Corrigendum

Biomechanics meets the ecological niche: the importance of temporal data
resolution

Michael R. Kearney, Allison Matzelle and Brian Helmuth
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There was an error published in J. Exp. Biol. 215, 922-933.

In Figs 4-6, some of the bars were incorrectly assigned as daily data instead of monthly data and vice versa. The corrected figures appear

below.
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Fig. 4. Summaries of physiological metrics from simulations at sites in Ohio (OH), Colorado (CO), Kansas (KS), Georgia (GA) and Texas (TX). All results are
for 5year simulations as depicted in Figs 1-3, and all represent the years 1973-1978, except for Ohio, which represents the years 2004-2009 (1973-1978
was not available for this site). In each plot, results are shown for simulations driven by daily data (pale-grey bars) and monthly averages (dark-grey bars)
over the 5year blocks. Results are presented for the three behavioural buffering scenarios — high (100% maximum shade, 2m maximum burrow depth), low
(50% maximum shade, 10cm burrow depth) and none (sessile, on the surface in 0% shade).



Corrigendum

Monthly data
B oy data
Heat stress . Cold stress
Georgia
800 1 A 250 4
700 -
200
600 -
500 - 150 -
400 1
100 -
300 1
200 1 50 |
100 1 I I
ot — 2 -5 . 2 & K 0,,,,,,,I,,,l I A
532538532552 55255¢ 5252253252258 2583¢2
I:E - le:E - ZIII - ZIII - ZII:E - ZIII - 2| II - ZIII - Z"I - Z“I - Z"I - =z II - Z|
T T T T T T T T T
19731978 1978-1983 1983-1988 1988-1993 1993-1998 2004-2009 1973-1978 19781983 19831988 1988-1993 19931998 2004-2009
Kansas
500 1 C 9001 D
= 450 = 800 1
2 400 1 2 ]
g & 700
3 350 4 g 600 -
£ 300 £ 500 -
250 =
» @ 400 4
g 2004 g 300
3 1501 3
200
% 100 - %
g 50 g 100 -
® 0 +— . 7] 0
-
© Sz egzegz o5 2522532 ° 52258258256z 256z8256¢82
19731978 1978-1983 19831988 1988-1993 1993-1998 1998-2003 1973-1978 19781983 19831988 1988-1993 1993-1998 1998-2003
Texas
800, E 350
700 - 300 -
600 - 250 |
500 |
200 -
400 -
150 -
300
200 100 -
100 - 50 1
0 RS NN S 0-
5%“:’5%85585%25%85%8 582582582582 58¢25%8¢
I—'ZI—lzI—‘ZI—‘ZI—'ZI—‘g Tdzzdzrzdzrzdzrzd21 42
1973-1978 1976-1983 19831988 1986 19931993—19981998 2003 19731978 19761983 1983 1988 1988—19931993—19981998—2003
Years

Fig.5. Summaries of physiological metrics (heat and cold stress events) from simulations at three sites where climate data for 30 years were available. All
results are for 5year simulations, as depicted in Figs 1-3. In each plot, results are shown for simulations driven by daily data (pale-grey bars) and monthly
averages (dark-grey bars) over different 5year blocks. Results are presented for the three behavioural buffering scenarios — high (100% maximum shade,
2m maximum burrow depth), low (50% maximum shade, 10 cm burrow depth) and none (sessile, on the surface in 0% shade).
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Fig. 6. Summaries of physiological metrics (fecundity, maximum body size and minimum reserve density) from simulations at three sites where climate data
for 30years were available. All results are for 5year simulations, as depicted in Figs 1-3. In each plot, results are shown for simulations driven by daily data
(pale-grey bars) and monthly averages (dark-gray bars) over different 5year blocks. Results are presented for the three behavioural buffering scenarios —
high (100% maximum shade, 2m maximum burrow depth), low (50% maximum shade, 10 cm burrow depth) and none (~sessile, on the surface in 0%
shade).

The authors apologise for any inconvenience that this error may have caused but assure readers that this doesn’t affect the results,
interpretations or conclusions of the paper.
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Summary
The emerging field of mechanistic niche modelling aims to link the functional traits of organisms to their environments to predict
survival, reproduction, distribution and abundance. This approach has great potential to increase our understanding of the
impacts of environmental change on individuals, populations and communities by providing functional connections between
physiological and ecological response to increasingly available spatial environmental data. By their nature, such mechanistic
models are more data intensive in comparison with the more widely applied correlative approaches but can potentially provide
more spatially and temporally explicit predictions, which are often needed by decision makers. A poorly explored issue in this
context is the appropriate level of temporal resolution of input data required for these models, and specifically the error in
predictions that can be incurred through the use of temporally averaged data. Here, we review how biomechanical principles from
heat-transfer and metabolic theory are currently being used as foundations for mechanistic niche models and consider the
consequences of different temporal resolutions of environmental data for modelling the niche of a behaviourally thermoregulating
terrestrial lizard. We show that fine-scale temporal resolution (daily) data can be crucial for unbiased inference of climatic impacts
on survival, growth and reproduction. This is especially so for species with little capacity for behavioural buffering, because of
behavioural or habitat constraints, and for detecting temporal trends. However, coarser-resolution data (long-term monthly
averages) can be appropriate for mechanistic studies of climatic constraints on distribution and abundance limits in

thermoregulating species at broad spatial scales.

Supplementary material available online at http://jeb.biologists.org/cgi/content/full/215/6/922/DC1
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Introduction: mechanistic niche models and why we need them

The niche concept captures the interaction of an organism with its
biotic and abiotic environment. Early applications of niche models
focused on biotic interactions and what they mean for population
dynamics and community structure (Macarthur and Levins, 1967,
Maguire, 1973; Roughgarden, 1972). A major focus of these kinds
of niche studies was population dynamics models that were
modified to represent the effects of inter- and intra-specific
competition on carrying capacity. The long-term potential of this
approach was criticised by Schoener (Schoener, 1986) for being too
descriptive, with its basis in ‘megaparameters’ (e.g. competition
coefficients) that could not be decomposed into processes.
Schoener (Schoener, 1986) argued that much could be gained in
ecology by following a more mechanistic path where theory and
models could be constructed on the basis of individual-level
processes — that is, those of behavioural ecology, physiological
ecology and ecomorphology, and going from such a foundation to
population- and community-level phenomena.

Other more physiologically based approaches have correlated
species-range  boundaries with large-scale environmental
parameters such as air or water temperature. For example, Hutchins
(Hutchins, 1947) compared several metrics of surface water
temperature [monthly mean, minimum monthly mean (winter),
maximum monthly mean (summer)] against the worldwide
distributions of marine organisms such as mussels and barnacles

and used these relationships to argue that physiological limitations
determined the broad geographic range-limits of these species.
Subsequently, numerous studies have correlated species-range
edges with environmental data such as air or sea-surface
temperature, often measured using remote sensing or other large
spatial-scale methods (Britton et al., 2010; Fodrie et al., 2010; Jones
et al.,, 2009; Peacock, 2011; Root, 1988). Indeed, contrary to
Schoener’s call, the field of ‘ecological niche modelling’ is now
dominated by descriptive studies of how the occurrence records of
species (presence or absence, abundance) are associated with
environmental gradients, as captured by spatial abiotic data such as
climate and terrain (Soberon, 2007). Although biotic interactions,
and the influence of abiotic parameters on these interactions, are
assumed to occur, they are almost never explicitly modelled.
Ultimately, the processes of coexistence, population growth and
geographic range limits are the outcome of different rates of birth,
death, immigration and emigration. Occurrence records reflect the
outcome of these processes, biased to varying degrees by the
observation process (Wintle et al., 2004). Such observations can be
statistically related to spatial habitat data using regression [e.g.
generalized linear models (GLMs), generalized additive models
(GAMS)] or machine-learning (e.g. Maxent) methods (Elith and
Leathwick, 2009). These ‘correlative’ models are often highly
predictive and constitute, by far, the majority of ‘ecological niche
models’ applied at present. This is in part because occurrence data
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are widely available for many taxa, as are environmental data
collected and modelled over large geographic scales, albeit at fairly
coarse spatial resolution.

However, correlative models represent the processes that affect
birth and death rates only in an implicit manner; although the
correlative modeller inevitably has underlying processes driving
observed and future patterns of distribution in mind, the parameters
of correlative models have no meaningful dimensions or
interpretation such that they could be independently observed in
nature (Dormann et al., 2012). It is also debatable whether such
models can be said to represent niches, which should ideally be
defined with respect to the environments actually experienced by
an organism rather than by static depictions of the habitats in which
they are observed (Kearney, 2006).

Such concerns are particularly relevant when making predictions
of the likely impacts of climate change, where future, novel
predictions will likely fall outside of the range of parameters that
originally trained the model (Elith et al., 2010). Moreover, many
of the initial impacts of environmental change might not simply
occur as the result of mortality and thus changes in species-range
boundaries but also might be reflected in changes in physiological
performance (e.g. Beukema et al., 2009) and the subsequent
impacts on ecological services that precede large-scale population-
or ecosystem-scale collapse (Mumby et al., 2011). Such effects can
only be predicted using approaches that are able to relate changes
in the environment to sublethal responses of organisms (Monaco
and Helmuth, 2011), including the potential for behavioural
buffering of changing climatic impacts (Bogert, 1949; Kearney et
al., 2009b; Williams et al., 2008). Thus, many of Schoener’s
arguments (Schoener, 1986) still apply, but for somewhat different
reasons. His sentiments were recently (apparently independently)
reiterated by McGill and colleagues (McGill et al., 2006), with an
appeal to develop individual-level mechanistic models of the niche
that connect to environmental gradients.

There has been a growing effort to achieve the goals to which
Schoener and McGill and associates appealed, namely to develop
mechanistic niche models that explicitly and formally capture the
processes connecting functional traits to environmental gradients and
determining their outcome for survival, growth, development,
reproduction and dispersal (Buckley, 2008; Buckley, 2010; Buckley
et al., 2010; Dunham, 1993; Kearney and Porter, 2004; Kearney and
Porter, 2006; Kearney and Porter, 2009; Kearney et al., 2010a; Porter
et al., 1973; Violle et al., 2007). Such models are attractive because
of the theoretical insight they can offer about environmental
constraints on organisms. In a more applied sense, however, they
have advantages over correlative models in forecasting the impact of
novel environmental change and predicting the outcome of habitat
or trait manipulations — for example, under altered fire regimes or
genetic manipulation (Helmuth, 2009; Helmuth et al., 2005).

The relative trade-offs between correlative and mechanistic
models have yet to be fully explored. For example, Buckley and
colleagues (Buckley et al., 2010) recently compared the ability of
correlative and mechanistic models to predict the ranges of a lizard
and a butterfly. However, they used very coarse environmental
input data, thus potentially negating any advantage of the
mechanistic approach. Few studies have compared the effect of
varying temporal resolution of forcing data on model predictions
of physiological parameters directly relevant to reproduction and
survival (Dillon et al., 2010; Savage, 2004). Thus, a key aim of the
present study is to explore further the issue of temporal data
resolution and its impact on the output of mechanistic niche models
aimed at predicting distribution and abundance.

Biomechanics meets the ecological niche 923

Integrating metabolic theory with biophysical ecology: how
mechanistic can we get?

Mechanistic niche models vary in the extent to which they combine
formalized theory and empirical description. For example, recent
attempts to predict climatic constraints on species distributions
have applied the principles of biophysical ecology to model body
temperature, water loss and metabolic heating requirements as a
function of environmental variables such as air temperature, wind
speed, humidity and radiation. These biophysical principles come
from the general theory of transport phenomena (Bird et al., 2002),
which are firmly grounded in the principles of thermodynamics.
These same models have additionally been linked to more
empirically based models of metabolism — that is, growth,
development and reproduction. For instance, Kearney and
colleagues (Kearney et al., 2010b) modelled the reproductive
potential of leaf-eating possums by combining biophysically
modelled energy (heating) and water (cooling) costs with empirical
allometric functions of maintenance metabolic costs and food
intake rates. This latter example represents an example of
phenomenological energy budgets, which are typically parameter
rich and more taxon specific in formulation.

In recent years, there has been a strong focus on the development
of mechanistic models of metabolism (van der Meer, 2000).
Dynamic energy budget (DEB) theory is particularly attractive in
the context of mechanistic niche models because it uniquely
captures the dynamics of development, growth, body condition and
reproduction as an explicit function of temperature and food intake
in a comparatively parameter-sparse manner (Kearney and Porter,
2006; Kearney et al., 2010a). The integration of DEB theory with
biophysical models of the ‘climatic niche’ provides an extremely
general approach to modelling the niche that can capture complex
environmental interactions. We refer the reader to Nisbet et al.
(Nisbet et al., 2012) for a more detailed discussion of the
differences between energy budgets derived from formal metabolic
theory versus more traditional, empirically based energy budgets.

In this study, we build on an integration of DEB theory with
biophysical principles that was developed to model variation in life
history and distribution limits in the North American lizard
Sceloporus undulatus (Kearney, 2012). We use it to consider
important issues arising from the nature and resolution of the
environmental data required to drive mechanistic niche models.
Specifically, we address the potentially important role of the
temporal resolution of input data in driving biophysical models of
body temperature, which are then used to predict patterns of
mortality, growth and reproduction. This question has significant
practical implications as environmental data are increasingly more
available to the research community, but often in summarized form:
when data are collapsed into temporal averages (e.g. monthly
means or extremes), is the variability that is removed simply ‘noise’
or does it contain information that fundamentally changes our
predictions of current, past and future responses of populations to
the physical environment (Helmuth et al., 2010)?

Data requirements of mechanistic niche models
Mechanistic niche models are highly prescriptive in their data
requirements, especially when compared with correlative models.
First, estimates of the functional traits of the study species that form
the parameters of the model must often be derived from costly
experimental or observational studies of organisms in the field or
in the laboratory. Second, the requisite environmental variables
come directly from the equations of state (i.e. the energy balance
equations), which are solved on a fixed time-step. A biophysical
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model of heat exchange, for instance, requires data on air
temperature, solar and infrared radiation, wind speed and humidity
as experienced by the organism (e.g. near to the ground). Moreover,
to capture thermoregulatory behaviour, or in environments such as
intertidal zones where environmental conditions change extremely
rapidly (e.g. Helmuth et al., 2011), these data might be required on
an hourly time-step or shorter. This inflexibility in data
requirements potentially hampers the application of mechanistic
niche models in many instances because suitable data are often
unavailable except at point locations.

As a result, mechanistic niche modellers must often resort to
simplifying assumptions and ‘workarounds’ to deal with these data-
requirement issues. For biophysical modelling of heat exchange,
many of these solutions were pioneered by Porter and colleagues
(Grant and Porter, 1992; McCullough and Porter, 1971; Porter,
1989; Porter et al., 2000; Porter and Mitchell, 2006; Porter et al.,
1973; Porter et al., 2002). For example, weather-station records of
temperature, wind speed and humidity are made 1-2m above the
ground (specifically to minimize microclimatic effects!). However,
empirically derived velocity and temperature profiles can be used
to estimate conditions experienced by organisms at different
heights above the ground (Porter et al., 1973). In addition, coarse
approximations of diurnal cycles in temperature, humidity and
wind speed can be made through sinusoidal or step-functions fitted
to daily observations of maxima and minima (Porter et al., 1973).
Finally, the homeostatic mechanisms of organisms themselves can
be modelled explicitly such that one only needs to know the
extremes of environments available in a given habitat. For example,
one could assume that an animal can and will choose any shade
level between the maximum and minimum available. Some
modellers are beginning to take advantage of reanalysed data, for
example those made available by NASA Modern Era
Retrospective-Analysis (MERRA), the North American Regional
Reanalysis (NARR) (Mesinger et al., 2006) and the FCC Integrated
Surface Hourly Database, which provide data on a 1-3h basis, but
such approaches have been used only rarely (e.g. Dillon et al., 2010;
Mislan and Wethey, 2011).

A key issue that we focus on here is the temporal resolution of
climatic data needed for mechanistic niche modelling. The field of
species distribution modelling has been revolutionized by the
availability of spatially interpolated climatic data, with global
gridded data now available for a wide range of climatic variables.
The kinds of data needed for biophysical models of the climatic
niche are available in gridded form for many parts of the world, but
mostly this consists of long-term (30 year) averages per month of
daily maximum and minimum values. Although some studies have
used high-resolution data from weather stations to examine patterns
in physiological stress at single locations (e.g. Denny et al., 2006;
Gilman et al., 2006; Helmuth et al., 2011), most mechanistic
models of species distributions have been based on long-term
average conditions (i.e. climate) rather than real weather, using a
sine wave to convert data expressed as maximum/minimum to
hourly data (Buckley, 2008; Buckley, 2010; Buckley et al., 2010;
Kearney et al., 2008; Kearney and Porter, 2004; Kearney et al.,
2009a; Kearney et al., 2009b; Kearney et al., 2010b; Natori and
Porter, 2007; Porter et al., 2002; Porter et al., 2006).

Case study: the energy budget of the lizard Sceloporus
undulatus
Study system
Sceloporus undulatus (Bosc and Daudin 1801) is a small,
insectivorous lizard broadly distributed across the USA and

Mexico. It has become a model species for studies of ectotherm
thermal biology (e.g. Angilletta, 2001; Angilletta et al., 2002), life
history (e.g. Adolph and Porter, 1993; Niewiarowski et al., 2004;
Tinkle and Dunham, 1986) and distribution constraints (Buckley,
2008; Buckley et al., 2010; Parker and Andrews, 2007).

The integrated DEB—biophysical model of S. undulatus has been
described in detail previously (Kearney, 2012). Briefly, DEB
parameters for S. undulatus were estimated using the ‘covariation
method” (Lika et al., 2011a; Lika et al., 2011b) by using the
MATLAB package ‘DEBtool’ (http://www.bio.vu.nl/thb/deb/
deblab/debtool/). In DEB theory, a distinction is made between
‘core’ parameters and ‘auxiliary’ parameters. The core DEB
parameters are intimately linked to the underlying assumptions of
DEB theory and relate directly to processes controlling state-
variable dynamics. However, the DEB parameters are not directly
observable because they relate to the abstracted state variables of
structure, reserve and maturity. Auxiliary parameters combine
with the core DEB parameters and state variables to define
mapping functions from the abstract quantities such as structural
volume to real-world observations such as wet mass. In the
covariation method, empirical observations are obtained for a
given species (entered in the ‘mydata.m’ DEBtool script), mapping
functions are specified using auxiliary theory (contained in the
‘predict.m’ DEBtool subroutine) that relates the given set of
empirical data to the DEB core parameters and state variables, and
the set of core and auxiliary parameters that best reflects the
empirical data is obtained inversely through a regression
procedure. The general idea behind the covariation method is to
let all available information compete to produce the best-fitting
parameter set, and to this end it is necessary to estimate all
parameters from all data sets simultaneously. The covariation
method applies the Nelder—Mead simplex method for estimating
parameters, using either a maximum likelihood (ML) or weighted
least squares (WLS) criterion for model fit.

A FORTRAN script implementing the DEB model was
integrated with the ‘Niche Mapper’ system for biophysical
predictions of body temperature and activity as a function of
climatic or weather data (e.g. Kearney et al., 2009b). The Niche
Mapper system calculates hourly steady-state body temperatures
(T) from actual or interpolated weather-station records given the
properties of the animal and its microhabitat. It incorporates a
microclimate model of above- and below-ground conditions
(described further below) and an animal model that solves coupled
heat- and mass-balance equations for core temperature given the
behaviour of the animal (e.g. shade seeking, burrowing, nocturnal
or diurnal), its physical properties (e.g. shape, size, solar
reflectance) and the available microclimates. The DEB script was
called every hour within the Niche Mapper system to estimate
structural volume, reserve density and reserve allocated to
reproduction, given the body temperature estimate. It then fed back
the new body size for the biophysical calculations in the next time
interval.

Weather data
We obtained near-continuous hourly-interval historical data for air
temperature, wind speed, relative humidity and cloud conditions
from 1973 to 2010 from the Hourly Surface Data and Quality
Controlled Local Climatological Data products of the National
Climatic Data Center (http://gis.ncdc.noaa.gov/maps). We
attempted to obtain these data for the weather station nearest to each
of the 11 S. undulatus life-history study sites, and at a comparable
elevation, but were only able to achieve this for five of these sites
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Table 1. Summary of weather stations used in the present study, including the years for which data were obtained and the mean
temperature of the periods used to construct Fig. 4

Station Name State Latitude Longitude Elevation Years Mean temperature (°C)
4855 Marion Municipal Ohio 40.616 —83.064 301.8 2004—-2009 10.67
23066 Grand Junction/Walk Colorado 39.134 —108.538 1474.9 1973-1978 11.73
13996 Topeka/Billard Municipal Kansas 39.073 -95.626 269.7 1973-2003 12.88
13869 Albany Municipal Georgia 31.536 -84.194 58.8 1973-1998, 2004-2009 18.84
23034 San Angelo/Mathis Texas 31.351 —100.494 576.7 1973-2003 18.94

(Table 1). For two of these sites, we had continuous data from 1973
to 2003, and, for one of the five, we had data from 1973-1998 and
then from 2004—-2009, enabling us to assess the impact of temporal
climatic variation within a site. For the other two sites, we only
considered a single 5year block of continuous climatic data.

Cloud conditions were represented in the dataset as ‘ceiling
height dimension’, which is the number of metres above ground
level to the lowest cloud with five-eighths or more summation total
(opaque) sky cover. Because we know of no empirical function to
relate cloud base height to percentage cloud cover, we converted
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Fig. 1. Results of integrated themoregulatory (Niche Mapper) and energy budget [dynamic energy budget (DEB) model] model simulations for daily body-
temperature extremes (A,B), wet body mass (C,D), body size (E,F) and body condition (reserve density) (G,H) for a site in Colorado, USA. Simulations are
driven either by monthly maximum and minimum climatic conditions averaged over the period 1973—-1978 (A,C,E,G) or daily maximum and minimum
conditions over the same time-period (B,D,F,H). Key thermal thresholds are depicted in the figures for daily body-temperature extremes (A,B). Sharp drops
in body mass represent oviposition events for wet mass plots (C,D). These simulations assumed that the animal remained fixed on the surface in full sun
throughout the simulations. Also shown are subsections of the maximum body temperature traces (I,J) that represent the regions of panels A and B
delimited by the boxes. SVL, snout-vent length.
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the hourly measures into three categories. Values for ‘unlimited’
cover (arbitrarily 22,000 m in the dataset) were treated as 0% cover,
values less than or equal to 250 m were treated as 100% cover and
all intermediate values were treated as 63% (five-eighths) cover.
Because of the patchy nature of the hourly data (frequently one or
more hours were missing for a given day), we converted the data
into daily maximum and minimum values. These data were then
used to reconstruct hourly estimates of weather conditions using
Niche Mapper, as described below.

The microclimate model
The standard configuration of the Niche Mapper microclimate
model [described in detail previously (Beckman et al., 1973;
Porter et al., 1973)] takes long-term average monthly maximum
and minimum values for air temperature, wind speed, cloud cover
and relative humidity as inputs, together with location data
(latitude, longitude), terrain (slope, aspect, elevation), shade
extremes and soil thermal properties. It then predicts
environmental conditions on the hour for the average day of each
month of a single year, calculating solar conditions for the middle
day of each month. These outputs include air temperature, wind
speed and relative humidity at the height of the animal, solar
angle, solar radiation, ‘sky temperature’ (for incoming longwave

radiation) and soil temperature profiles from the surface down to
60cm deep, at which point it is assumed that the diurnal
temperature wave is completely extinguished. Soil temperatures
are predicted through the numerical solution of a one-dimensional
partial differential equation that requires two boundary conditions
and an initial condition. The surface and 60cm deep soil
temperatures are the boundary condition for the transient soil
temperature calculations; surface temperature is calculated by
applying an energy balance equation, and 60cm deep soil is
assumed to represent the monthly mean air temperature (i.e. the
average of the daily minimum and maximum values). The
monthly cycle in soil temperatures is assumed to disappear at a
depth of 2m, where it is assumed that the temperature is equal to
the annual average. The microclimate model commences each day
with a uniform soil temperature profile equal to the monthly
average value (i.e. the initial condition) and runs three iterations
of each day to obtain a steady periodic of hourly soil temperature
change at a set of user-specified nodes (we used 0, 2.5, 5, 10, 15,
20, 30, 40, 50 and 60 cm). Output is then provided for each hour
of the average (middle) day of each month of the year for the two
extremes of shade provided as input per month.

We reconfigured the microclimate model to accept five years
of daily minimum and maximum air temperature, wind speed,
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Fig. 2. Results of integrated themoregulatory (Niche Mapper) and energy budget [dynamic energy budget (DEB) model] model simulations for daily body-
temperature extremes (A,B), wet body mass (C,D), body size (E,F) and body condition (reserve density) (G,H) for a site in Colorado, USA. Simulations are
driven either by monthly maximum and minimum climatic conditions averaged over the period 1973—-1978 (A,C,E,G) or daily maximum and minimum
conditions over the same time-period (B,D,F,H). Key thermal thresholds are depicted in the figures for daily body-temperature extremes (A,B). Sharp drops
in body mass represent oviposition events for wet mass plots (C,D). These simulations assumed that the animal had access to 0-50% shade when active

and burrowed down to 10 cm when inactive. SVL, snout-vent length.
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cloud cover and humidity and to run one iteration of each day
rather than three, with the starting soil temperature profile of a
given day equal to that of the last hour of the preceding day. We
calculated the running mean of the minimum and maximum air
temperatures for the preceding 30days (or the first 30days if
30days had not yet elapsed) and used that as the 60cm deep
boundary condition. Similarly, we calculated the running mean
of the minimum and maximum air temperatures for the preceding
365 days (or the first 365 days if 365 days had not yet elapsed) as
the 2m deep soil temperature. Output was produced for every
hour of every day over the fiveyear period for the two extremes
of shade levels.

Animal model and simulations
As with the microclimate model, the standard configuration of the
ectotherm model of Niche Mapper is to run the average day of each
month over one year. Calculations for each day are then summed
over the number of days per month to obtain monthly and yearly
totals, for example, of activity hours, water and energy
requirements. Kearney developed a DEB model subroutine for the
ectotherm model that is called every hour to estimate structural
volume, reserve density and reserve allocated to reproduction,
given the body temperature estimate and the thermal constraints of
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activity periods on feeding (Kearney, 2012). The ectotherm model
was reconfigured to repeat each simulation for the number of days
in a given month, each time calling the DEB subroutine, and
repeating this for up to 5years. For analyses based on daily weather
data in the present study, we simply adjusted the version of the
ectotherm model used by Kearney (Kearney, 2012) so that it read
in the Syears of hourly output from the modified microclimate
model described above, rather than repeatedly looping through the
average day of each month.

As mentioned above, one of the justifications for using relatively
coarse-resolution data in mechanistic niche models (e.g. 5km? grid
cells, monthly climate) is that animals behaviourally buffer
themselves through habitat selection. The capacity for such
buffering, however, depends on habitat quality — that is, the
presence of microhabitats that allow the animal to remain within a
preferred or at least nonlethal range of body temperatures. To assess
the impact of varying degrees of behavioural buffering, we ran
simulations for each site for monthly and daily data, assuming:
(a)0-100% shade available, burrows down to 2m (high-quality
habitat), (b)0-50% shade, burrows down to 10cm (poor-quality
habitat) and (c)no burrows or shade available (corresponding to a
thermoconforming animal in the open; this configuration also thus
provides a model for a sessile organism). The Niche Mapper system
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Fig. 3. Results of integrated themoregulatory (Niche Mapper) and energy budget [dynamic energy budget (DEB) model] model simulations for daily body-
temperature extremes (A,B), wet body mass (C,D), body size (E,F) and body condition (reserve density) (G,H) for a site in Colorado, USA. Simulations are
driven either by monthly maximum and minimum climatic conditions averaged over the period 1973-1978 (A,C,E,G) or daily maximum and minimum
conditions over the same time-period (B,D,F,H). Key thermal thresholds are depicted in the figures for daily body-temperature extremes (A,B). Sharp drops
in body mass represent oviposition events for wet mass plots (C,D). These simulations assumed that the animal had access to 0-100% shade when active
and burrowed down to 2m when inactive. SVL, snout-vent length.
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searched for the environment producing core temperatures closest
to the specified preferred temperature, given these constraints.
We assessed the impact of these different behavioural buffering
scenarios on five physiological metrics: (1) heat stress, when T}, was
higher than the critical thermal maximum (C7T,.x) of S. undulatus,
which ranges between 42 and 43°C (Ehrenberger, 2010) — we used
a threshold of 42°C, assuming that 1hour at this temperature is
likely to be lethal, (2)cold stress, when T;, was lower than 0°C,
which is very likely to be lethal for this species, although its critical
thermal minimum is much higher at ~10°C (Ehrenberger, 2010),
(3) fecundity, which refers to the number of clutches (of 8eggs)
produced per lifetime, (4)maximum size, which is the largest
snout—vent length (SVL) attained by the end of the Syear time-
period and (5)minimum reserve density, which reflects the lowest
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body condition level (i.e. the greatest level of starvation due to
temperature-induced inactivity) experienced across the lifetime.

Results and discussion
Figs 1-3 show output from the simulations for the Colorado site for
a Syear block of time (August 1973 to July 1978, inclusive). All
three behavioural buffering scenarios are depicted: no buffering
(thermoconformer, on the surface in the open; Fig. 1), low buffering
(low-quality habitat, 50% maximum shade, 10cm maximum
burrow depth; Fig.2) and high buffering (high-quality habitat,
100% maximum shade, 2m maximum burrow depth; Fig.3). The
equivalent figures for all other sites and time-blocks can be found
in the supplementary material Figs S1-S4. From these figures, the
substantial difference in daily core temperature variation between

Cold stress
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Fig. 4. Summaries of physiological metrics from simulations at sites in Ohio (OH), Colorado (CO), Kansas (KS), Georgia (GA) and Texas (TX). All results are
for 5year simulations as depicted in Figs 1-3, and all represent the years 1973-1978, except for Ohio, which represents the years 20042009 (1973-1978
was not available for this site). In each plot, results are shown for simulations driven by daily data (pale-grey bars) and monthly averages (dark-grey bars)
over the 5year blocks. Results are presented for the three behavioural buffering scenarios — high (100% maximum shade, 2 m maximum burrow depth), low
(50% maximum shade, 10 cm burrow depth) and none (sessile, on the surface in 0% shade).
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the monthly and daily simulations is highly evident, as is the
buffering impact on body temperature of shade selection and
burrowing underground (panels A vsB in these figures).

Fig.4 shows the summarized impacts of the different sites and
scenarios, for monthly and daily data, on the physiological metrics
of heat and cold stress events, lifetime fecundity, maximum size
and minimum reserve density. The sites are ordered from coldest
(Ohio) to warmest (Texas). Heat stress events (Fig.4A) were only
an issue for the scenario of no behavioural buffering and were
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minimal at Ohio, the coldest site. Surprisingly, heat stress events
were predicted at substantially higher frequencies from monthly
data than from daily data at all sites except Ohio. Daily data
predicted higher magnitudes in body temperature extremes,
whereas monthly data overestimated heat stress frequencies
because the average day for each month produced conditions over
the threshold we set for heat stress for the warmer months. In
contrast, the higher variance in the daily fluctuations resulted in
days with extremes much higher than this threshold but also much
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Fig. 5. Summaries of physiological metrics (heat and cold stress events) from simulations at three sites where climate data for 30 years were available. All
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lower over the same part of the season (see Fig 11,J); — that is, there
was ‘spillover’ from extreme events in the monthly averages. No
cold stress occurred under the scenario of high behavioural
buffering for any site (Fig.4B). However, cold stress event
frequencies were of similar, high frequency for the three coldest
sites for the scenarios of zero and low behavioural buffering
(Fig.4B). At the two warmest sites, cold stress events were of lower
frequency and were only detected under the daily simulations for
the scenario of low behavioural buffering.

For fecundity estimates (Fig.4C), there were no systematic
differences between daily and monthly simulations, but the
fecundity tended to increase in rank order with the temperature of
the site and was consistently lowest for the scenario of no
behavioural buffering. Ultimate size estimates were almost always
biased upwards for monthly simulations relative to daily
simulations and tended to be lower at colder sites and for the

were very similar between daily and monthly simulations (Figs 1-3,
panelsE andF, and supplementary material Figs S1-S4). Finally,
the minimum reserve density (i.e. body condition) was much
greater under daily rather than monthly simulations, owing to
periods of inactivity (and hence no feeding) being broken up more
under daily simulations (Fig.4E). This permitted animals to refill
their guts (ad libitum feeding was assumed whenever animals were
active) and hence to run down their reserves less frequently under
the daily simulations.

Recent studies have shown evident of physiological impacts of
climate warming on ectotherms (Dillon et al., 2010; Sinervo et al.,
2010). For three of our sites, Georgia, Texas and Kansas, we were
able to examine long-term (30year) trends in both body temperature
and physiological metrics (Figs5, 6). Results show statistically
significant increases in the daily minimum and maximum air
temperatures within the dataset for all three sites over the time-period

scenario of no behavioural buffering (Fig.4D). Growth trajectories considered (Table2, Fig.7), consistent with observations of
Daily data
- Monthly data
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Fig. 6. Summaries of physiological metrics (fecundity, maximum body size and minimum reserve density) from simulations at three sites where climate data
for 30 years were available. All results are for 5year simulations, as depicted in Figs 1-3. In each plot, results are shown for simulations driven by daily data
(pale-grey bars) and monthly averages (dark-gray bars) over different 5year blocks. Results are presented for the three behavioural buffering scenarios —
high (100% maximum shade, 2m maximum burrow depth), low (50% maximum shade, 10cm burrow depth) and none (~sessile, on the surface in 0%

shade).
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Table 2. Results of regressions of daily maximum (Tmax) and
minimum (Tin) temperature on time (days) across the 30years
considered in our analyses for three different sites

Site Variable N R? Slope P
Georgia Tinax 10,953 0.001575 0.288 <0.001
Tnin 10,953 0.001861 0.339 <0.001
Kansas Tinax 10,957 0.000797 0.380 0.003
Tnin 10,957 0.001417 0.475 <0.001
Texas Tinax 10,957 0.001879 0.423 <0.001
Tnin 10,957 0.000629 0.252 0.009

Note that all sites include the years 1973—1998, and Texas and Kansas
continue until 2003 and Georgia jumps to the period 2004-2009. Slopes
are reported in °C per decade.

anthropogenic warming over the same period. We thus considered
how the physiological metrics we simulated have responded to this
warming in the form of temporal shifts and how these shifts varied
with the temporal resolution of the data.

Maximum temperature
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While the general patterns in physiological response to this
warming were remarkably consistent across years for most
measures, in several cases statistically significant temporal patterns
did indeed emerge (Table 3). Importantly, predicted responses were
quite different, depending on whether daily or monthly data were
used as inputs. For example, our model predicted a statistically
significant temporal increase in fecundity at the Georgia site,
regardless of what behavioural buffering scenario was used, but
only when daily data were used as inputs. At the Kansas site, results
suggested a temporal decrease in cold stress and an increase in
energy reserves under low habitat quality scenarios, but again this
was only detectable using daily data. At the Texas site (the hottest
site), both monthly and daily data predicted a significant temporal
increase in heat stress with no buffering, but the two data sets
differed in their predictions of temporal trends in fecundity and
maximum size under the different behavioural scenarios. These
trends were all relatively minor in magnitude, with P-values not
smaller than 0.01, and we did not apply adjustments for the number
of tests. However, the point of the analysis is that temporal shifts
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Fig. 7. Temporal trends (5year running averages) in maximum (red lines) and minimum (blue lines) air temperature at the three sites for which long-term

(30years) climate data were obtained. Solid black lines are linear trend lines.

A shorter time-series is presented for Georgia in these plots because there

was a gap in data from 1998 to 2004, and hence a continuous 5year running average was not possible over the whole time-period. See Table 2 for results

of statistical analyses of temporal trends in these data.
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Table 3. Results of regression analyses of physiological metrics against year for the different sites (30 year period) and behavioural buffering
scenarios using daily or monthly data

Georgia Kansas Texas
Daily Monthly Daily Monthly Daily Monthly

No buffering

Heat stress n.s. n.s. + n.s. + +

Cold stress n.s. n.s. n.s. n.s. n.s. n.s.

Fecundity + n.s. n.s. n.s. n.s. -

Size n.s. n.s. n.s. n.s. n.s. n.s.

Reserve n.s. - n.s. n.s. n.s. n.s.
Low buffering

Heat stress n.s. X n.s. X n.s. X

Cold stress - X - X n.s. X

Fecundity + n.s. n.s. n.s. n.s. n.s.

Size + n.s. n.s. n.s. n.s. n.s.

Reserve n.s. n.s. + n.s. n.s. n.s.
High buffering

Heat stress X X X X X X

Cold stress X X X X X X

Fecundity + n.s. n.s. n.s. n.s. n.s.

Size + n.s. n.s. n.s. n.s. +

Reserve n.s. n.s. n.s. n.s. n.s. n.s.

Results are shown as either nonsignificant (P>0.05) ‘n.s.’, no data X’ (i.e. no value recorded), a significant positive relationship ‘+’ or a significant negative

relationship “—'.

in physiological outcomes under warming might be artificially
obscured or inflated if an inappropriate temporal resolution is used
(Dillon et al., 2010).

Conclusions and recommendations

Increasingly sophisticated adaptation strategies are demanding
quantitative, spatially and temporally explicit forecasts of
ecological responses to climate change along with associated
estimates of uncertainty (Williams et al., 2008). Importantly, these
responses include not only mortality and changes in range edges
but also nonlethal responses such as reduced growth and fecundity,
or any other physiological or ecological response that can result in
altered performance or the provision of ecosystem services
(Mumby et al., 2011). The combination of biophysical models with
energetics models provides a potentially powerful mechanism for
providing this much-needed information, but it is vital that we
match the scale of input data to the organism in question.

As shown here, fundamentally different results can accrue given
the temporal resolution of input data used, and this is especially
important for organisms with limited behavioural thermoregulatory
ability (such as sessile or semi-sessile organisms) or organisms
living in low-quality habitats. However, for species with significant
capacity for behavioural buffering, including access to high-quality
habitat with a suitable range of available microclimates, the impact
of temporal data resolution declines. Thus, for physiologically
based studies of coarse-scale species-distribution limits in
thermoregulating species, where the spatial resolution is coarse
enough that it likely captures some regions with suitable habitat
(sufficient shade, places to burrow), coarse (monthly long-term)
averages are likely to be sufficient (Buckley, 2008; Kearney and
Porter, 2004). Given the increasing availability of spatially explicit
data at fine temporal resolutions, however, we would recommend
that mechanistic niche models be driven by fine (daily) resolution
data wherever possible, especially when attempting to include the
impacts of biotic interactions, when competition for high-quality
habitat might play an important role in population dynamics (Huey,
1991; Huey et al., 1989).

Importantly, the use of fine-temporal-scale data unleashes the
power of DEB theory and biophysical ecology to tackle questions
operating over a diversity of different time scales, from growth to
energy reserve dynamics to habitat choice and patterns of feeding.
It also allows more detailed consideration of how the phenology of
a species responds to environmental signals on different time
scales, such as breeding events timed to temperature, day length or
rainfall. Such analyses will produce more-nuanced predictions of
the impact of environmental change on diverse organisms.
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