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Introduction
Concerns about the ecological and societal consequences of the
continuing loss of biodiversity have motivated the analysis of
diversity patterns at regional and global scales, in relation to
potentially important environmental drivers (e.g. air and sea-
surface temperature, CO2 and nutrient concentrations) (Lotze et al.,
2006; Worm et al., 2006; Halpern et al., 2008). Through a
correlative approach it is possible to identify putative causal links
between predictor and response ecological variables, but
correlation does not necessarily imply causation, which is the level
of inference that pertains to experiments. Nonetheless, experiments
play little role in this (macro)ecological research program (Brown,
1995), despite their enormous contribution to our understanding of
the processes that regulate local patterns of species distribution,
abundance and diversity and the consequences that changes in these
patterns have for the functioning (e.g. productivity and stability) of
ecological systems (e.g. Loreau et al., 2002).

A main criticism directed to manipulative field experiments is
that they are limited in scope, often as a consequence of logistic
constraints: the small size of experimental units (the usual plot size
is in the range of hundreds of square centimeters to a few square

meters) and the limited spatial and temporal extent over which
these units are distributed (usually from tens to hundreds of meters
in space and from months to a few years in time) raise concerns on
the possibility of extrapolating experimental outcomes over broad
scales in space and time (Lawton, 1999; Maurer, 1999).
Experimental ecologists have responded to this criticism in
different ways: by manipulating whole ecosystems such as lakes
(Carpenter et al., 1995; Pace et al., 2004), through the replication
of experiments at multiple sites and over time to effectively
increase the spatial and temporal extent of the investigation (e.g.
Benedetti-Cecchi et al., 2000) and by embedding local
manipulative studies into regional correlative analyses (Hewitt et
al., 2007).

Modeling offers another approach to address large-scale
ecological problems. Interesting recent developments include
reaction–diffusion, integro-differential and coupled-map lattice
models to scale up organismal dispersal and movement from local
scales to entire ecosystems (Hastings et al., 2011). Modeling,
however, also presents difficulties – accuracy and precision in
parameter estimation, oversimplification and validity testing, to
mention the most obvious – but it does provide a tractable
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methodological framework for analysis, some predictive value and
suggestions for further experimental work. As no approach is free
of problems, it is through the integration of different methodologies
that one may hope to make progress in the analysis of large-scale
patterns and drivers of biodiversity.

The ability to integrate modeling, correlative and experimental
approaches within individual research programs is therefore a new
frontier in the analysis of large-scale, long-term environmental
problems. Scale-transition theory (STT) enables this level of
integration, providing a powerful framework to link ecological
patterns and processes across scales (Chesson et al., 2005;
Melbourne et al., 2005; Melbourne and Chesson, 2006) [see also
Sears and Chesson (Sears and Chesson, 2007) and Angert et al.
(Angert et al., 2009) for applications of STT in the context of
species coexistence]. STT predicts the large-scale (e.g. regional)
behavior of a system on the basis of the interaction between
nonlinear population processes driving local (e.g. patch-scale)
population dynamics and spatial variation in population abundance
or environmental conditions. Once the local model is identified, the
parameters that determine nonlinearities at the local scale are
estimated from experimental data and combined with the relevant
components of spatial variation estimated from sampling programs
to obtain the scale transition (e.g. Melbourne and Chesson, 2006).

The key concept behind STT is nonlinear averaging – i.e. the
averaging of nonlinear functions. We know from basic statistical
principles that averaging the values of a quantity over a sample of
observations collected at a particular scale enables one to estimate
the mean value of the quantity at the larger scale defined by the
statistical population that has originated the sample (e.g. Stuart and
Ord, 1994). Similarly, one can represent the dynamics of a
population at the regional scale by averaging a model for local
dynamics over a number of replicate patches. Special care is
required when averaging nonlinear functions, however, because the
function of the average is generally different from the average of
the function in the nonlinear scenario. An example of nonlinear
averaging that has been discussed to some extent in ecology is
Jensen’s inequality (Jensen, 1906; Chesson, 1991; Ruel and Ayers,
1999; Benedetti-Cecchi, 2005). Nonlinear averaging can be
performed through quadratic approximation, which involves the
product between the second derivative of the function (quantifying
the strength of the nonlinearity) and the variance associated with
the focal variable (e.g. population abundance) (Chesson et al.,
2005).

We used STT to predict the dynamics of turf-forming macroalgal
assemblages of rocky shores at Capraia Island, in the northwest
Mediterranean. Many algal-dominated marine ecosystems around
the globe are undergoing major shifts, with highly productive algal
canopies being replaced by less-productive turf-forming
assemblages, apparently in response to increasing levels of nutrient
and sediment loads (Benedetti-Cecchi et al., 2001; Airoldi, 2003).
We developed a model of algal turf dynamics based on density-
dependent growth that included the effects of local interactions with
Cystoseira amentacea Bory var. stricta Montagne, a perennial
canopy alga. The model was parameterized with field data and used
to scale up the dynamics of algal turfs from the scale of the plot
(20�20cm) to the island scale (tens of km). Model predictions
were then compared with observed values of mean turf cover
obtained independently from a separate experiment. We found that
the model was able to predict both short-term and long-term mean
values of turf cover at the island scale. Motivated by this positive
outcome, we conclude by highlighting the connections between
STT and biomechanics, the theme of this Special Issue of JEB.

Materials and methods
Applying STT

A local model for algal dynamics
We start from a general model describing algal turf dynamics at the
scale of the individual plot x within patches of C. amentacea:

where Tx is the percentage cover of algal turfs, t is time and Cx is
the percentage cover of C. amentacea. The function G(Tx) describes
the rate of growth of algal turfs and H(Tx)Cx reflects the rate of
competitive exclusion of turfs by C. amentacea (both rates are
expressed as percentage cover per unit of time). The generic
function R(Tx) describes turf recruitment (i.e. the recruitment of the
species composing the turf), whereas M(Tx) reflects turf mortality
due to physical disturbance (e.g. dislodgement by waves and
desiccation). Grazing is not considered as a source of mortality for
algal turfs, as herbivores are generally rare in the habitat dominated
by C. amentacea (Benedetti-Cecchi et al., 2001).

The recruitment and mortality terms in Eqn 1 may be expanded
to include additional ecological processes. For example, the generic
function R(Tx) could include any form of propagule production,
dispersal and settlement as a function of available space. One might
also include a term to reflect recruitment inhibition of turf by C.
amentacea. For example, a term such as R(100–Tx–Cx) might be
used to model turf recruitment as a function of the percentage cover
of unoccupied space. Being specific about the precise form of a
term is important as far as nonlinearities are involved, but linear
terms play no role in the scaling-up process. We currently lack the
appropriate data to be more specific about the recruitment and
mortality terms and to decide whether they should be linear or
nonlinear. However, as we will detail in the next section (see below,
Scaling up the local model), we have reasons to suspect that they
will offset each other at the island scale, so these terms will not
appear in the scaled-up model.

To fully describe the turf–Cystoseira system, one should couple
Eqn 1 with a model for C. amentacea dynamics. However, the
dynamics of C. amentacea are slow compared with those of the
algal turfs, so we assume that at the time scales relevant to this
study (months to years) and at the spatial scale of the island (the
scale at which we want to translate the local dynamics of algal
turfs), the average change in cover of C. amentacea is effectively
zero. This assumption is justified by long-term observations
indicating negligible changes in average percentage cover of C.
amentacea at Capraia Island over a period of 15years (L.B.-C.,
unpublished data). Assuming constant average cover for C.
amentacea may, however, obscure the effect of seasonal
fluctuations in canopy abundance on turf dynamics, an issue that
we will address in the Discussion.

Scaling-up the local model
We used STT to scale up the local model of algal turfs to the island
scale, where individual plots are linked by propagule dispersal. The
dynamics at the island scale are obtained by taking averages of both
sides of Eqn 1:

More than 15years of observations and quantitative sampling
(L.B.-C., unpublished data) at Capraia Island suggest that an
equilibrium for mean algal turf cover (T) has been reached and
maintained at the island level, despite local variation. We therefore

dTx

dt
= G( Tx ) − H ( Tx ) Cx + R( Tx ) − M ( Tx ) ,  (1)

dT

dt
= G(T ) − H (T )C + R(T ) − M (T ) . (2)

L. Benedetti-Cecchi and others
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assumed that the stochastic processes of recruitment and
disturbance were temporally stationary at the island scale, their
density-dependent interaction leading to a balance between gains
and losses of algal turfs. The growth and competition terms of 
Eqn 2 are, in contrast, subject to the effects of variance.

If these assumptions hold, then R(T)—– –M(T)——0 and the dynamics
at the island scale become:

where G(T)—— and H(T)C——— are the averages of functions G and H over
turf and C. amentacea cover, respectively. If G and H were linear
functions, one could express the average dynamics of algal turfs at
the island scale simply as a function of the average values of
variables Tx and Cx – i.e. the mean field model G(T)–H(T)C. This
scenario is, however, unrealistic. Density-dependent processes are
known to result in nonlinear patterns of population growth and to
generate nonlinear outcomes of competitive interactions (Royama,
1992). Therefore, describing the average dynamics of algal turfs
simply as a function of the averages of variables Tx and Cx would
be misleading. STT addresses this problem by correcting the mean-
field model with the inclusion of appropriate scale-transition terms:

where SG and SHC correct for nonlinearity in turf growth and
competition with C. amentacea, respectively, and SHC arises
because the competitive effect of C. amentacea is the product of
canopy cover and rate of turf growth. The scale-transition terms are
approximated by second-order Taylor expansion of G(Tx) and
H(Tx), such that:

and

[see general formulae in Chesson et al. (Chesson et al., 2005)].
Hence, Eqn 4 becomes:

This approximation shows that the discrepancy between
predictions based on the mean field model and the actual dynamics
of turf cover at the island scale are the result of interactions between
nonlinear processes and spatial (co)variation in abundance of algal
turfs and C. amentacea. The sign of the second derivatives G�(T)
and H�(T), which is positive if these functions are concave-up or
negative if they are concave-down, determines whether the first two
scale-transition terms dampen or amplify the effect of spatial
variance on turf dynamics at the island scale. Cystoseira amentacea
affects turf dynamics indirectly, through spatial covariation with
turf cover. The size and direction of this effect depends on the sign
of the first derivative H�(T) and the sign and magnitude of the
covariance between canopy and turf cover. Eqn 7 identifies the

dT

dt
= G(T ) − H (T )C  , (3)

dT

dt
= G(T ) − H (T )C

mean-field model
� ��� ��� + SG − SH C − S HC

scale-transition  terms
� ��� ���  ,  (4)

G(T ) ≈ G(T ) +
1

2
G (T )Var(T ) , (5)�

H (T )C ≈ H (T )C +
1

2
H (T )Var(T )C + H (T )Cov(T ,C ) , (6)��

   

dT

dt
= G(T ) − H (T )C

mean-field model
� ��� ���

+
1

2
G (T )Var(T ) −

1

2
H (T )Var(T )C − H (T )Cov(T ,C )

scale-transition  terms
� ����������� �����������

 . (7)� � �

relevant quantities that need to be measured empirically to scale up
the local model of turf dynamics at the island scale. These include
experimental data to select local models for turf growth and
competition with C. amentacea [functions G(Tx) and H(Tx)Cx in
Eqn 1], along with the nonlinearities expressed by the second
derivatives of these functions, and sampling data to estimate spatial
variance in turf cover and the covariance between turf and C.
amentacea cover.

Data collection and model processing
Study system
All empirical data were collected on the rocky shores of Capraia
Island (43°02�4�N, 9°49�09�E) in the Tuscany Archipelago
(northwest Mediterranean) between 1999 and 2010. In many places
around the island, the lowshore habitat (0 to –0.3m with respect to
the mean low level water) is occupied by extensive belts of C.
amentacea, a perennial alga that forms a canopy 30–40cm high. A
removal experiment showed that C. amentacea is responsible for
maintaining a rich assemblage of invertebrates (mainly sponges and
hydrozoans) and understory algae, while preventing the
colonization of algal turfs (Benedetti-Cecchi et al., 2001). The algal
turf category includes several species of coarsely branched and
articulated coralline algae that are generally abundant below the
belt of C. amentacea, but that massively colonize the upper shore
level only in the absence of canopy algae (Bulleri et al., 2002).

Specific functions for turf growth and competitive exclusion
We formulated three alternative models for each of the growth and
competitive functions in Eqn 1 (Table1). Candidate models for turf
growth included Gompertz, logistic and exponential functions. The
first two are classical continuous models with density-dependence
regulation leading to nonlinear dynamics (Royama, 1992; Lande et
al., 2003). The exponential function implied linear rates of
population change and was used for reference: scale-transition
terms would disappear from Eqn 7 if functions were linear, in
which case the mean field model would be appropriate to describe
turf dynamics at the island scale.

The rate of competitive exclusion of algal turfs by C. amentacea
was modeled through bump-exponential, exponential-decay and
linear functions. The bump-exponential function would be
appropriate if, for example, the rate of competitive exclusion
increased with increasing turf cover up to a threshold level,
decreasing thereafter. This pattern would be consistent with the
view that the outcome of asymmetric competitive interactions may
be reversed depending on the relative abundance or ontogenetic
status of interacting species (e.g. Lawler and Morin, 1993;
Benedetti-Cecchi, 2000). The exponential-decay function, in
contrast, would be more appropriate to model nonlinear
competitive outcomes in the absence of competitive reversals.
Finally, we included the linear function for reference.

Field data: canopy removal experiment and hierarchical sampling
design
We fitted the local models for turf growth and rate of competitive
exclusion to empirical data from a canopy removal experiment and
a hierarchical sampling design, respectively. The experiment
consisted of removing the fronds and bases of C. amentacea with
a hammer and chisel from areas of shore of 2�0.5m (the longer
axis was in the alongshore direction). Inevitably, the algae and
invertebrates epiphytic on C. amentacea were also removed, but
we paid attention to minimize the damage to organisms attached to
the primary substratum, including algal turfs. In May 2000 we
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marked with epoxy putty (Subcoat S, Veneziani, Trieste, Italy) the
corners of nine areas on each of two shores (stretches of coast
30–50m in length) approximately 1km apart. Three replicate areas
were randomly allocated to each of three starting dates of the
experiment on each shore: May 2000, October 2000 and December
2001. Thus, each shore had three experimental areas cleared at three
times over a period of 1.5years; this experimental design enabled
us to assess turf growth in the absence of C. amentacea over a range
of starting environmental conditions. Percentage cover of algal
turfs was measured soon after clearing and 6months later in three
plots of 20�20cm marked in each area, using standard sampling
procedures (Benedetti-Cecchi et al., 2001).

Three unmanipulated areas of the same size as the cleared ones
were also established at each date on each shore as controls.
Because this experiment was designed primarily to examine the
effect of removing a dominant canopy alga on other species in the
assemblage, we stratified the experiment on shores that had a full
cover of C. amentacea. As a result, algal turfs were rare in these
control areas, so that the range of initial values of turf and C.
amentacea cover was too narrow for model fitting and parameter
estimation (see Model selection and parameter estimation).

As an alternative, we used data from a hierarchical sampling
design that was also employed to estimate spatial variances and
covariances. On eight occasions between September 1999 and
July 2004 we sampled nine shores (stretches of coast 30–50m in
extent) distributed around the island of Capraia at distances of
0.2 to 10km. At each sampling date, two areas of the same size
as those used in the clearing experiment were selected on each
shore and five replicate plots of 20�20cm were sampled in each
area. All sources of variation were random in the sampling
design. Data from the same shore at two sampling occasions were
necessary for selecting a local model of competitive interactions
between C. amentacea and algal turfs (see Model selection and
parameter estimation). We used data from the first and the fourth
sampling date of the hierarchical sampling design (September
1999 and December 2000), which provided the best compromise
in terms of overlap and duration with respect to the canopy
removal experiment.

Model selection and parameter estimation
We fitted the alternative models of turf growth G(Tx) and
competitive exclusion H(Tx)Cx to final values of turf cover obtained
from the canopy removal experiment and hierarchical sampling
design, respectively, using maximum likelihood procedures. To
obtain predicted values of final turf cover, we integrated initial
values through time using the lsoda function of the odesovle
package in R 2.10 (R Development Core Team, 2010). Models for
turf growth were fitted to turf cover data from individual plots
sampled within areas cleared of C. amentacea. Models for the
exclusion rate of turfs by C. amentacea were fitted to final turf

cover data averaged at the shore scale, using average canopy cover
as a covariate and G(Tx) set to the best-fitting model among the
candidate models estimated from the canopy removal experiment.
We used shore averages of turf cover for this analysis because
sampling areas differed among dates in the hierarchical design (i.e.
areas were nested within shore � sampling date combinations), so
only data aggregated at the shore level could be tracked through
time. We evaluated the support of the data to the alternative models
for turf growth and C. amentacea competition through the bias-
corrected Akaike’s information criterion (AICc) (Burnham and
Anderson, 2002). Likelihood profiles were inspected to ensure that
parameters were well defined.

The fitting procedure assumed that the initial values of turf cover
were estimated without observation error and that all the error was
in the final values. Observation error in the initial values resulted
in biased estimates of model parameters (Melbourne and Chesson,
2006; Bolker, 2008). To correct for this bias, we used the
simulation–extrapolation (SIMEX) method (Cook and Stefanski,
1994). This method is based on Monte Carlo simulations where
new data sets are generated by contaminating the original data (the
initial values of turf cover in our case) with known amounts of
observation error, so to increase the total variance of the simulated
series. Model parameters are estimated for data sets with increasing
levels of observation error and regression procedures (e.g. quadratic
regression) are used to relate each parameter to total variance. Bias-
corrected estimates of the parameters are then obtained by
extrapolating the regressions to zero variance (i.e. zero observation
error). We used the SIMEX method to correct parameter estimates
for selected models of turf growth and competitive exclusion. To
apply the SIMEX procedure, one must have an independent
estimate of observation error. We obtained such estimates from the
variance component analysis described in the next section, using
variances at the plot scale for the growth model and the compound
variance at the plot and area scales for the competition model,
thereby accounting for the error introduced by using turf cover data
aggregated at the shore level when selecting a function for
competitive exclusion.

Estimating spatial variances and covariances
To apply the scale-transition model, we needed estimates of the
variance and covariance components appearing in Eqn 7. The
hierarchical sampling design enabled us to estimate spatial variances
in turf cover and covariances between turf and C. amentacea cover
at three spatial scales: among plots within sites, among sites within
shore � sampling date combinations, and among shores (i.e. the
island scale). We used the subset of sampling dates also employed
to select the local model of competitive exclusion for this analysis
(from September 1999 to December 2000). In this way variances and
covariances were estimated on a time scale comparable to that used
to select growth and competitive functions.

L. Benedetti-Cecchi and others

Table1. Models for growth of algal turfs and competitive exclusion rate by Cystoseira amentacea

Model Formula Parameters

Turf growth
Gompertz G(Tx)rTx(logK–logTx) r, density-independent growth rate K, carrying capacity
Logistic G(Tx)rTx[1–(Tx/K)]
Exponential growth G(Tx)rTx

C. amentacea competition
Bump-exponential H(Tx)CxaTxebTxCx a, asymptotic competitive exclusion rate when turf cover approaches zero b, exponential 

parameter for competitive exclusion rate
Exponential-decay H(Tx)CxaebTxCx

Linear H(Tx)CxaTxCx a, linear parameter for competitive exclusion rate
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Variance components were estimated through restricted
maximum likelihood using the function lmer in the lme4 package
of R 2.10 (R Development Core Team, 2010). Covariance
components were estimated at each spatial scale as half the
difference between the variance of the sum of turf and C.
amentacea cover and the sum of the variance components of the
individual variables (Searle et al., 1992). The relevant quantities to
plug into Eqn 7 were the total variance in turf cover and the total
covariance between turf and C. amentacea cover, each obtained by
summing the corresponding (co)variance components across the
three spatial scales examined. Analyses were performed on
untransformed data.

Quantifying the scale transition and testing predictions
We assessed the contribution of each scale-transition term in 
Eqn 7 as the change caused by a focal term to the instantaneous
rate of change of turf cover with respect to the mean field model.
We also tested whether the model was able to predict short-term
and long-term mean values of turf cover when applied to a new
scenario. The extent to which a scale-transition model can be used
for predictions beyond instantaneous rates of change depends on
the underlying assumptions, the ability to obtain spatial variances
and covariances as a function of a wide range of mean values of
the focal variable, and the time scales at which variances and
covariances are estimated (Melbourne and Chesson, 2006). This
last point is of great concern when extending the predictions of a
scale-transition model, as spatial variances and covariances are
dynamic quantities, so estimates based on a single sampling
occasion may not be adequate for long-term predictions
(Melbourne and Chesson, 2006; Englund and Leonardsson, 2008).
Our main assumptions of constant average cover of C. amentacea
and zero-sum dynamics of turf recruitment and mortality at the
island scale were reasonable for time scales of years. Furthermore,
because our hierarchical sampling design extended over several
years, we could estimate mean-variance/covariance relationships
empirically and use these relationships to find the scale-transition
terms in Eqn 7. We estimated the variance in turf cover and the
covariance with C. amentacea at the scales of plot, area and shore
for each year separately. We obtained eight data points, one for
each year, of the following quantities: mean and variance of turf
cover, mean C. amentacea cover and the covariance between turf
and canopy cover (with variances and covariances summed across
the three spatial scales examined). Ordinary least squares
regression was then applied to predict spatial variance of turfs as a
function of mean cover and spatial covariance as a function of mean
cover of both algal turfs and C. amentacea.

The new scenario used to test predictions originated from an
additional experiment in which C. amentacea was manipulated
along transects of 64 quadrats of 0.5�0.5m arranged in the
alongshore direction. The experiment started in June 2006 as part
of a larger study on the response of C. amentacea assemblages to
multiple disturbances characterized by different levels of spatial
autocorrelation. To assess the predictions of the scale-transition
model, we used a subset of available experimental treatments,
consisting of four transects marked on shores 0.1 to 10km apart
(one transect per shore). The canopy of C. amentacea was clipped
in half the quadrats along each transect once a year (at some point
between February and April) until 2010. The aim of this treatment
was to impose a spatially autocorrelated disturbance (with a known
level of autocorrelation), so each transect consisted of series of
quadrats subjected to clipping interspersed among unclipped
quadrats in the alongshore direction. The occurrence of patches of

C. amentacea with a reduced canopy among areas with fully
developed fronds is a natural, highly autocorrelated spatial pattern
on some shores (data not shown). Canopy loss may be a
consequence of senescence, heavy storms or a combination of these
events. Two of the four transects had an additional treatment,
consisting of small clearings of 5�5cm distributed randomly along
the transect. Clearings were produced by removing all attached
organisms from the substratum with a hammer and chisel.
Approximately 12% of the total area of each transect was disturbed
in this way. This treatment mimicked the effects of episodic
extreme storms, producing small gaps of cleared space within algal-
dominated assemblages. Field measurements not reported here
have shown that the spatial distribution of these gaps is nearly
random. The rationale behind these experimental treatments is not
particularly important for the purpose of testing the scale-transition
model. The key point is that these treatments (hereafter called the
transect experiment) provided a novel context in terms of mean
cover of algal turfs and C. amentacea and related spatial variances
and covariances that differed from the one used to select the growth
and competitive functions of the model.

We were interested in determining whether the scale-transition
model was able to predict the equilibrium abundance of algal turfs
when applied to the new scenario defined by the transect
experiment. Equilibrium abundance, T*, was defined as the
percentage cover that algal turfs attained when growth rate matched
the rate of competitive displacement at the island scale – i.e. when
dT/dt0. We compared the predictions of the mean field model and
the full model over the range of mean turf cover (T in Eqn 7) from
1 to 100, with the mean cover of C. amentacea set to the value
estimated at the first sampling date of the transect experiment,
which was in January 2007, 7months after the start of the
experiment. The variance and covariance terms to plug into Eqn 7
were obtained from the mean-variance/covariance relationships
described above. Predictions were compared with estimates of
mean turf cover obtained by sampling the transect experiment after
1year (short-term prediction) and 4years (long-term prediction). In
each case, the mean values of turf cover were obtained by stratified
bootstrapping of the observed data within transects, with 999
replicates. This enabled us to associate bias-corrected confidence
intervals with estimated means (Davison and Hinkley, 1997).

Results and discussion
Data from the canopy removal experiment provided very similar
support to the Gompertz and logistic models of turf growth, and
these models were favored over exponential growth, which
received little support (Table2). AICc was slightly lower for the
Gompertz model, so we selected this growth function for
subsequent analysis. SIMEX-corrected parameter estimates for the
Gompertz model were r0.148month–1 and K98.7% cover; we
used these parameters to fit the model to the experimental data
(Fig.1A).

Control data from the hierarchical sampling design provided
nearly equal support to the exponential-decay and the bump-
exponential models, whereas the linear model did not converge
(Table2). Based on AICc values, we selected the exponential-decay
function to model the rate of turf exclusion from competition with
C. amentacea (Table2). The exponential parameter was negative,
indicating that the rate of competitive exclusion decreased with
increasing cover of algal turfs. When corrected with the SIMEX
procedure, parameter estimates for the exponential model were
a0.089 (turf cover–1 C. amentacea cover–1 month–1) and
b–0.0067 (turf cover–1). We used these parameters to fit the
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exponential-decay model to control data, with growth set to the
parameters of the Gompertz model (Fig.1B).

A potential problem with the exponential-decay model for
competitive exclusion is that the model predicts a positive
exclusion rate (through parameter a) for zero turf cover, which does
not make sense. We feel that this is not a substantial problem when
using the exponential-decay model in combination with the
Gompertz growth function, which has meaning only for positive
values of turf cover. That is, the natural extension of the Gompertz
function to G(0)0 does not change the substance of the analysis,
which takes place in the range T>10.

Using data from the first four dates of the hierarchical sampling
design (from September 1999 to December 2000), we obtained an
estimate of the spatial variance of turf cover at the island scale of
879, whereas spatial covariance between turf and C. amentacea
cover was –665. Mean values of turf and C. amentacea cover were
35 and 33%, respectively. We emphasize that these estimates came
from a sampling design that included shores with fully developed
canopies and shores where canopy cover was sparse; this provided
a wide range of abundances of algal turfs and C. amentacea, which
was necessary for model parameterization. Thus, these data did not
reflect the abundance of algal turfs in the presence of fully
developed canopies of C. amentacea, but they provided our best
estimates of the mean cover of these algae at the island scale.

Applying these mean and (co)variance estimates to Eqn 7 and
combining the Gompertz model of turf growth with the exponential
function for competitive exclusion, we obtained the scale transition
for the instantaneous rate of change of turf cover (dT/dt). Although
the mean field model predicted an instantaneous rate of change of
3.03 units of percentage cover per month at the plot scale, the full

model including the scale transition terms predicted a rate of change
of 0.83 units of percentage cover per month. Thus, the interaction
between nonlinearity and spatial (co)variance reduced dT/dt at the
island scale by 73%.

The term that contributed the most to this scale transition was
SG, whereas the contribution of the term SHC was negligible
(Fig.2). This was a consequence of the strong nonlinearity in turf
growth and the large spatial variance in turf cover. Nonlinearity in
turf growth [term G�(T) in Eqn 7] was –0.0042, more than three
orders of magnitude larger in absolute value than the nonlinearity
in competitive exclusion [term H�(T) in Eqn 7], which was
3.16�10–6. The term SHC contributed 14% of the total change due
to the scale transition. This effect resulted from the product of the
first derivative of the exponential function for competitive
exclusion [term H�(T) in Eqn 7)], which was –4.7�10–4, and the
covariance between turf and C. amentacea cover.

When applied to the transect experiment scenario, the scale-
transition model displayed two non-zero equilibrium values of
mean turf cover: 12.3 and 80.8% for the mean field model at the
plot scale and 28.5 and 55% for the full model at the island scale.
Thus, the interaction between nonlinearity and spatial (co)variance
increased the lower equilibrium value of turf cover with respect to
the mean field model, while decreasing equilibrium towards the
upper end of the spectrum of mean cover values. Assuming
equilibrium, the model correctly predicted the short-term (1year)
and long-term (4years) mean values of turf cover from the transect
experiment (Fig.3). The confidence intervals of both short-term
and long-term means embraced the island-scale model, although
the mean field model was also within the confidence intervals of
the short-term mean (Fig.3). This analysis showed how the

L. Benedetti-Cecchi and others

Table2. Parameter estimates, negative log-likelihood (L) and bias-corrected Akaikeʼs information criterion (AICc) for local models of turf
growth and C. amentacea exclusion rate

Model Parameter estimates (units) L AICc

Turf growth
Gompertz K86.9 (% cover) r0.144 (month–1) 43.74 91.8
Logistic K58.9 (% cover) r0.380 (month–1) 43.76 91.9
Exponential growth r0.159 (month–1) 53.72 111.8

C. amentacea competition
Bump-exponential a7.8�10–3 (month–1C–1) b–3.7�10–2 (month–1T–1) 48.5 103.0
Exponential-decay a0.0879 (month–1T–1C–1) b–0.00765 (T–1) 48.1 102.2
Linear Convergence problems

C, percentage cover of C. amentacea; T, percentage cover of turf.
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A B Fig.1. Initial and final values of turf cover from
individual plots cleared of Cystoseira amentacea
(A) and as shore averages from the hierarchical
sampling design obtained in September 1999 and
December 2000 (B). Fitted curves are the
Gompertz model of turf growth in the absence of
C. amentacea (A) and the combination of the
Gompertz model of growth with the exponential
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presence of canopy algae (B). Error bars in B
originated from five replicate plots pooled across
two sampling areas on each shore at each
sampling date.
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interaction between nonlinearity and spatial (co)variance restricted
the range of abundances at which algal turfs displayed positive
growth rates, in addition to confirming the large impact of this
interaction on instantaneous rates of turf growth at the island scale.

It is worth noting, however, that the lower equilibrium point of
the scale-transition model was unstable (Fig.3). Hence, an
alternative interpretation for our results is that mean turf cover lies
‘on the line’ of the scale-transition model without reaching a stable
equilibrium. This possibly reflects a tension between the propensity
of algal turfs to grow in response to our experimental manipulations
(reduction of C. amentacea cover and increased availability of open
space for colonization) and the impact that the interaction between
nonlinearity and spatial (co)variance had on instantaneous rates of
turf growth. Given this tension, one may expect only small
fluctuations in turf cover through time, which will be much smaller
at the island scale compared with the plot scale.

Collectively, our results have important implications for the
ability of algal turfs to spread in the C. amentacea habitat and to
persist high on the shore at Capraia Island. Predictions from the
scale-transition model suggest that algal turfs may be near a critical
threshold of low abundance, where any further reduction in mean
cover may push dynamics towards a region of negative growth,
possibly leading to extinction from the C. amentacea habitat
(Fig.3). Our long-term observational and experimental data suggest
that this should not be the case until there are areas of shore free
of canopies that algal turfs can colonize. However, all scaling terms
operated in the direction of reducing turf growth rates, so the
compound effect of these terms makes any increase in mean cover
of algal turfs unlikely in the C. amentacea habitat.

Our analysis also disclosed a previously unrecognized
mechanism that may help explain how algal turfs respond to a
massive loss of canopy algae. Extensive belts of C. amentacea
maintained large spatial variance of turf cover by inhibiting their
recruitment and induced strong negative covariance with algal
canopies at the island scale. As we have seen, these terms interacted
with nonlinearity to depress turf growth. These interactions would
become much less important if canopy algae disappeared from
large areas because algal turfs would face a more homogeneous

environment. Hence, mitigation of spatial (co)variances may
amplify the positive effect of canopy loss on turf recruitment. This
mechanism may account for the ability of algal turfs to replace
canopy algae, a shift in dominance that seems to be triggered by
anthropogenic disturbance and to occur on many rocky shores
around the globe (Benedetti-Cecchi et al., 2001; Gorgula and
Connell, 2004; Airoldi, 2003; Mangialaio et al., 2008).

As always with models, the accuracy of predictions depends on
the validity of the underlying assumptions. We assumed constant
mean cover of C. amentacea at the island scale, an assumption
supported by our long-term observations for spring and summer
months, when canopies are fully developed. However, C.
amentacea undergoes seasonal dynamics driven by the loss of
secondary fronds after the reproductive period, which results in
reduced canopy cover in fall and early winter (L.B.-C., personal
observation). The consequences of these seasonal dynamics for
turf–canopy interactions remain unknown. It may be the case that
canopy loss increases the substratum available for turf colonization
in fall and winter, thereby contributing to the persistence of algal
turfs at the island scale. This possibility requires further
investigation.

For predictive purposes, we also assumed that mean turf cover
was at equilibrium at the island scale. This assumption depends on
whether one can consider the island as a closed system with respect
to turf reproduction and dispersal. Capraia is located approximately
17nauticalmiles from Corsica, the nearest piece of land and
approximately 18nauticalmiles from Elba, the nearest island of the
Tuscany Archipelago. Although currents can certainly link
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for scale-transition terms in Eqn 7 were obtained using mean-
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term prediction). Error bars are 95% bias-corrected confidence intervals
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(n999).
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populations of benthic organisms at these spatial scales, whether
this is the case for algal turfs depends on how long propagules and
fragments of these algae can survive in the water column. This is
currently unknown. One can assume equilibrium only if any
external input of algal turfs is negligible compared with local
reproduction and dispersal at time scales of months to years, the
temporal horizon of our predictions.

Conclusions
Our study adds to the limited, albeit growing body of empirical
evidence indicating how STT can be used to identify the relevant
mechanisms that drive large-scale changes in natural populations
(Bergström et al., 2006; Melbourne and Chesson, 2006; Englund
and Leonardsson, 2008). This approach can be extended to scale
up processes across a broad range of levels of biological and
ecological organization. Specifically, we argue that STT can
contribute significantly to the connection between biomechanics
and ecology, a synthesis that is at the core of the emerging field of
ecomechanics (Denny and Helmuth, 2009) and the central theme
of this Special Issue. For example, using mechanistic models to
describe population dynamics, such as bioenergetic models
(reviewed by Nisbet et al., 2012), it would be possible to ground
the scaling-up process into a solid understanding of the
biomechanics and physiology of individual organisms. Similarly,
one could build on mechanistic models to determine how the
biomechanics underlying competitive or consumer–resource
interactions (e.g. Baskett, 2012) translate local processes into large-
scale population dynamics.

Thus, as far as nonlinear response functions are involved, STT
can be used to scale up physiological to community-level processes
(Denny and Benedetti-Cecchi, 2012). This flexibility reflects the
generality of the key concept behind STT – the interaction between
nonlinearity and spatial (co)variance. An example of how widely
nonlinear averaging applies when modeling dynamical biological
processes is provided by the paper of Crimaldi (Crimaldi, 2012) on
gamete dispersal and aggregation in broadcast spawning.
Fertilization rates in spawning organisms depend on the
concentration of gametes released in the water column and can be
modeled as a nonlinear function of these concentrations. However,
modeling fertilization simply as a function of the mean
concentration of gametes misses the fundamental mechanism
responsible for their aggregation: the spatial correlation imposed by
fluid dynamics on sperm and eggs. To capture this effect, it is
necessary to include in the fertilization model terms that reflect
fluctuations in gamete concentrations around their mean values.
This example illustrates once again how the interaction between
nonlinearity (in instantaneous gamete concentrations) and spatial
variation (due to flow flumes in the water column) contributes to
translate local dynamics (gamete production and release) into large-
scale patterns (gamete aggregations).

Building on these general principles, STT will provide a
powerful tool to connect individual-, population- and community-
level dynamic processes across ecological scales, fostering our
understanding of natural and anthropogenically induced changes in
large-scale biodiversity.
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