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Introduction
Julian Huxley’s classic inquiry into the problems of relative growth
(Huxley, 1932) introduced biologists everywhere to an engaging
theory for constant relative growth by two bodily parts and
simultaneously promoted a simple method for computing the ratio
for growth rates by the parts in question. Both the theory and the
associated computational method were based on observations that
(1) the relationship between two bodily parts often can be
approximated by a power function of the form YaXb and (2) the
aforementioned (allometric) equation can be linearized by
logarithmic transformation of the regressor and response variables
(X and Y, respectively). When Huxley plotted logarithms for X and
Y and fitted a line by eye, he was able to estimate the slope and
intercept (Huxley, 1927a; Huxley, 1927b; Huxley, 1931; Huxley,
1932), after which parameters a and b in the power function were
computed by back-transforming to the original scale. Huxley
believed that he was the first to apply this procedure (Huxley, 1924;
Huxley, 1932), but it was actually used on several earlier occasions
by investigators who were independently grappling with the
general problem of how best to quantify nonlinear scaling
relationships (see Gould, 1966; Strauss, 1993; Gayon, 2000).
However, none of the earlier workers formulated a general theory
for relative growth based on the exponent, b, in the allometric
equation (Reeve and Huxley, 1945; Strauss, 1993). Under
conditions of constant exponential growth by both bodily parts, the
exponent in the equation is equal to the ratio of their relative growth
rates (Huxley, 1932).

Huxley’s theory of constant relative growth was questioned
almost from the time his book was published (Pantin, 1932), and
the concept had lost much of its initial luster by the 1940s (Reeve
and Huxley, 1945). However, his procedure for fitting a statistical
model – the allometric method – found favor among a majority of
investigators doing research at the time (Reeve and Huxley, 1945).
The method was refined during the 1930s with the adoption of

ordinary least squares for fitting lines to log transformations (e.g.
Galtsoff, 1931; Brodie and Proctor, 1932; Feldstein and Hersh,
1935), and the method (with minor modifications) has continued to
this day to be the primary analytical procedure in the field (e.g.
Warton et al., 2006; Glazier, 2010; White, 2011). Nonetheless, the
allometric technique has recently been the target of criticism
(Packard et al., 2011). Consequently, it is enlightening to re-
examine some of Huxley’s own research using procedures that
were not available at the time of his writing.

Allometric growth in Uca pugnax
Huxley’s most important contribution to empirical science – and
the research in which he first made use of the allometric method –
was his investigation of allometric growth by the enlarged ‘crusher’
claw in males of the fiddler crab Uca pugnax (see Huxley, 1924;
Huxley, 1927a; Huxley, 1932). He collected 401 male crabs of all
sizes from a population at the Woods Hole Marine Biological
Station (Woods Hole, MA, USA) and divided the animals into 25
classes (bins) on the basis of live mass. The large chela was then
removed from each crab and weighed. Body mass was estimated
as live mass less the mass of the amputated chela. Mass of the large
chela and mass of the body thus were the two variables (Y and X,
respectively) used for his study. All values for chela mass and body
mass were averaged for each of the 25 classes, and means were
used in subsequent analyses.

Huxley suspected from the outset that the relationship between
chela mass and body mass could be described with a power function
(Fig.1), so he transformed his data and displayed the
transformations in a bivariate plot (Fig.2). The attempt at
linearization was largely successful, because the path of the
observations followed ‘a remarkably straight line’ (Huxley, 1924).
The only complication in the analysis was said to be a change in
slope of the log–log relationship at approximately 30% of
maximum mass (Huxley, 1924). The slope was estimated to be 1.62
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Summary
The allometric method, which often is attributed to Julian Huxley, entails fitting a straight line to logarithmic transformations of
the original bivariate data and then back-transforming the resulting equation to form a power function in the arithmetic scale.
Development of the technique was strongly influenced by Huxleyʼs own research on growth by the enlarged ʻcrusherʼ claw in male
fiddler crabs (Uca pugnax). Huxley reported a discontinuity in the log–log plot of chela mass vs body mass, which he interpreted
as an abrupt change in relative growth of the chela at about the time crabs attain sexual maturity. My analysis of Huxleyʼs
arithmetic data indicates, however, that the discontinuity was an artifact caused by logarithmic transformation and that dynamics
of growth by the crusher claw do not change at any point during development. Arithmetic data are well described by a power
function fitted by nonlinear regression but not by one estimated by back-transforming a line fitted to logarithms. This finding and
others like it call into question the continued reliance on the allometric method in contemporary research.
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for crabs weighing up to 0.75g in body mass and 1.255 for all larger
animals (Huxley, 1932). Huxley suggested that the putative
discontinuity marked the attainment of sexual maturity by crabs and
a shifting of nutrient resources from supporting growth by the claw
to supporting growth by the gonads (Huxley, 1924; Huxley, 1932).
This assertion has important implications for everything from
general biology to resource management (Negreiros-Fransozo et

al., 2003; Hall et al., 2006). But is the assertion correct (Clayton,
1990)?

Reconsidering allometric growth in Uca
Means for both body mass and chela mass were taken from table1
in Huxley (Huxley, 1932), converted to common logarithms and
displayed in a bivariate graph (Fig.3A). As noted already, Huxley
believed that the transformations were described best by two linear
segments, one fitted to the 15 observations for small crabs and the
other to the 10 observations for large crabs (Huxley, 1924; Huxley,
1927a; Huxley, 1932), so I also identified the putative break-point
with a bar (Fig.3A).

I then fitted several linear and nonlinear models to the
transformations (Table1). Graphical display of the linear model
(Fig.3A) and the associated residuals (Fig.3B) reveals that the
observations deviate somewhat from linearity, so it comes as no
surprise that quadratic and three-parameter nonlinear equations are
better fits to the observations than the straight line (see scores for
the PRESS statistic in Table1). Although the departure from
linearity is problematic, the quadratic and nonlinear models are
unacceptable in the context of traditional allometry because neither
of these alternatives is amenable to back-transformation to the all-
important arithmetic scale (Gould, 1966; Finney, 1989a; Finney,
1989b). The objective of the exercise, after all, is to fit a power
function to the original observations (Huxley, 1924; Huxley, 1932),
and this cannot be accomplished using the more complex quadratic
and nonlinear equations (Table1). Thus, the linear model, which
can be re-expressed in the arithmetic domain, is better than the
alternatives despite its imperfect behavior.

I next displayed untransformed data in a bivariate graph
(Fig.4A) and fitted two- and three-parameter power functions by
nonlinear regression (Kutner et al., 2004). The models were fitted
by the Marquardt–Levenberg procedure in SigmaPlot 10
(Marquardt, 1963). Both the fitted lines are visibly good fits to the
data (Fig.4A), and both the analyses satisfied assumptions for
normality and constancy of variances (Table2). However, PRESS
scores indicate that the three-parameter function is a better fit to the
observations than the two-parameter model (Table2). Moreover,
standardized residuals from the three-parameter analysis are
appropriately balanced (Fig.4B) whereas those from the two-
parameter function are not (Fig.4C). In neither case, however, do
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Fig.1. Mass (left ordinate) and relative
mass (right ordinate) of the enlarged
claw from male Uca pugnax are plotted
against body mass in this re-lettered
fig. 2 from Huxleyʼs book (Huxley,
1932). The upward trajectory for
absolute mass (ʻweightʼ) of the large
chela apparently confirmed Huxleyʼs
expectation that his data would follow a
power function.
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Fig.2. Logarithmic transformations for chela mass in Uca pugnax are
plotted against logarithmic transformations for body mass in this re-lettered
fig. 3 from Huxleyʼs book (Huxley, 1932). Huxley did not include a graph of
transformed data in his original report (Huxley, 1924), but this graph
appeared in later summaries (Huxley, 1927a; Huxley, 1932). Note that the
graph had a relatively tall, narrow format that may have drawn undue
attention to the putative change in slope (identified by a bar) between
samples 15 and 16.
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residuals assume the megaphone shape that would result from
multiplicative error (Kutner et al., 2004).

In contrast, the equation estimated by back-transforming the
linear model fitted to logarithms tracks observations for crabs of

small and intermediate size but deviates appreciably from the
path of the data at the upper end of the size distribution (Fig.4A).
The poor performance by this equation is reflected in the plot of
raw residuals, which first follow an upward trajectory and then
plunge downward as predictions depart more and more from
observations (Fig.4D). These residuals are neither random
(indicative of additive error) nor in the form of a megaphone
(indicative of multiplicative error); they confirm, however, the
inadequacy of the fitted model.

Discussion
Huxley believed that a break-point in his double-logarithmic plot
identified a point in time when the relationship between growth by
the large chela and growth by the body changed abruptly. In his
view, the attainment of reproductive maturity meant that some
nutrients previously allocated to growth by the large chela were
being diverted to the gonads, so that instantaneous growth by the
chela was diminished as the animal grew larger. A more likely
interpretation, however, is that Huxley was simply misled by
logarithmic transformations that created the illusion of a break-
point, coupled with his use of a graphical format that exaggerated
the appearance of the putative change in slope (Fig.2). Power
functions fitted to his original data by nonlinear regression indicate
that growth by the claw maintains the same relationship to growth
in body mass over the entire range for data in the sample (Fig.4A).

Consequently, a single straight line fitted to logarithms is
better than two lines fitted to limited parts of the distribution, but
the power function estimated by back-transformation fails the
test of validation in the original scale (see Yates, 1950;
Anscombe, 1973; Finney, 1989a; Cox et al., 2008). The re-
expressed equation is an acceptable fit to data for crabs of small
and intermediate size, but the model is a poor fit to data for the
largest animals in the sample (Fig.4A). The power function fitted
by the allometric method consequently fails to yield an accurate
view of growth by the large chela in fiddler crabs. In other words,
the procedure promoted by Huxley actually worked poorly with
his own data!

Why do functions fitted directly to arithmetic values by
nonlinear regression perform well whereas the one fitted by back-
transformation performs poorly? Jerrold Zar provided the answer
more than 40 years ago (Zar, 1968), but his explanation was not
fully understood at the time and consequently has gone largely
unappreciated by several generations of biologists. To paraphrase
Zar, the aforementioned difference between statistical models can
be traced directly to the logarithmic transformation, which elicited
a fundamental change in the distribution for the observations (see
Emerson and Stoto, 1983). When a linear model is fitted to
transformations, the equation describes the distribution for
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Fig.3. (A)Linear and quadratic equations were fitted to logarithmic
transformations for chela mass and body mass of Uca pugnax (Table1).
The bar between observations 15 and 16 marks the break-point identified
by Huxley (Huxley, 1924; Huxley, 1927a; Huxley, 1932). (B)The parabolic
pattern manifested by standardized residuals from the linear regression
confirms that transformation failed to linearize the observations.

Table 1. Diagnostics for statistical models fitted by SigmaPlot 10 to logarithmic transformations of chela mass vs body mass in fiddler crabs

P

Predictive equation Adjusted R2 PRESS Normality test Constant variance test

Linear: logY=–1.957+1.542(logX) 0.997 0.036 0.866 0.884
Quadratic: logY=–2.920+2.309(logX)–0.148(logX)2 0.999 0.018 0.955 0.021
Two-parameter nonlinear: logY=0.314(logX)1.942 0.983 0.224 0.800 0.340
Three-parameter nonlinear: logY=–5.111+4.240(logX)0.553 0.999 0.022 0.912 0.067

The adjusted R2 takes into account the number of parameters in the model. The smallest value for the predicted residual error sum of squares (PRESS) identifies
the best statistical model (Kutner et al., 2004). The two-parameter nonlinear model is a poor fit because it was constrained to pass through the origin. A
generalized linear model also was fitted (SAS 9.2) to obtain an equation that predicts arithmetic means instead of geometric means in the arithmetic domain
(Cox et al., 2008), but the resulting equation, logY=–1.958+1.543(logX), is virtually indistinguishable from the linear model fitted by ordinary least squares. Tests
for constancy of variance raise concerns about the reliability of significance tests for parameters in the quadratic and three-parameter nonlinear models.
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observations in log space. But when that linear equation is
subsequently re-expressed in arithmetic space, the resulting power
function does not describe the arithmetic distribution; the re-
expressed model is simply a mathematically equivalent descriptor
for the log distribution (see Packard et al., 2010; Packard et al.,
2011; Packard, 2011). Thus, unbeknownst to Huxley, the allometric
method actually was not a good way to fit a statistical model to data
in arithmetic space.

Nevertheless, back-transforming from a linear equation fitted to
logarithmic transformations was the only method available in
Huxley’s time for ‘fitting’ a power function to nonlinear data (see
Snedecor, 1937). Indeed, the absence of an alternative procedure for
fitting power functions may explain why Huxley did not attempt to
fit three-parameter equations to any of the data available to him: he

clearly believed that the three-parameter function is most inclusive
and that it should be taken as the starting point in allometric analyses
[p. 241 of Huxley (Huxley, 1932)]. Huxley seems simply to have
done his best with the tools that were available to him.

Today, however, investigators have ready access to statistical
software for fitting nonlinear models directly to arithmetic data
(e.g. Motulsky and Christopoulos, 2004; Ritz and Streibig,
2008), so there is no need to resort to the indirect procedure that
was so important to Huxley. There is danger, of course, in the
uncritical application of nonlinear regression in allometric
research. For this reason, nonlinear regression should be
performed only after data have been submitted to exploratory
analysis to determine general properties of the arithmetic
distribution (Behrens, 1997; Zuur et al., 2010). Moreover, future
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Fig.4. (A)Two- and three-parameter power
functions were fitted to untransformed data
for chela mass and body mass of Uca
pugnax by nonlinear regression (Table2).
Both functions are visibly good fits, but
PRESS scores indicate that the three-
parameter model is better than the two-
parameter model for describing the
observations (Table2). The equation
estimated by back-transforming from
logarithms, Y0.011X1.542, is a poor fit to
the largest crabs in the sample.
(B)Standardized residuals from the three-
parameter nonlinear regression reveal a
generally satisfactory distribution, and
none of the residuals is so extreme as to
be an outlier. (C)Standardized residuals
from the two-parameter nonlinear
regression reveal uniformly negative
values for small claws. The two-parameter
model suffered from the requirement that it
pass through the origin (Table2). (D)Raw
residuals from the equation estimated by
back-transformation exhibit an inexplicable
pattern. Raw residuals are presented
instead of standardized residuals because
the standard error of the estimate for the
fitted model was inflated by constraining
parameters to a0.011 and b1.542.

Table2. Diagnostics for nonlinear models fitted by SigmaPlot 10 to arithmetic values for chela mass vs body mass in fiddler crabs

P

Predictive equation Adjusted R2 PRESS Normality test Constant variance test

Two-parameter nonlinear: Y0.044X1.343 0.998 5507 0.090 0.795
Three-parameter nonlinear: Y–19.695+0.067X1.288 0.999 4934 0.924 0.274

The adjusted R2 takes into account the number of parameters in the model. The smaller value for PRESS identifies the better statistical model (Kutner et al.,
2004). The intercept for the three-parameter model differs significantly from zero (P0.002).
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investigations should unfailingly include a graphical display of
the fitted model in the arithmetic domain to ensure reliability of
the final product (Snee, 1977; Ritz and Streibig, 2008; Zuur et
al., 2010).
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