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INTRODUCTION
Lipids in the form of triglycerides, which are stored in the diffuse
fat body, are the main energy reserves in most insects (Arrese and
Soulages, 2010). These reserves are crucial for processes such as
insect flight (Nespolo et al., 2008; Williams and Robertson, 2008)
or the survival success of overwintering insects (Hahn and
Denlinger, 2011). Lipid reserves are regularly used as fitness
parameters for animals (Anderbrant and Schlyter, 1989; May, 1992;
Peig and Green, 2009). Classic lipid measurement methods such as
chromatography and vanillin or ferric perchlorate assays require
chemical extraction and thus the killing of animals (Williams and
Robertson, 2008). This fact disables researchers to test fluctuations
in the amount of lipid(s) in the same individuals with changing
conditions over time. For this purpose, only indirect measures such
as correlations with body mass adjusted for size or measuring
reference individuals from the same population remain. These
indirect methods are much more inaccurate and in many cases may
be inappropriate (Green, 2001; Peig and Green, 2010).

In recent years, zoology has adopted non-invasive methods widely
used in human medicine. Anatomy of fossil amber arthropods was
reconstructed and visualized using computed tomography (Dunlop
et al., 2011; Pohl et al., 2010), morphology of an octopus was studied
using ultrasound (Margheri et al., 2011) and quantitative nuclear
magnetic resonance (NMR) was used to quantitatively measure the
body composition of small rodents (Nixon et al., 2010; Tinsley et

al., 2004). NMR is a non-destructive and non-invasive technique
used to analyse and study the internal morphology of living
specimens (Callaghan, 1992). In every living animal, there are many
water protons whose NMR-specific parameters, such as the proton
spin density, chemical shift, and T1 and T2 relaxation times, can
be spatially resolved by magnetic resonance imaging (MRI) (Kuhn,
1990). With the advent of high magnetic field strengths and strong
magnetic gradients, spatial resolution of up to one micrometer
resolution is achievable (Lee et al., 2001). The first NMR microscopy
images were obtained by Aguayo et al. in 1986, when they studied
ova from the toad Xenopus laevis (Aguayo et al., 1986). Since then,
a new dimension of investigating animals opened up and many
different species have been characterized by NMR microscopy: e.g.
the development of a locust embryo (Gassner and Lohman, 1987),
pH metabolism of living insects (Skibbe et al., 1995), development
and metamorphosis of lepidopteran pupae (Behr et al., 2011;
Goodman et al., 1995), metamorphosis of the silkworm (Mapelli et
al., 1997) and the morphology of diving beetles (Wecker et al., 2002)
and bees (Haddad et al., 2004; Tomanek et al., 1996). However,
because of the high cost of MRI machines, only few zoological
studies have been performed. Given its unique properties, ‘MRI
could in fact be used more widely in zoology’ (Ziegler et al., 2011).

In this study we used one of the main features of NMR, namely,
that different chemical environments can be separated due to their
different chemical shift. As model organism we chose the
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European spruce bark beetle, Ips typographus L. (Coleoptera:
Curculionidae: Scolytinae). This beetle is 4 to 6mm long and has
a fresh mass of 10 to 14mg. We show that NMR microscopy can
be used to quantify and visualize fat and water distribution in
small living insects.

MATERIALS AND METHODS
Animal handling

Freshly emerged I. typographus individuals of approximately 5mm
length and 2mm width were investigated. Beetles originated from
the 29th generation of a laboratory rearing. To immobilize beetles,
they were cooled to approximately 2°C prior to the experiments.
Before transferring the beetles to the NMR microimaging system
they were fixed mechanically in their position in a 5mm Shigemi
tube (Shigemi, Allison Park, PA, USA) by glass rods from the top
and the bottom. Temperature inside the tube containing the beetle
was adjusted to 2°C with a constant nitrogen flow around the glass
tube. NMR spectral signal intensities of fat and water of 10 different
beetles were correlated to water and lipid amount obtained by
conventional measurements (see below).

In addition to NMR spectroscopy, two beetles were examined
by NMR microscopy before and after tethered flight. Cooled beetles
were warmed up to room temperature after their initial NMR
measurement and attached to flight mills for approximately 20h.
Flight mills consisted of a vertical pivot with a rotary arm attached
perpendicularly to it. The pivot consisted of a glass microcapillary.
To minimize friction, we attached the tips of insect needles to each

end of the capillary. The rotary arm was made of a gas
chromatography column and its radius was 10.5cm. Hence, one
rotation of the arm corresponded to a flight distance of 0.66m. Each
full rotation of the arm triggered a photo sensor and was recorded
using DIAdem version 10.0 (National Instruments, Austin, TX,
USA, 2005).

NMR methods
The beetles were analyzed in a 14.1T NMR microscopy system
(BrukerBioSpin, Rheinstetten, Germany) with gradient strengths up
to 3Tm–1. Magnetic field inhomogeneity was improved by manual
shimming up to second order. One-dimensional (1-D) proton spectra
of the whole insect without any spatial encoding were acquired with
a standard pulse-acquire NMR experiment within 16 averages and
a repetition time of 4s.

In addition to spectroscopy, multi-slice spin echo images with
an in-plane resolution of 31�31m and a slice thickness of 150m
were acquired. The repetition time was set to TR1000ms, the echo
time was set to TE9.4ms, we used a field-of-view (FOV) of
0.8�0.8cm, the matrix had a size of 256�256 and the overall
acquisition time was tacq4min 16s. Optionally, fat saturation using
a 90deg Gaussian pulse at 4.0p.p.m. offset with respect to the proton
resonance (bandwidth3.5p.p.m.) was performed before image
acquisition. Transverse magnetization was dephased by a spoiler
gradient. Before and after flight of the beetles, images with and
without fat saturation were taken. Then, the difference of the two
pictures yielded the fat distribution. Maps of fat distribution were
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Fig.1. (A)Maximum-intensity projection of all slices of the bark
beetle Ips typographus. (B)Orientation of the reconstructed oblique
coronal slices. (C)Oblique coronal slices. Several internal structures
and organs can be identified: mouthparts, testicles, mid-gut, wing
and leg muscles, and legs.
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calculated with ImageJ (Abràmoff et al., 2004). The acquisition time
for the two images was 8min 32s. To identify the spatial distribution
of fat more clearly, pictures with a transparent-zero projection
(Abràmoff et al., 2004) were produced.

High-resolution three-dimensional imaging with an in-plane
resolution of 12�12m and a slice thickness of 120m of the bark

beetles was performed to study the insects’ morphology. The
repetition time was set to TR1000ms, the echo time was set to
TE7.3ms, we used an FOV of 0.6�0.6cm, the matrix had a size
of 512�512 and the overall acquisition time was tacq7h 7min.

Conventional water and lipid measurements
We determined the water content of the beetles by calculating the
difference between their fresh and dry mass. Therefore, beetles were
dried at 60°C for 24h.

For conventional destructive fat measurement, beetles were
killed in a freezer at –20°C. They were then cut into three pieces,
making incisions between the head and the thorax and between the
thorax and the abdomen. Fatty acid esters were extracted from the
dissected beetles three times in 1ml chloroform at 30°C in an
ultrasonic bath. The chloroform samples were dried overnight at
65°C. Fat reserves were measured photometrically as fatty acid ester
equivalents based on the method of Snyder and Stephens (Snyder
and Stephens, 1959), modified after Krauße-Opatz et al. (Krauße-
Opatz et al., 1995). This measurement is based on a
hydroxylaminolysis, in which an ester group forms a hydroxamic
acid when reacting with alkaline hydroxylamine. After addition of
acid ferric perchlorate, the hydroxamic acid forms a purple
iron–chelate complex. This can be measured photometrically at
530nm. A standard calibration curve for fatty acid esters was
calculated based on 10 samples of methyl oleate (Sigma-Aldrich,
St Louis, MO, USA) dissolved in chloroform in concentrations
between 0.5 and 5.0mol in 0.5mol steps (Pearson’s product-
moment correlation: R2>0.99, t41.50, d.f.8, P<0.0001, N10).

RESULTS AND DISCUSSION
Anatomy

Using high-resolution spin-echo imaging, the anatomy of living
spruce bark beetle individuals was analyzed. In the acquired oblique
coronal slices through the beetle’s body, the different body segments
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Fig.2. (A)Proton nuclear magnetic resonance (NMR) spectra of five bark
beetles (indicated by different colors) showing a clear separation between
the fat peak (0p.p.m.) and the water peak (4.7p.p.m.). The spectra were
acquired using a conventional pulse-acquire 1-D NMR experiment with 16
scans. (B)Correlation between NMR and conventional water measurement,
R2>0.99. (C)Correlation between NMR and conventional fat measurement,
R2>0.99.
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Fig.3. (A)Oblique sagittal slices of fat distribution
(darker color resembles lower fat amount and brighter
color resembles higher fat amount) and proton density
(grey tones) before flight in Ips typographus. (B)Oblique
sagittal slices after flight. (C)NMR spectrum before
flight. (D)NMR spectrum after flight. The purple arrows
indicate the fat saturation pulse used to obtain spectral
information in the images. Quantitative analysis is
shown in Table1 (beetle no. 1).
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such as the head including mouthparts, legs and wings and their
respective muscles and intestinal (Baker and Estrin, 1974; Díaz et
al., 2003) and genital organs (Calder, 1990) have been identified
(Fig.1, see also supplementary material Movie1). Susceptibility
artifacts were greatly reduced by using Shigemi tubes. In addition,
the Shigemi tube allowed us to fix the beetle in position and eliminate
movement artifacts caused by gradient vibrations. Cooling beetles
to 2°C erased all motion artifacts during the measurement without
harming them.

Spectroscopy
Fat and water content of living bark beetles were investigated by
conventional NMR techniques. 1H-NMR spectra of bark beetles
showed a clear chemical shift separation between fat (4.7p.p.m.)
and water (0p.p.m.), which arises from the different electronic
environment of fat and water protons (Fig.2A). The NMR peak
integrals of fat and water of 10 beetles significantly correlated with
the data obtained by the destructive standard detection method
(Pearson’s product-moment correlation: water, R2>0.99, t66.04,
d.f.8, P<0.0001, N10; fat, R2>0.99, t19.99, d.f.8, P<0.0001,
N10; Fig.2B,C). Such a set of independent measurements can serve
as a calibration of NMR integrals on every NMR spectrometer,
relating the dimensionless NMR peak integrals to absolute standard
units of fat (nmol) and water (mg) content.

Fat and water content of small insects can therefore be
quantitatively analyzed by NMR. In contrast to traditional methods,
this technique opens up the possibility to measure one specimen
repeatedly, which we demonstrated by determining fat content of
two bark beetles before and after tethered flight (Fig.3C,D,
supplementary material Fig.S1C,D).

Relative fat distribution
To image the relative spatial distribution of fat in bark beetles, fat
saturation was performed before a spin-echo imaging sequence. An
image overlay of anatomy images (grey) with the corresponding
areas of relative fat distribution (purple) shows where the bark
beetles store their energy reserves and where they are used up after
flight (Fig.3A,B, supplementary material Fig.S1A,B). In contrast
to standard spectroscopic 1-D methods, signal intensity was not
correlated to standard units of fat and water because signal intensities
are more prone to errors. Therefore we obtained a relative spatial
fat distribution. In addition, absolute quantification of fat and water
content, as well as fat and water consumption, was performed by
acquiring a standard 1-D proton NMR spectrum (Table1, Fig.3C,D;
see NMR methods).

We identified one major fat reservoir in the abdomen of the beetle,
most likely the diffuse fat body, and one in the center of the body.

Spatial information of the bark beetles has been combined with
spectral information, which we can gain because of the spectral
separation of fat and water signals. Within 8min 32s, two high-
resolution images can be acquired, allowing identification of the
relative fat distribution within the beetle with regard to its
internal morphology before and after flight. This method non-

invasively images and, in combination with spectroscopic
techniques, quantifies spatial fat consumption in certain areas of
interest in a specimen.

Conclusions
Here we demonstrated the potential of NMR microscopy in zoology
and especially entomology to follow fat distribution across whole
insects and fat consumption in different organs of interest as a
function of external parameters over time. It was possible to
quantify lipid reserves of living insects giving a direct measure of
total stored energy. The method allows monitoring dynamic
processes of lipid consumption non-invasively, as we have shown
for the energy consumption of bark beetles before and after flight.
This study is exemplary for any other non-invasive investigation in
zoology and especially entomology, where energy consumption and
its spatial distribution in living species are of interest.
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