carried on the back
at slower speeds. Another energy-saving mechanism used by people
throughout Asia in everyday life is to carry loads on springy bamboo
poles. The energy consumption rate using this technique is
comparable with the consumption rate using backpacks suspended
by springs. The pole suspension system also has the advantage of
minimizing peak shoulder forces and peak vertical reaction force,
which could help to prevent injuries (Kram, 1991).

Variations in the load also influence energetic costs; the
mechanical properties of a backpack (stiffness and damping
coefficient) have been shown to affect the energetics of walking in
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the human carrying that backpack (Foissac et al., 2009). At an
optimal stiffness of the connection between human and backpack,
the peak forces on the person decrease, which leads to lower oxygen
consumption. This elastic connection can even be used to generate
electricity while walking. The application of this principle extends
the possibilities for field scientists, explorers and disaster-relief
workers to work in remote areas (Rome et al., 2005).

Horses may be required to carry an inanimate load (dead weight)
or an animate load (rider). In the case of a rider, both the rider’s
skill level and the style of riding may affect the interaction between
rider and horse. The motion pattern of a horse-rider combination
is more consistent for an experienced rider than for an inexperienced
rider (Peham et al., 2001). Lagarde and colleagues found the
oscillations of the horse’s trunk to be less variable for experienced
riders than for novice riders (Lagarde et al., 2005); the experienced
rider was able to move in phase with the horse whereas the novice
rider was not. Schéllhorn and co-workers (Schéllhorn et al., 2006)
observed that the movement of the horse, especially the head, was
influenced by the rider and that the motion of a professional rider
was better adapted to the movement pattern of the horse.

In horse racing, Pfau and colleagues found that race times
decreased after jockeys started to use short stirrups and adopted a
position in which they were standing in the stirrups (Pfau et al.,
2009). The authors hypothesized that the horses were able to gallop
faster because the jockeys uncoupled themselves from the horses,
which lowered the vertical peak forces and enabled the horses to
go faster. At trot, the rider has a choice of three riding styles to
accommodate the bouncing motion of the horse’s back: sitting,
standing or rising. In sitting trot, the rider remains seated in the
saddle. In the standing style, the rider’s trunk is elevated above the
saddle by standing in the stirrups. The modern jockey position is
an extreme example of the standing position, characterized by
extremely short stirrups and an almost horizontal inclination of the
rider’s trunk. This technique is most frequently used during gallop
races, but it can also be used at trot. In rising trot, the rider alternately
sits in the saddle and rises from the saddle during the two successive
diagonal stance phases. Therefore, the rider rises out of the saddle
during one-half of each complete stride.

Studies on back movements of the horse, ground reaction forces
and saddle forces indicate that rising trot is less demanding for the
horse than sitting trot. More specifically, thoracolumbar extension
has been related to a vertical load on the back of the horse (Slijper,
1946) and an overall greater extension of the thoracolumbar spine
has been observed when the rider performed sitting trot compared
with an unloaded situation (de Cocq et al., 2009). At rising trot,
thoracolumbar extension is similar to sitting trot in the phase when
the rider is seated, but resembles the unloaded situation when the
rider rises from the saddle (de Cocq et al., 2009). In rising trot, peak
vertical ground reaction force is also lower during the standing phase
than in the sitting phase (Roepstorff et al., 2009). As there is a linear
relationship between peak ground reaction force and the amplitude
of the metacarpophalangeal joint angle (McGuigan and Wilson,
2003), this presumably results in a reduced loading of the internal
structures in the limb of the horse. Studies of the loading of the
horse’s back using saddle force measurements (Peham et al., 2010)
or rider kinematics (de Cocq et al., 2010) confirmed that peak force
on the horse’s back is lower during the standing phase of rising trot.
Peham and colleagues found a significant reduction in peak force
in standing trot compared with sitting or rising trot (Peham et al.,
2009). Compared with rising trot, there was no significant difference
in peak loading during the phase when the rider sat in the saddle,
but peak force was lower in the phase when the rider rose out of
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the saddle. We found a significant reduction in vertical peak force
in rising trot compared with sitting trot in both the sitting and
standing phase (de Cocq et al., 2010).

The biomechanical requirements riders have to comply with to
perform these different riding techniques are not clear. The
objectives of the present study were therefore (1) to propose a simple
characterization of the mechanical requirements of a rider using
spring (—damper)-mass models, and (2) to evaluate the effect of the
biomechanical properties of the rider on stability, the peak force
between horse and rider, and the mechanical work of horse and
rider. It was hypothesized that the connection between horse and
rider has a relatively low spring stiffness in the riding techniques
with the least loading and that these riding techniques are examples
of strategies that reduce the energy expenditure of the carrier.

MATERIALS AND METHODS
This study was performed with the approval of the All University
Committee for Animal Care and Use and the University Committee
on Research Involving Human Subjects at Michigan State
University, and with full informed consent of the riders.

Experimental setup

Horse and riders
Measurements were taken using one horse (gelding, age 24 years,
mass 667kg, height 1.63m) and seven experienced female riders
with mean £ s.d. age 34+15years, height 1.6940.07m, mass
61.4+5.0kg. The riders had competed in dressage at intermediate
level or higher. A Passier Grand Gilbert dressage saddle (G. Passier
and Sohn GmbH, Langenhagen, Germany) was used during the
measurements.

Data collection

Three-dimensional kinematic data were collected using eight Eagle
infrared cameras recording at 120 Hz using real-time 5.0.4 software
(Motion Analysis Corporation, Santa Rosa, CA, USA). A standard
right-handed orthogonal Cartesian coordinate system was used. The
positive x-axis was oriented in the line of progression of the horse.
The positive z-axis was oriented upward and the positive y-axis was
oriented perpendicular to the x- and z-axes. The measurement
accuracy was estimated by measuring the length of a 500 mm wand
that was moved through the field of view; a residual error of
0.55+0.98 mm was found.

To evaluate the vertical movement of rider and horse, infrared
light reflective markers were attached to the skin over obvious
anatomical locations (supplementary material Fig. S1). The markers
on the rider were placed on the skin overlying the approximate joint
centres of the shoulder, elbow, wrist, hip and knee, as well as on
the head (chin) and back [spinous processes of the 7th cervical (C7)
and 12th thoracic (T12) vertebrae]. Markers were also attached to
the shoe of the rider over the joint centre of the ankle and on the
toe. The riders wore special clothes to enable placement of the
markers directly onto the skin. Larger spherical markers were used
on the rider’s back to ensure that they were visible for the cameras.
On the horse, two spherical markers were attached dorsal to the
spinous processes of the 6th thoracic (T6) and the 1st lumbar (L1)
vertebrae. For determination of stride time, markers were glued to
the dorsal sides of the hind hooves.

Measurements were taken at trot in a straight line on a rubberized
surface that was adherent to the underlying concrete floor under
two conditions performed in random order: rising trot and sitting
trot. Each rider chose whether to rise from the saddle during the
right or left diagonal step. The average forward speed of a trial was
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calculated by numerical differentiation using the position of the
marker on L1 and trials of one horse-rider combination within a
speed range of 0.05ms ™' were retained, with a minimum of six trials
within this speed range being recorded for each condition. The mean
+ s.d. speed of all horse—rider combinations was 3.26+0.10ms"'.
One full stride was extracted from each trial and four full strides
were analysed for each horse-rider combination at sitting trot and
rising trot.
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Fig. 1. Mechanical models of horse—rider interaction. (A) Simple
spring—-mass model. (B) Spring—damper—mass model with forcing function
of the rider. (C) Spring—damper—mass model with active spring system of
the leg of the rider. m,, mass of the horse; m,, mass of the rider; ki, spring
of the horse; k;, spring of the rider; ks, saddle spring of the rider; k;, active
spring system of the leg of the rider; a,, damping coefficient of the horse;
¢, damping coefficient of the rider; Fon, amplitude of the forcing function of
the horse; wy, angular frequency of the forcing function of the horse; t,
time; Fo, amplitude of the forcing function of the rider; y;, phase difference
of the forcing function of the rider; and w,, angular frequency of the forcing
function of the rider.

Data processing

Reconstruction of the 3D position of each marker was based on a
direct linear transformation algorithm. The raw coordinates were
imported into Matlab (The MathWorks Inc., Natick, MA, USA) for
further data analysis. Individual stride cycles were determined, with
the beginning of each stride cycle defined as the moment of contact
of the hind hoof that was grounded when the rider was sitting in
the saddle during rising trot. Consequently, all riders sat in the saddle
during the first half of the stride cycle and rose from the saddle
during the second half of the stride cycle. The same hoof sequence
was used to define the stride cycle in sitting trot. Detection of the
moment of hoof contact was based on the horizontal velocity profile
of the marker on the hoof (Peham et al., 1999).

Vertical displacement of the horse was calculated by averaging
the z-coordinates of the T6 and L1 markers on the horse. For
calculation of the vertical displacement of the centre of mass of the
rider, four body segments were defined; foot, lower leg, upper leg
and the upper body including the trunk, arms, hands and head. Data
on the segmental masses (percentages of body mass) and positions
of segmental mass centres (percentages of segment lengths) in
female athletes were used (Zatsiorsky, 2002). Vertical displacement
of the rider’s centre of mass can be defined by:

4
Zr = ZZCOM,imi [ my (€]
i=1
where subscript r indicates the rider, z is the vertical displacement of
the centre of mass, m; is the mass of the ith segment, zcop, is the
vertical displacement of the centre of mass (COM) of the ith segment
and m is the mass. As an equilibrium position is used for the
spring—mass model, the average height of horse or rider was subtracted
from marker heights at all time points. The vertical displacement time
histories were normalized to a 100% stride cycle. Average
displacements of the trials were calculated per rider and for the entire
group. Standard deviations were calculated from the average
displacement patterns of the seven riders. Vertical displacements of
horse and rider were plotted against time and against one another.

The simple spring—mass model
The seemingly artificial situation of hopping in place, i.e. at zero
forward speed, can be taken as a model for bouncing gaits in animals
(Farley et al., 1985). Assuming a linear spring, the following
equation of motion during ground contact can be formulated:

N By =— g —kn(8s +21) = my 2y 2)

where subscript h indicates the horse, Y F is the sum of the vertical
forces, g is the magnitude of the gravitational acceleration, & is the
stiffness of the spring, d is the static deflection due to the weight
of the mass acting on the spring and 7 is the vertical acceleration.
If the static equilibrium position is chosen as a reference for zy, (i.e.
z,=0), the weight factor can be eliminated and the equation of motion
becomes:

ZF}, = —khZh =mpZy . (3)

During motion, the horse’s body moves up and down
rhythmically. As the standing horse does not oscillate in a vertical
direction with the force of gravity as the energy source, it is apparent
that vertical oscillations have to be excited by a motor system. In
the model, the vertical oscillations are caused by a forcing function
which is described as a sine wave function (Rooney, 1986). The
equation of motion therefore becomes:

ZFh = myZy = —khZh + E),h Sil’l(Oh t, (4)
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Table 1. Input parameters of spring—damper—-mass models

Input parameter model

Input value

Literature

Mass, rider, simple model (kg)
Mass, rider, extended models (kg) 60

Mass, horse (kg) 600
Spring constant, rider (kNm™") 0-80
Spring constant, horse (kNm™) 52

Amplitude of forcing function, horse, simple model (N)

Amplitude of forcing function, horse, extended models (N) 9900
Frequency of forcing function, horse (Hz) 2.4
Damping coefficient, rider (kgs™) 0-3000

Damping coefficient, horse

30-150

Range of rider masses evaluated

Average rider

Average warmblood horse

Range of rider spring constants evaluated

Running: 11-19 kNm~" (Blum et al., 2009)

Hopping (60kg rider): 9-45 kN m™
(Bobbert and Casius, 2011; Farley et al., 1991)

Overall leg stiffness calculated according to Farley et al.,
1993

3900 (0.1-6000)*

Gravity added

Step frequency, horse at trot : 2.4 Hz (this study)

Range of rider damping coefficients evaluated

Leg, human: 300-1900kgs™" (Zadpoor and Nikooyan, 2010)

5000 (0—10000)**

Rest length, rider (m) 0.60

Rest length, saddle spring, rider (m) 0.60

Rest length, leg spring, rider (m) 0.60+0.03

Rest length, horse (m) 1.24

Amplitude of forcing function, rider (N) 0-1200

Frequency, rider (Hz) 1.2 Frequency standing phase, rider
Phase difference, rider 0-2n

*This range of input values was tested using a contour map of the amplitude and the frequency of the forcing function. The combination of the (known)
frequency of 2.4 Hz and an amplitude of 3900 N resulted in a vertical displacement of the horse that was comparable with the experimental data

(supplementary material Fig. S2).

**This range of input values was tested using the Downhill Simplex method. This damping coefficient resulted in the best match with the experimental data of

horse and rider.

where F) is the amplitude of the forcing function, ® is the angular
frequency (2x £, where fis the bouncing frequency) of the forcing
function and ¢ is time. The rider—horse interaction can be simulated
by adding a second one-dimensional spring—mass system for the
rider. Again, we assumed a linear spring and contact between rider
and horse. The coupled differential equations for this combined
system are (Fig. 1A):

ZF}‘ =mpZy = —knzn —ke(zn — 20 ) + Fon sin®y ¢ , )
NF =mz =—k(z—z) . (6)

These coupled differential equations can be solved analytically,
resulting in the following:

Fop (k: = mei)
Mm@y, — (muk, + myke + meky )op + knk,
Fynk:
mymey — (myks + mek, + mek )op + knke

Zn =— sinwy t, (7)

Zp =— sinop . (8)

During cyclic behaviour, the masses of horse and rider can move
either in phase or 180deg out of phase; other phase relationships
are not possible.

The input parameters of the simple spring—mass model are the
mass of the rider, the spring constant of the rider, the mass of the
horse, the spring constant of the horse, the amplitude of the forcing
function of the horse and the frequency of the forcing function of
the horse (Tablel). The output parameters are the vertical
displacement of the rider and the horse and the vertical forces on
the rider and the horse. This basic model was used to evaluate the
effect of differences in rider mass and rider spring stiffness on the
vertical displacement and force of both horse and rider. The mass
of the horse and the frequency of the forcing function were based
on the current study. The spring constant of the horse was based
on the study of Farley and colleagues (Farley et al., 1993). The

amplitude of the forcing function was determined using a contour
plot of the frequency of the forcing function and the amplitude of
the forcing function and the resulting vertical displacement of the
horse (supplementary material Fig. S2).

The spring—damper—mass model with forcing function of the
rider

The second spring—damper—mass model incorporated a free-fall for
both horse and rider, dampers for both horse and rider and a forcing
function for the rider (Fig. IB). A numerical approach was used,
simulating 50 stride cycles with time steps of 0.005s. As the
equations of the model are quite stiff, an appropriate ODE solver
(odel5s of Matlab) was used. The extended spring—damper—mass
model can be described by the following equations:

th =mpZy = —MnCnZn — NeCe(Zn — Zr) — Mukn€n + Mok,
= mng +MuFon(0.5-0.5sinwpt) , )

zFr =mzZ = —MN:Cr (Zr - Zh) - T’lrkrsr

- g +MeFo, (0.5-0.5sin(y, +©.0)) ,  (10)
€h = (20 —2nn)/ Zoy » (11)

& =((ze —2zn)=zen)/ 21 » (12)

M =0.5+0.5tanh—10"g,, , (13)

N =0.5+0.5tanh—10"¢, | (14)

R =Fz, , 15)

R=Fz , (16)

Wy =[Rdr, (17)

W= [P, (18)
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where nj, is the force contact factor of the horse (varying from 0 in
suspension phase to 1 in contact phase), 0, is the force contact factor
of the rider and z is the vertical velocity. These factors were
introduced to be able to work with the same differential equations
for the contact and suspension phases of rider and horse and to
guarantee smooth transitions between the phases. Furthermore, € is
the strain of the leg of the horse or rider, zp,y, is the height of the
horse at the moment just before the suspension phase and z,, is the
height of the rider minus the height of the horse just before the rider
loses contact with the horse. We have introduced a damping coefficient
(¢) for the horse and for the rider and a forcing function for the rider.

This model was used to calculate vertical displacement, force,
power and work of both horse and rider. The total power of the
horse (Pyp) and rider (P;) was calculated using Eqns 15 and 16. Total
work of the horse (W}) and rider (W) was calculated using Eqns 17
and 18. The total power and work were calculated using the total
forces on horse and rider. A similar approach was followed for the
components of these forces (i.e. force of damper, spring and forcing
function).

The spring—damper—mass model with active spring system of
the leg of the rider

During the sitting phase of the rising trot, the biomechanical
properties of the rider are determined by the upper body, the legs
and the saddle. During the standing phase, there is no contact
between upper body and saddle. This phase will therefore be
determined solely by the leg of the rider. When the rider is standing
up, muscle activation and changes of geometry will change both
the effective stiffness of the leg and the effective rest length of the
leg. Therefore, an active spring system for the leg was introduced
in the third spring—damper—mass model, instead of the forcing
function of the rider (Fig. 1C). The rider was modelled with two
springs: a saddle spring (subscript s) with a fixed stiffness and rest
length, and a leg spring (subscript 1) with a varying stiffness and
rest length. The third spring—damper—mass model can be described
by the following equations:

M Zp = —MnChZh — NeeCr(Zh — Z0) — NMnkn€n
+ T]r,skr,ser,s + nr,skr,ler,l —mg
+T]hE),h(0.5—0.SSin(Dht) , (19)

n’Lr.Z.r = _nr,ccr (Zr - Zh) - T]r,skr.s{':r,s - T‘1',sk|',l£r,l —mg, (20)

ey = Kepase + Ketamp (0.5 0.5sin(y, + @, 1)), (21)
Zenl = Zenibase — Zrnlamp SIN(Yr + O 1) , (22)
€n=(2n —Znn)/ Znm » (23)

€5 = ((zr —Zn)— Zrms ) [ Zens (24)

e =((zc —20) = zem )/ Zem (25)

Mh =0.5+0.5tanh—10%g,, , (26)

Nes =0.5+0.5tanh— 10" g, , (27)

M =0.5+0.5tanh—10% g, , (28)

Nre = Nrs if MNrs = Net s MNee = MNet if Nes <Nl » (29)

where k) is the spring stiffness of the sine wave spring system of
the leg of the rider with the base value k& jpase and an increase of
k1 amp- Furthermore, z, 1 is the length of the active spring system

of leg of the rider just before the rider loses contact with the horse
(rest length), with the base value z;  pase and the amplitude z; 1 amp.
This model was used to calculate vertical displacement, force, power
and work of both horse and rider during rising trot. Total force,
total power and total work of horse and rider were calculated.
Furthermore, the components of force, power and work were
calculated (i.e. of dampers, springs and forcing function).

Parameter estimation for spring—damper—-mass models
The input parameters of the spring—damper—mass models are
presented in Table 1. The range of input values was based on values
found in the literature (Blum et al., 2009; Bobbert and Casius,
2011; Farley et al., 1991; Farley et al., 1993; Zadpoor and
Nikooyan, 2010) or the current study. The Downhill Simplex
method (Nelder and Mead, 1965) was used to optimize with regard
to vertical displacement of horse and rider, peak force between
horse and rider and work of horse and rider. The Downhill Simplex
method is a technique for minimizing an objective function in a
multi-dimensional space. The method uses the concept of a
simplex, with a special polytope of N+1 vertices in N dimensions.
The algorithm extrapolates the behaviour of the object function
measured at each test point arranged as a simplex and chooses to
replace one of the test points with the new test point and so the
technique progresses. For the optimization of vertical
displacements, the sum of the squared differences between the
measured vertical displacement and calculated vertical
displacement of both horse and rider were calculated. Phase plots
of the last two stride cycles were used to give a graphical
overview of the parameter space.

RESULTS
Measured vertical displacement of rider and horse

The experimentally measured vertical displacements (Fig.2A,B)
show a sine wave pattern for the horse and rider during sitting trot,
with the rider moving almost in phase with the horse. The movement
of the rider is slightly delayed compared with the motion of the
horse. During rising trot, however, the pattern of the rider seems to
consist of (half) a cosine wave with a long period and a large
amplitude (sitting phase) and a cosine wave with a short period and
a small amplitude (standing phase). In the figure, the rider may seem
to move further downward than the horse, but this is merely the
effect of plotting the movements around the mean position of either
horse or rider. In fact, the rider is moving more upward than the
horse. Phase plots of the measured vertical displacements over a
full stride cycle (based on a mean of 28 cycles; seven horse—rider
combinations with each four cycles) are shown in Fig.2C,D. For
the sitting trot, we see two very similar loops, which is expected
because the vertical motions of the first and the second half of the
stride should be rather similar in this riding style. The enclosed
surface of the loops is due to the phase difference in the motion of
rider and horse. A more complex looping is seen for the rising trot
(Fig.2D). This is mainly caused by the very different motion of the
rider in the second part of the stride (compared with the sitting
phase). Comparatively, the motion of the horse varies much less
than that of the rider, as would be expected given its higher mass
and leg forces.

Simulating sitting trot and jockey technique with a simple
spring—mass model
With the basic model it is possible to simulate a sitting trot (Fig. 3A).
With a relatively high stiffness of the spring, the rider moves in phase
with the horse with an amplitude comparable to the experimental data.
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Fig. 2. Vertical displacement of horse and rider

0.1 0.1

during sitting and rising trot. (A) Vertical
displacement during sitting trot. (B) Vertical
displacement during rising trot. (C) Phase plot of
vertical displacement of horse and rider at sitting
trot. (D) Phase plot of vertical displacement of horse
and rider at rising trot. Red dotted line,
displacement of the horse relative to the static
equilibrium position of the horse (+s.d., shaded
area); blue solid line, displacement of the rider
relative to the static equilibrium position of the rider
(%s.d., shaded area). Time zero represents contact
of the hindlimb, on which the rider sits in the saddle
at rising trot. Movements of the horse and rider are

100 plotted around the mean positions of horse and
rider, respectively.
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The motions of rider and horse are in phase owing to the absence of
damping in the model. The movement in counter-phase resembles
the movement of a rider adopting jockey technique as described
previously (Pfau et al., 2009). The jockey technique can be simulated
by the model by using a relatively low stiffness for the rider spring
(Fig.3B). The vertical displacement of the horse is larger and the
vertical displacement of the rider is much smaller during the jockey
technique. The motions of rider and horse are exactly out of phase
because of the absence of damping. The effects of combinations of
rider mass and spring stiffness on rider displacement are shown in
Fig.4A. Specific combinations of rider mass and rider stiffness will
lead to a vertical displacement of the rider that is in phase with the
horse. These combinations can be found in the right half of Fig.4A
and represent sitting trot. Other combinations of rider mass and rider
stiffness will lead to a vertical rider displacement that is in counter-
phase with the horse. These combinations can be found in the left
half of Fig.4A and represent the jockey technique. Fig. 4B shows the
computed displacement for a rider of 60kg (see horizontal line in
Fig.4A) as a function of spring stiffness of the rider. The jockey
technique and sitting trot are again shown on, respectively, the left-
and right-hand side of the plot. Between these techniques very large
amplitudes occur for a spring stiffness of about 12.5kNm™, Fig.4C
and 4D show similar graphs to those in Fig.4A and 4B, but here the
peak forces that occur between horse and rider are plotted. This shows
that the jockey technique allows lower peak forces to be used than
during sitting trot.

Simulating sitting trot, rising trot and jockey technique with
the extended spring—damper—-mass models
In the extended spring—damper—mass models, a free-fall was
introduced. This free-fall changes the requirements for the stability
of the horse-rider system. It is no longer possible that the springs

0.05

of the model are loaded under tension. Damping is needed to provide
stability. Fig. 5 gives an overview of the effects of the spring stiffness
and damping coefficient of the rider. The figure indicates where the
movements of horse and rider are no longer cyclic (dark grey panels),
where the movements are cyclic but the rider temporarily loses
contact with the horse (light grey panels), and where the movements
are cyclic and the rider remains in contact with the horse (white
panels). Combinations of a low damping coefficient and low spring
stiffness will result in a phase relationship that resembles the modern
jockey technique (i.e. the panel with 5kNm™ for spring stiffness
and 200kgs™! for damping, Fig.5). An increase in damping
coefficient will result in the sitting trot (second column of panels
in Fig.5). When the spring stiffness is also increased, a lower
damping coefficient is needed for a sitting trot (e.g. compare column
four with column two in Fig.5). A very low spring stiffness of the
rider (first column of Fig.5) or low damping (see the dark grey
panels on the lower right side of Fig.5) leads to an unstable non-
cyclic behaviour. A high spring stiffness of the rider should be
accompanied by relatively high damping to avoid instabilities or
undesired large motion amplitudes of the rider (Fig. 5, column five).

The Downhill Simplex method was used to optimize for the
measured vertical displacements of horse and rider in sitting and rising
trot, peak force of the rider and work of the horse. The combination
of spring stiffness and damping coefficient of the rider that resembles
the experimentally measured displacements of sitting trot most
closely is 23.6kNm™ and 1056kgs™ (Fig.6A,EIM,Q). The
simulated displacements of horse and rider are very similar to the
measured displacements (compare Fig. 6A,E with Fig.2A,C). Fig. 61
shows that the enclosed loop areas of total force on the rider against
its vertical displacement over the stride (number 49 after the start of
the simulation) and similarly that for the horse are close to zero. This
shows that a very small deviation still occurs from a purely cyclic
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Fig. 3. Displacement of both horse and rider
calculated with a basic spring—mass model.

(A) Simulation of sitting trot (high rider spring
stiffness, 55 kN m™). (B) Out of phase movement of
horse and rider, comparable to vertical movements
of horse and rider, with the rider in the jockey
position (Pfau et al., 2009) (low rider spring stiffness,
5kNm™). Red dotted line, displacement of the horse
relative to the static equilibrium position of the horse;
blue solid line, displacement of the rider relative to
the static equilibrium position of the rider.
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behaviour at stride number 49, which is due to the transient effect
caused by the deviations of the initial conditions from the cyclical
behaviour. The positive and negative work done over the cycle by
the forcing functions of rider and horse and their damping should
cancel one another out over the stride for cyclic behaviour. Fig. 6M
shows power plots for the forcing function, spring and damper of the
rider over one stride, as well as the total power of these components.
The spring power shows a series of negative and positive phases that
correspond to lengthening and shortening of the spring. In between,
power is zero, which indicates a free-fall phase with a resting length
of'the rider’s spring. The damping power shows two negative periods
with two peaks each and two periods of zero power during the free-
fall phase. The power of the forcing function of the rider plays only
a very minor role and remains very close to zero. Thus, the forcing
function does not compensate for the power losses due to damping
of the rider. As the process is cyclic, the net power over the cycle

0.4 0.6 0.8

should be zero. The only way to achieve this is by a partial transfer
of the power produced by the forcing function of the horse to the
rider. Fig.6Q indeed shows that positive power dominates the
fluctuations of the power of the forcing function of the horse. Thus,
considerable work is done by this forcing function over the stride.
The total work of the horse is 27 ] per stride cycle in this riding style.
The free-fall phase of the horse is relatively short for the simulated
sitting trot and the vertical motion of the horse is relatively limited
(compared with the jockey technique, Fig.6B,F,J,N,R), which is
caused by the near in-phase motion of rider and horse.

In the modern jockey technique, the rider has an average
displacement of 0.06 m and the rider moves in counter-phase with
the horse (Pfau et al., 2009). The combination of spring stiffness
and damping coefficient of the rider that resembles this situation
the most is 3.3kNm™' and 10kgs™ (Fig.6B,F,J,N,R). The
simulated vertical motion of the horse is larger and the vertical

Fig. 4. Effect of combinations of rider mass
and rider spring stiffness on vertical
displacement and force of the rider.

(A) Effect of combinations of rider mass and
rider spring stiffness on vertical
displacement of the rider (m). (B) Effect of
spring stiffness on vertical displacement of a
60kg rider (peak value, 10.60 m). (C) Effect
of combinations of rider mass and rider
spring stiffness on force between the horse
and rider (N). (D) Effect of spring stiffness
on force between the horse and a 60 kg
rider (peak value, 1.25x10°N). A and C
illustrate the effects of rider mass and rider

spring stiffness on the rider’s displacement
(A) and on the force between horse and
rider (C). The graphs illustrate the fact that
low spring stiffness is associated with the

standing (jockey) position and high spring
stiffness is associated with the sitting
position. The ellipses indicate the
mass-—stiffness combinations that are
associated with each rider position. Within
each ellipse, for a given spring stiffness,
both rider displacement and the force
between horse and rider increase with rider
mass. B and D use, as an example, a rider
of mass 60kg to show how an increase in
spring stiffness affects displacement of the
rider (B) and the force between horse and
rider (D). Between these two regions of
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0.05 Fig.5. Phase plots of the displacement of the horse
: 0.1 versus the displacement of the rider for different

values of spring stiffness and damper coefficient of
the rider. A combination of a low rider spring
stiffness and a low rider damper coefficient results in

01 a phase relationship that resembles the jockey

position, whereas a combination of a high rider

7

spring stiffness and a high rider damper coefficient
results in a phase relationship that resembles the
sitting position. Some combinations lead to phase
relationships that do not seem to occur in regular
horse riding by experienced persons. This might

result in a fall of the rider from the horse. White,

N

cyclic behaviour, with the rider maintaining contact
with the horse; dark grey, no cyclic behaviour; light
grey, cyclic behaviour, but rider loses contact with

horse.

\

N

Damper, rider (10% kg s)

-

Vertical displacement, rider (m)

B SINNBNNE
T INIIN NN

O
D
\

5 10 20
Spring, rider (kN m™")

motion of the rider is smaller than the values of sitting trot
(compare Fig. 6B and 6A), while the forcing function of the horse
is kept the same. The very narrow loop of Fig.6F indicates that
the motion of rider and horse are almost exactly out of phase.
The force displacement plots of rider and horse again show loop
surfaces that are very close to zero, a result of near-cyclic
behaviour. Fig. 6N shows that the power of the forcing function
of the rider is again very close to zero and energy losses due to
damping are minor compared with those of the simulated sitting
trot. The power fluctuations in the spring of the rider are much
larger than those during sitting trot, a consequence of the much
lower spring stiffness of the rider in combination with the
counter-movement between rider and horse, which results in much
larger length changes in the rider’s spring. The net energy that

~
7
~
e
e
N
ﬁ

is transmitted from the horse to the rider is extremely small for
the simulated jockey stride (6.7J per stride cycle). The forcing
function of the horse produces much higher positive power peaks
(about 6000 W) with the simulated jockey technique than for
sitting trot; larger power peaks occur for the horse’s spring, and
more power is lost to damping (Fig.6R), which is in agreement
with the large vertical excursion of the horse. Over the stride, the
net power of the forcing function is almost exclusively spent on
damping losses of the horse. The free-fall phases of the horse are
longer with the jockey technique than for sitting trot.

Rising trot cannot be simulated adequately based on optimization
of'the (constant) spring stiffness and damping coefficient of the rider.
With the time-dependent forcing function incorporated into the
model, it is possible to simulate rising trot (Fig.6C,G,K,0,S),
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Fig. 6. Result of optimization based on vertical displacement and minimal peak rider force and minimal work of the horse in simulation model 2. (A) Vertical
displacement during sitting trot. (B) Vertical displacement during modern jockey technique. (C) Vertical displacement during rising trot with forcing function.
(D) Vertical displacement during optimal horse-riding technique (extreme jockey technique). (E) Phase plot of sitting trot. (F) Phase plot of modern jockey
technique. (G) Phase plot of rising trot with forcing function. (H) Phase plot of optimal horse-riding technique. (I) Work loops of horse and rider at sitting trot.
(J) Work loops of horse and rider with modern jockey technique. (K) Work loops of horse and rider at rising trot with forcing function. (L) Work loops of horse
and rider with optimal horse-riding technique. (M) Power of rider at sitting trot. (N) Power of rider with modern jockey technique. (O) Power of rider at rising
trot with forcing function. (P) Power of rider with optimal horse-riding technique. (Q) Power of horse at sitting trot. (R) Power of horse with modern jockey
technique. (S) Power of horse at rising trot with forcing function. (T) Power of horse with optimal horse-riding technique. Red dotted line, vertical
displacement, work loops, horse; blue solid line, vertical displacement, work loops, rider. Power in M—P: blue solid line, total of spring, damping and forcing
function; green crosses, spring; light blue squares, damping; purple crosses, forcing function. Power in Q-T: red solid line, total of spring, damping and
forcing function; purple crosses, spring; pink squares, damping; yellow crosses, forcing function.
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Fig. 7. Simulation of rising trot with active spring
system for the leg of the rider with model 3.

(A) Vertical displacement. (B) Phase plot. (C) Force
of the rider. (D) Power of the rider. Red dotted
line, vertical displacement and power of horse;
blue solid line, vertical displacement and power of
rider. Force and power in C,D: blue solid line, total
of saddle spring, leg spring and damping; green
crosses, saddle spring; light green circles, leg
spring; light blue squares, damping.

Vertical displacement, horse (m)

0 0.05

0.1 0.1
_ A e |B
E o
= 005 T 0.05
g 2
8 £
2 0 8 0
2 ke
© Q.
—_ (2]
S °
£ -0.05 5 —0.05
(] o
. :
>
—0.1 -0.1
0 02 04 06 08 20.05
Time (s)
1400 400
C D
1200 300
1000 200
= 800 s
5 600 5 100
2 400 2 o
[0} o
8 200 o]
3] : g —100
s o& / S 200
-200 -
-400 -300
-600 -400
0 02 04 06 08 0 0.2
Time (s)

although the agreement with the experimental data is not optimal.
The spring stiffness and damping coefficient needed to simulate
rising trot as closely as possible are relatively low (4.8kNm™) and
high (2779kgs™), respectively. The power of the forcing function
of the rider fluctuates more strongly than those of the simulated
sitting trot and jockey technique, and the power of the rider’s damper
shows a stronger negative peak. This indicates that the rider has to
spend more energy during rising trot than during sitting trot or jockey
riding. The power fluctuations of the horse resemble those of sitting
trot during half of the stride and jockey riding during the other half,
albeit the peak power of the forcing function is somewhat reduced.
The total work of the horse is 311J per stride cycle in this simulated
rising trot.

The lowest work of the horse (4.2] per stride cycle) and lowest
peak force of the rider (1.04; dimensionless: peak force/body weight
of rider) are both a result of a relatively low spring stiffness
(0.6kNm™') and low damping of the rider (19kgs™). The result is
an ‘extreme’ jockey technique simulated in Fig.6D,H,L,P,T,
associated with a very limited motion of the rider. With the same
forcing function of the horse, the motion of the horse is reduced
compared with that for the jockey technique performed in daily
practice (Fig. 6B) because of the reduced counter-motion of the rider,
which tends to lead to greater fluctuation of the combined centre
of mass of horse and rider. The power fluctuations of the rider’s
spring are now much lower than for the normal jockey technique
(Fig. 6P and 6N). The power of the horse lost in damping is slightly
lower for the extreme jockey technique than for the normal jockey
technique. Thus, overall energy expenditure is also slightly lower.

Finally, the third spring—damper-mass model, with a more
elaborate spring system of the rider, enabled the simulation of all
three riding styles with a good correspondence with the experimental
data. Here, we will restrict the results to the simulation of rising trot,
which has a far better agreement with the experimental data (Fig. 7)

0.4 0.6 0.8

than could be achieved with model 2. The parameters of the model
were optimized to simulate a rising trot as shown in Fig.2. Fig. 7A
shows the simulated displacements of rider and horse, which resembles
the typical pattern for the rider also shown in Fig. 2B. Fig. 7B shows
the phase plot of rider displacement against horse displacement, which
is now closer to the experimental loop of Fig.2D. The leg spring
shows a small force peak of 347N (Fig.7C), just before the lift off
from the saddle, and a second large peak of 1104 N during the rising
phase (second part of the stride). The force of the saddle spring is
single peaked during the sitting phase. Both springs have a zero force
during a short free-fall phase. The damping force shows both positive
and negative force peaks. The power of the saddle spring fluctuates
from negative to positive while the rider is seated (Fig. 7D). The net
work over the stride is zero for this spring. The active leg spring has
two positive peaks in excess of 100 W and a few minor negative peaks.
Overall the leg spring produces 2017 per stride cycle of positive work,
which is possible because of the varying stiffness and resting length
throughout the stride, which gives the ‘spring” muscle-like properties.
Much of this work is used to compensate for the power losses in the
rider’s damping.

DISCUSSION
In the search for general principles underlying bouncing gaits,
biomechanics have modelled the human body as a linear mass-less
spring supporting a point mass equivalent to the body mass. The
term ‘leg spring’ is typically used to indicate stiffness of the spring,
which is determined by the relationship between ground reaction
force and distance between the centre of mass and the centre of
pressure on the ground (Bobbert and Casius, 2011). The leg spring
therefore not only refers to the biomechanical properties of the leg
but also represents the whole body. The stiffness of the leg spring
has been determined in a variety of bouncing gaits of humans.
During running, the stiffness of the leg spring is relatively constant,
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ranging between 11 and 19kNm™' (Blum et al., 2009). When
humans hop in one place they can vary the stiffness of their leg
spring by changing the hopping height or frequency. Stiffness values
between 9 and 45kNm™' have been found (Bobbert and Casius,
2011; Farley et al., 1991). To our knowledge, the stiffness of the
leg spring has not been determined for the different riding techniques
that a rider can use in equestrian sports.

In this research, three spring (—damper)-mass models were
developed to provide insight into the mechanisms of these horse-
riding techniques. The first approach involved constructing a simple
spring—mass model in which the musculoskeletal systems of both
the horse and rider are considered mechanically as linear
spring—mass systems. The spring—mass system of the horse is
actively driven. Each system is assumed to behave like a point mass
bouncing on a mass-less spring without viscous losses, which is the
simplest model possible for any bouncing system.

Although such a simple model may provide useful information
on the strategies a rider can use to respond to the movement of the
horse, it has limitations. In the simple spring—mass model the horse
maintains contact with the ground during locomotion; this is not
true for trotting, which has two phases in each stride when the feet
lose contact with the ground (the suspension phases). Although the
rider maintains contact with the horse, the rider and the horse are
not attached to each other. The looseness of this contact can be
modelled by combining the spring—mass model with a free-fall of
horse and rider. Furthermore, as the legs of both horse and rider
have damper-like functions and as there is a phase shift between
the motions of horse and rider (Lagarde et al., 2005), dampers for
both horse and rider were implemented in the model. During rising
trot, the rider actively stands up and two approaches were used to
simulate the rider’s muscle activation. The second
spring—damper—mass model incorporates a free-fall, dampers for
both horse and rider and a forcing function for the rider. The third
spring—damper—mass model incorporates a free-fall, dampers for
both horse and rider and an active spring system for the legs of the
rider with varying stiffness and rest length.

In sitting trot, the rider stays seated in the saddle. The movement
of the rider is influenced by the saddle, and by the skin, the back
and abdominal muscles and the lower back flexion of the rider. The
influence of the rider’s legs is probably limited during sitting trot
because the forces on the stirrups are low (van Beek et al., 2011).
Therefore, it is likely that the rider’s lower back is the dominant
factor for the mechanical properties of the rider during sitting trot.
The required effective stiffness of the leg spring of the rider is indeed
high for sitting trot compared with other human athletic activities,
such as running. In this range of high spring stiffness of the rider,
the vertical displacement and force of the rider are not very sensitive
to a change in spring stiffness (Fig.4B,D). Note that the spring
stiffness was kept constant during the stride in these simulations
with the simple model.

When the rider stands in the stirrups in the jockey position, their
legs determine the mechanical properties of the rider. The required
stiffness of the leg spring of the rider for the modern jockey
technique is low compared with other human athletic activities. In
this range of low spring stiffness of the rider, vertical displacement
of'the rider is very sensitive to a change in spring stiffness (Fig. 4B).
This could mean that control of leg stiffness in this position is crucial.
Between these two ranges of spring stiffness there is a resonance
zone with very high and unrealistic displacements and forces
(Fig.4C,D).

In the extended spring—damper—mass models, the horse is no
longer fixed to the ground and the rider is no longer fixed to the

horse. This extension to the model was made because at trot there
are two phases in each stride when none of the feet are in contact
with the ground (the suspension phases) and although the rider
maintains contact with the horse, the rider and the horse are not
attached to each other. The looseness of this attachment was
modelled by combining the spring—damper—mass models with a free-
fall. Tt is striking that for the two riding modes, sitting trot and
modern jockey technique, it is possible to have a stable cyclic
simulation with a suspension phase of the rider. This raises the
question of whether the rider does in fact have a suspension phase.
In fact, both the total vertical force on the rider and the stirrup force
do reach zero during sitting trot (de Cocq et al., 2010; van Beek et
al., 2011). This supports the idea that there is a suspension phase
at sitting trot, although this might not be visible to the eye.

A wide range of combinations of the rider’s spring stiffness and
damping coefficients result in a sitting trot. An increase in damping
coefficient will increase the work required of the horse and an
increase of spring stiffness will increase the peak forces on the rider
and therefore on the horse’s back. This indicates that there is an
optimal combination of damping coefficient and spring stiffness of
the rider. The modern jockey technique has high peaks in the power
of the rider and is therefore the most demanding technique for the
rider.

In the simulation of rising trot using the extended
spring—damper—mass model with an active spring system for the
leg of the rider, the force patterns of the total force on the saddle
resemble the forces measured previously (de Cocq et al., 2010).
The spring leg forces resemble the stirrup forces measured by van
Beek and colleagues (van Beek et al., 2011), which have a small
force peak in the sitting phase and a large force peak in the standing
phase. However, the timing of the first small peak of the spring leg
force is relatively early compared with that of the measured stirrup
forces. In the model, the timing of the change in spring stiffness
and rest length of the active spring system of the leg was kept the
same. In real life, there is probably a timing difference between the
change in spring stiffness and rest length. This could explain the
observed difference between the simulated spring leg force and
measured stirrup forces. During the sitting phase, the forces on the
rider are indeed dominated by the saddle spring. During the standing
phase, the saddle spring loses contact with the horse and the active
spring system of the leg of the rider takes over.

The lowest work of the horse and lowest peak force of the rider
are both a result of relatively low spring stiffness and low damping
of the rider. This combination has an even greater effect than the
modern jockey technique. When the goal is to reduce peak forces
on the horse’s back and to reduce the energy expenditure of the
horse, this mode seems to be the preferred mode for horse—rider
interaction.

A topic for further research is how the rider actually changes
their biomechanical properties. These biomechanical properties
result from the complex interplay between muscle stimulation time
histories, muscle properties and geometry. Research on riding
techniques, measuring kinematics, forces between horse and rider
and electromyography of the leg muscles of the rider, is needed to
tackle this problem.

CONCLUSIONS
The models developed here provide insight into the biomechanical
requirements a rider has to comply with in different riding
techniques. At sitting trot, the rider is able to follow the movement
of the horse by using a relatively high spring stiffness and a high
damping coefficient. The modern jockey technique results from of
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a relatively low spring stiffness and a low damping coefficient.
Rising trot requires an active spring system for the leg of the rider,
which changes in both stiffness and rest length. An ‘extreme’ modern
jockey technique is the optimal mode for the minimization of both
vertical peak force of the rider and mechanical work of the horse.
The models confirm the hypothesis that the connection between
horse and rider has a relatively low spring stiffness in the riding
technique with least loading and that this riding technique is an
example of a strategy that reduces the peak forces on and the energy
expenditure of the carrier.

LIST OF SYMBOLS AND ABBREVIATIONS
damping coefficient
frequency of a bounce
amplitude of the forcing function
magnitude of the gravitational acceleration
horse (subscript)
spring stiffness
active spring system of the leg of the rider (subscript)
mass
rider (subscript)
saddle spring of the rider (subscript)
time
vertical displacement, velocity and acceleration
phase difference of the forcing function
static deflection due to the weight of the mass acting on the
spring
strain
force contact factor
® angular frequency of the forcing function
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