2935

The Journal of Experimental Biology 215, 2935-2944
© 2012. Published by The Company of Biologists Ltd
doi:10.1242/jeb.073171

REVIEW
Evolution of high duty cycle echolocation in bats

M. Brock Fenton'*, Paul A. Faure? and John M. Ratcliffe®

"Department of Biology, Western University, London, ON, Canada N6A 5B7, 2Department of Psychology, Neuroscience &
Behaviour, McMaster University, Hamilton, ON, Canada L8S 4K1 and 3Institute of Biology, University of Southern Denmark,
5230 Odense M, Denmark

*Author for correspondence (bfenton@uwo.ca)

Summary
Duty cycle describes the relative ‘on time’ of a periodic signal. In bats, we argue that high duty cycle (HDC) echolocation was
selected for and evolved from low duty cycle (LDC) echolocation because increasing call duty cycle enhanced the ability of
echolocating bats to detect, lock onto and track fluttering insects. Most echolocators (most bats and all birds and odontocete
cetaceans) use LDC echolocation, separating pulse and echo in time to avoid forward masking. They emit short duration,
broadband, downward frequency modulated (FM) signals separated by relatively long periods of silence. In contrast, bats using
HDC echolocation emit long duration, narrowband calls dominated by a single constant frequency (CF) separated by relatively
short periods of silence. HDC bats separate pulse and echo in frequency by exploiting information contained in Doppler-shifted
echoes arising from their movements relative to background objects and their prey. HDC echolocators are particularly sensitive
to amplitude and frequency glints generated by the wings of fluttering insects. We hypothesize that narrowband/CF calls
produced at high duty cycle, and combined with neurobiological specializations for processing Doppler-shifted echoes, were
essential to the evolution of HDC echolocation because they allowed bats to detect, lock onto and track fluttering targets. This
advantage was especially important in habitats with dense vegetation that produce overlapping, time-smeared echoes (i.e.

background acoustic clutter). We make four specific, testable predictions arising from this hypothesis.
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Introduction

Echolocation is an active sensory system that tightly couples signal
production with echo reception. Echolocation has evolved
independently in two orders of birds (Caprimulgiformes and
Apodiformes) and four orders of mammals [Cetartiodactyla,
Chiroptera, Eulipotyphla (Buchler, 1976); and Afrosoricida
(Gould, 1965; Thomas et al., 2002)]. The ability to echolocate
allows animals to orient in their environment (all echolocators) and
detect prey (odontocete whales and laryngeally echolocating bats)
in total darkness and other conditions of uncertain lighting (Griffin,
1944; Griffin, 1958). Using differences between pulse and echo,
echolocators collect information and form an acoustic image of the
environment.

Echolocation works best when the loud outgoing vocalizations
do not mask or reduce the listener’s sensitivity to the weaker
returning echoes (Jen and Suga, 1976; Suga and Schlegel, 1972;
Fenton et al., 1995). Most echolocators avoid forward masking
effects by separating pulse and echo in time; however, ~160 species
of bats in the families Rhinolophidae and Hipposideridae and the
mormoopid Pteronotus parnellii separate pulse and echo
information in frequency. These different calling strategies
correspond to low (LDC) and high duty cycle (HDC) echolocation,
respectively.

The duty cycle (DC) of a periodic sound is the ratio of signal
duration to signal period (DC=d/T). Animals alter the duty cycle of
their signals by changing their call duration (d, the time between
the onset and offset of a sound) and/or period (7, the time between

the onset of successive sounds). Duty cycle describes the ‘on time’
of a sound relative to the interval of silence between sounds and is
a measure of signalling effort.

Fig.1 shows oscillograms and spectrograms of typical search
phase echolocation calls to illustrate the difference in the temporal
patterns of call emission for representative LDC and HDC species.
Included are two Old World HDC bats (Rhinolophus hipposideros,
Hipposideros armiger) and the one New World HDC bat (P.
parnellii). Call duty cycle differs dramatically between the bats in
these groups, ranging from 6.1% to 9.2% for the three LDC
echolocators and from 34.7% to 56.3% for the three HDC
echolocators (data in Tablel). Fig.2 shows oscillograms,
spectrograms and power spectra of single search phase
echolocations calls from the temporal sequences in Fig.1 to
illustrate why signal duration, call structure (frequency modulated
FM versus constant frequency CF) and/or signal bandwidth alone
do not uniquely identify LDC from HDC echolocators. We include
both spectrograms and oscillograms because the former usefully
illustrate call frequency structure and the latter call duration.

LDC and HDC echolocation differ in a number of respects. Most
bat species use an LDC calling strategy and avoid forward masking
under most natural conditions (Kalko and Schnitzler, 1989). LDC
bats typically do not broadcast calls and receive echoes
concurrently. Rather, they produce a call and then listen for audible
echoes before emitting another call (Holderied and von Helversen,
2003; Holderied et al., 2005). The outgoing calls of LDC
echolocators are short in duration (typically 1-20ms) and are
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separated by long intervals of silence (Fig. | A—C). For the purpose
of this paper, we define LDC bats as those producing signals with
a duration <25% of their signal period during the search phase of
echolocation. Most LDC bats produce echolocation calls with their
larynx, although a handful of species in the family Pteropodidae
use tongue clicks (Griffin et al., 1958; Yovel et al., 2010).

HDC bats avoid auditory masking by separating pulse and echo
in frequency, allowing them to broadcast calls and receive echoes
at the same time (Schuller, 1974; Schuller, 1977). HDC bats take
advantage of information contained in Doppler-shifted echoes
generated by the relative movements of bat and target, including
acoustic glints generated by the wingbeats of fluttering insects.
Echolocation calls of HDC bats consist of a long CF component
followed by a brief, downward FM sweep. In some species, the
initial portion of the call also contains a short, upward FM sweep
(Henson et al., 1987; Jones and Rayner, 1989). Narrowband calls
of HDC bats are typically multi-harmonic with the highest signal
energy in the second acoustic element (Pye and Roberts, 1970;

Time (ms)

Schnitzler and Denzinger, 2011). HDC bats emit long duration calls
(e.g. 10 to >50ms) relative to their call period (Fig. ID-F). We
operationally define HDC bats as those whose signal durations are
>25% of their call periods during the search phase of echolocation.
There are ~160 species of HDC echolocators, most of which are in
the Old World families Rhinolophidae and Hipposideridae, and one
species (P. parnellii) in the New Word family Mormoopidae.
Rhinolophids appear to be the most neurobiologically specialized
HDC echolocators and hipposiderids the least specialized, with P.
parnellii falling in between (Neuweiler, 1990). All HDC bats are
laryngeal echolocators. Old World HDC echolocators typically
emit sounds through their nostrils, whereas P. parnellii emits
sounds through its mouth (Schnitzler and Denzinger, 2011). Both
LDC and HDC species exhibit echo intensity compensation; that
is, bats decrease the sound pressure level (SPL) of vocalizations to
compensate for the increase in echo amplitude received during the
approach to a target (Kick and Simmons, 1984; Kobler et al., 1985;
Hiryu et al., 2008).
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Aerial-hawking bats searching for flying insects emit a sequence
of calls in which pulse duration decreases and the pulse repetition
rate and duty cycle increase from the search to the approach to the
terminal phases of hunting (Griffin et al., 1960; Simmons et al.,
1979; Kalko et al., 1998). During feeding buzzes, LDC bats
actively control the bandwidth and focus of their echolocation beam
(Surlykke et al., 2009; Jakobsen and Surlykke, 2010). Furthermore,
superfast muscles in the larynx are vital to the production of rapid
call sequences during feeding buzzes (Elemans et al., 2011). While
it is assumed that HDC echolocators also possess superfast
laryngeal muscles (Elemans et al., 2011), it is unknown whether
they also control their sonar beam width.

Here, we compare HDC and LDC bats and develop a hypothesis
about the origin and evolution of HDC echolocation. We argue that
the combination of acoustic and neurobiological specializations
that evolved with HDC echolocation improved the ability of bats
to detect, lock onto and track fluttering prey. We are not the first
students to have arrived at this hypothesis for the evolution of HDC
echolocation but, to the best of our knowledge, we are the first to
make it explicit and provide a framework of testable predictions.

HDC echolocation

HDC bats have a unique combination of four features. First, they
emit echolocation calls with long durations relative to their signal
period. Second, the peak call energy is concentrated into a narrow
spectral band dominated by a CF component (Neuweiler, 1990;
Jones, 1999). Third, the peripheral auditory system of HDC bats
contains anatomical modifications in the cochlea and an
overrepresentation of afferent neurons each tuned to a narrow
frequency range centred on and slightly above the second harmonic
of the CF echolocation call component (Pollak et al., 1972; Suga
et al., 1976). This ‘auditory fovea’ results from mechanical
specializations of the basilar membrane of the cochlea and a
disproportionate representation of sharply tuned neurons at all
levels of the central auditory system (Suga and Jen, 1976; Schuller
and Pollack, 1979; Riibsamen et al., 1988; Pollak and Casseday,
1989; Ostwald, 1984; Neuweiler, 1990). Fourth, HDC bats exhibit
Doppler shift compensation, which involves lowering the
frequency of the next outgoing echolocation call to compensate for
the flight-induced Doppler-shifted increase in frequency of the
previous call’s echo (Schnitzler, 1973; Jen and Kamada, 1982).
Details of this behaviour have been documented extensively in
laboratory studies with both stationary and moving bats (e.g. free-
flying bats recorded with stationary microphones or from bats
placed at the end of a moving pendulum). A few studies have also
managed to record outgoing biosonar vocalizations and the
Doppler-shifted echoes that return to a flying bat by attaching a
small microphone and radio transmitter to the head of the animal
(Henson et al., 1987; Hiryu et al., 2005; Hiryu et al., 2008).
Regardless of the technique, these studies confirm that flying bats
adjust the frequency of their sonar emissions to correct for flight-
induced Doppler-shifted echoes. Doppler shift compensation
ensures the narrowband/CF echo remains centred on the auditory
fovea (Schuller and Pollack, 1979; Schnitzler, 1970). Among HDC
echolocators, hipposiderids perform less well at Doppler shift
compensation than rhinolophids and P. parnellii (Habersetzer et al.,
1984; Gaioni et al., 1990), perhaps because of the more broadly
tuned auditory fovea in the hipposiderids (Schuller, 1980;
Habersetzer et al., 1984; Moss and Schnitzler, 1995; Schnitzler and
Denzinger, 2011).

The ability to extract information from Doppler-shifted echoes
of fluttering insects allowed HDC bats to detect and continuously
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Table 1. Call duration, period and duty cycle in larygneally
echolocating bats

Family/Species d(ms) T(ms) DC (%) Strategy
Suborder Yinpterochiroptera
Rhinopomatidae
Rhinopoma hardwickei 5.4 100.1 5.0 LDC
Hipposideridae
Hipposideros armiger 11.4 34.0 34.7 HDC
Asellia tridens 7.3 28.5 27.9 HDC
Rhinolophidae
Rhinolophus blasi 38.0 93.1 40.9 HDC
Rhinolophus capensis 31.2 68.9 45.3 HDC
Rhinolophus clivosus 27.3 58.2 46.9 HDC
Rhinolophus euryale 52.9 96.4 56.1 HDC
Rhinolophus ferrumequinum  53.4 93.6 57.1 HDC
Rhinolophus hipposideros 41.3 73.4 56.3 HDC
Rhinolophus mehelyi 50.4 103.5 47.9 HDC
Suborder Yangochiroptera
Emballonuridae
Diclidurus alba 13.8 156.4 9.6 LDC
Rhynchonycteris naso 5.1 49.7 10.3 LDC
Noctilionidae
Noctilio leporinus* 135 108.3 124 LDC
Mormoopidae
Mormops blainvilli 3.1 40.3 7.8 LDC
Pteronotus davyi 6.1 66.3 9.2 LDC
Pteronotus gymnonotus 5.2 40.7 12.9 LDC
Pteronotus macleayi 4.3 54.3 8.0 LDC
Pteronotus parnellii 30.9 72.9 43.3 HDC
Pteronotus personatus 4.9 43.3 12.4 LDC
Pteronotus quadricens 3.5 42.7 8.2 LDC
Phyllostomidae
Monophyllus redmanii 1.7 33.1 5.0 LDC
Vespertilionidae
Eptesicus furinalis 7.4 325.0 2.3 LDC
Eptesicus fuscus 4.9 81.1 7.9 LDC
Kertivoula spp. 14 30.9 6.8 LDC
Lasiurus borealis 9.7 136.7 71 LDC
Lasiurus cinereus 11.9 246.1 4.8 LDC
Murina leukogaster 0.7 43.4 1.7 LDC
Myotis evotis 4.0 107.1 3.8 LDC
Myotis lucifugus 5.9 96.3 6.1 LDC
Otonycteris hemprichii 4.3 137.0 3.4 LDC
Perimyotis subflavus 10.8 135.8 8.0 LDC
Pipistrellus sp. 5.2 92.2 5.8 LDC
Molossidae
Molossus molossus 10.7 97.1 125 LDC
Molossus rufus 13.1 176.6 7.4 LDC
Molussus sp.* 14.2 69.3 20.7 LDC
Tadarida brasiliensis 13.4 2781 4.8 LDC
Tadarida teniotis 12.2 152.5 131 LDC

DC, duty cycle; d, call duration; T, period: DC=(d/T)*<100.

Shown are search phase echolocation data for 37 species of bats free flying
in the field or calling from a perch. Low duty cycle (LDC) echolocation is
defined as DC <25%; high duty cycle (HDC) echolocation is defined as
DC =25%. Species marked with an asterisk are reported to have variable
duty cycle echolocation.

track prey in dense vegetation and thus forage in areas with high
background acoustic (echoic) clutter (Bell and Fenton, 1984). HDC
bats may also be more readily attracted to fluttering targets than
LDC bats (Goldman and Henson, 1977; Lazure and Fenton, 2011).
In these respects, HDC echolocators differ from LDC echolocators.

Echoes returning to a flying bat are Doppler shifted because of
changes in the relative velocities of the bat and target (Schnitzler,
1968; Schnitzler, 1970; Schnitzler, 1973). The CF component of
the echo becomes shifted up (down) in frequency as the distance
between the flying bat and insect decreases (increases). Doppler-
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shifted echoes may also contain ‘acoustic glints’ that appear as
fluctuations in the amplitude and spectral composition within the
CF component. Glints are generated by the rhythmic motion of the
insect’s wings relative to the direction of sound propagation from
the bat (Schnitzler et al., 1983; Kober and Schnitzler, 1990; Henson
et al., 1987). HDC bats do not compensate for Doppler shifts
generated by insect wing movements (Trappe and Schnitzler,
1982).

Echoes from the long duration calls of HDC bats may contain
multiple amplitude and frequency glints. The time interval between
individual glints in the echo corresponds to about the reciprocal of
twice the insect’s wingbeat rate (Schnitzler et al., 1983; Koselj et
al., 2011). Amplitude glints are produced by changes in the
reflective area of the fluttering insect target. Specifically, when the
insect’s wings are perpendicular to the direction of sound
propagation (typically near the top or bottom of the stroke), this
presents a larger reflective surface that can increase echo
amplitudes by >20dB compared with the body of the insect when
the wings are horizontal (Henson et al., 1987; Kobler et al., 1985).

Time (ms)

Frequency glints are Doppler-shifted spectral broadenings in the CF
component of the echo resulting from the motion of insect’s wings
towards or away from the bat (Schnitzler et al., 1983). Frequency
glints appear as a £2kHz spectral broadening in the CF echo, and
the sign of the frequency change (re. the CF component) indicates
the direction of wing motion (Schnitzler and Denzinger, 2011).
Such brief frequency glints are superimposed on the overall
Doppler-shifted CF echo from the insect’s body. Rhinolophus

ferrumequinum can resolve differences in flutter rate of <10 Hz for

frequencies within its auditory fovea (von der Emde and Menne,
1989).

HDC bats may recognize particular types of insects by wingbeat
signatures encoded in the amplitude and frequency glints of
returning echoes (Schuller, 1984; Schnitzler, 1987; Kober and
Schnitzler, 1990). Wingbeat signatures and other features of prey
flight patterns may help determine which items are attacked or
ignored by HDC echolocators when a smorgasbord of insects is
available (Koselj et al., 2011). Echoes from LDC echolocation calls
contain less glint-related information and thus may not provide the
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sensory feedback necessary to make precise decisions about prey
selection (i.e. to be a ‘picky eater’). Echoes from the calls of HDC
bats encode the temporal patterning (spacing) of acoustic glints and
follow the rhythm of the insect’s wingbeat cycle (Schnitzler et al.,
1983; Kober and Schnitzler, 1990). Wingbeat rates of flying insects
typically range from 10 to 50Hz (7=100-20ms), so only some
HDC bats with CF durations >40ms (mainly rhinolophids) will
frequently receive single echoes containing multiple acoustic glints
over several wingbeat cycles. Hipposiderids and P. parnellii
presumably obtain this information over several successive echoes.
Evidence of foraging selectivity comes from observations of
several species of HDC bats that responded to and tracked passing
insects, but only attacked some of them [e.g. Hipposideros
commersoni (Vaughan, 1977), Rhinolophus rouxi (Neuweiler et al.,
1987), R. ferrumequinum and R. hipposideros (Jones and Rayner,
1989)]. This in contrast to LDC species, some of which attack
inanimate objects in the wild (Acharya and Fenton, 1992; Barclay
and Brigham, 1994).

Relative to LDC echolocators, HDC bats dramatically increase
call duty cycle during prey capture attempts (Vogler and Neuweiler,
1983; Schnitzler et al., 1985; Jacobs et al., 2008), suggesting the
increase in duty cycle indicates that a bat has detected a fluttering
target and is locking onto the target and/or confirming its identity.
Multiple time- and frequency-smeared background clutter echoes
may make the amplitude and frequency glints of fluttering insects
more conspicuous in a manner analogous to stochastic resonance
processing in the auditory system (e.g. Henry, 1999). A comparison
of search phase echolocation call sequences emitted by LDC and
HDC bats free-flying in the field or calling from a perch (Fig. 1)
demonstrates that HDC bats have the potential to acquire more
detailed and almost continuous data about fluttering targets
compared with LDC bats. Table 1 presents typical call duration,
period and duty cycle data for search phase echolocation calls of
representative bats.

Variable duty cycle echolocation

The distinction between HDC and LDC echolocation is generally
consistent (Fig.1; Table1), but some foraging molossids (e.g.
Molossus spp. but typically not Eumops spp., Otomops spp.,
Tadarida spp.) emit calls with duty cycles between 15% and 30%.
As yet, there is no evidence that Molossus spp. perform Doppler
shift compensation or that they are attracted to fluttering targets.
The basilar membrane of Tadarida brasiliensis shows a slight
expansion (6mm per octave) in the frequency range used for
echolocation, but nothing approaching the overrepresentation
specialization of the sensory epithelium associated with the
acoustic fovea in HDC bats [40mm per octave (Vater and Siefer,
1995)]. Furthermore, when flying in the lab, many LDC bats emit
calls with a shorter duration and period and an increased duty cycle
relative to when they are calling in the field [e.g. Eptesicus fuscus
(Surlykke and Moss, 2000)]. Hence, most if not all bats increase
duty cycle when trying to collect more information about situations
in which they are operating, just not to the extent of HDC
echolocators (Simmons et al., 1979).

Data from a small molossid (Molossops temminckii) recorded in
the field reveal duty cycles from ~6% to ~18% (Guillén-Servent
and Ibanez, 2007). The echolocation behaviour of Noctilio species
(N. albiventris, N. leporinus; Noctilionidae) demonstrates
flexibility in duty cycle among bats previously considered to be
LDC echolocators. When foraging, Noctilio spp. emit a mixture of
calls with just CF, just FM or a combination of CF—=FM components
and regularly alternate duty cycle between 10% and 40%
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(Schnitzler et al., 1994; Kalko et al., 1998). Both Noctilio spp.
partially compensate for flight-induced (but not target-induced)
Doppler shifts in echoes by lowering the CF components of their
emitted signals (Wenstrup and Suthers, 1984; Roverud and
Grinnell, 1985). Auditory brainstem responses in N. leporinus
reveal moderately sharp neural tuning near the CF component of
its narrowband echolocation calls (Wenstrup, 1984); however,
peripheral and central specializations of its auditory system are not
known to provide an auditory fovea.

None of the bats categorized as LDC in Table1 shows the
unique combination of the four features we identify as being
characteristic of HDC echolocators. The presence of individual
features such as narrowband calls, increases in duty cycle during
prey capture, narrowly tuned neurons or Doppler shift
compensation do not alone represent HDC echolocation as we
have identified it. Doppler shift compensation is mainly
restricted to HDC echolocators, although among mormoopids
both P. parnellii (an HDC echolocator) and Pteronotus
personatus (an LDC echolocator) perform Doppler shift
compensation, whereas other LDC mormoopids (e.g. Mormoops
megalophyllus and Pteronotus davyi) do not (Smotherman and
Guillén-Servent, 2008). Arguably the situation in molossids,
noctilionids and mormoopids other than P. parnellii
demonstrates that LDC echolocators have tremendous potential
to modify patterns of call production and information processing.

Evolution of HDC echolocation

Current morphological and molecular evidence suggests that the
monophyletic order Chiroptera is composed of two suborders
(Teeling, 2009), each including HDC laryngeal echolocators — the
Yinpterochiroptera (Rhinolophidae and Hipposideridae) and
Yangochiroptera (Mormoopidae — P. parnellii; 1 species). If LDC
laryngeal echolocation was the ancestral condition in echolocating
bats, then it could have evolved once and persisted in all
Yangochiroptera and most Yinpterochiroptera (Fig.3). In this
scenario, laryngeal echolocation was lost within one group
(Pteropodidae) of Yinpterochiroptera. In some pteropodid species
from the genus Rousettus tongue-click echolocation subsequently
evolved. This hypothesis is supported by two observations. First,
the echolocation signals of all bats except Rousettus spp. are tonal
and produced in the larynx. Second, in laryngeally echolocating
bats the stylohyal bone (part of the mammalian hyoid apparatus)
contacts, and sometimes is fused with, the tympanic bone, which
surrounds and supports the tympanic membrane. Neither condition
— echolocation calls with time—frequency structure or
stylohyal-tympanic bone contact — occurs in pteropodid bats,
including those that echolocate with tongue clicks (Veselka et al.,
2010a).

Alternatively, LDC echolocation could have evolved
independently in Yinpterochiroptera and Yangochiroptera. If LDC
echolocation was the ancestral condition in bats, then either
scenario necessitates the independent evolution of HDC
echolocation at least once in both suborders. At present it is not
possible to resolve which scenario is correct.

Simmons (Simmons, 1980) suggested that a short duration CF
call with multiple harmonics was the ancestral condition in
larygneally echolocating bats, and that the principal trend in the
evolution of echolocation was a broadening of signal bandwidth by
the introduction of FM components. In this scenario, long duration
CF—FM echolocation calls, an auditory fovea with specializations
for glint/flutter detection and Doppler shift compensation would be
more specialized (derived) conditions that evolved independently
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Rhinolophoidea

Emballonuroidea

Vespertilionoidea

_i -

Noctilionoidea

Fig. 3. Evolution of LDC and HDC echolocation in bats. Two equally
parsimonious scenarios for the evolution of echolocation in the two
currently recognized suborders of bats, the Yinpterochiroptera and the
Yangochiroptera. Left, laryngeal echolocation is presumed to be ancestral
and has evolved once (+) but was lost () in the family Pteropodidae.
Right, laryngeal echolocation is presumed to have evolved twice, once in
the lineage leading to the Yangochiroptera (+) and again in the lineage
leading to the Rhinolophoidea (+). After Fenton and Ratcliffe (Fenton and
Ratcliffe, 2010). The superfamily Rhinolophoidea includes the families
Rhinolophidae, Hipposideridae, Rhinopomatidae, Craseonycteridae and
Megadermatidae. The superfamily Emballonuroidea includes the families
Emballonuridae and Nycteridae. The superfamily Vespertilionoidea includes
the families Vespertilionidae, Thyropteridae, Natalidae, Furipteridae,
Molossidae, Myzopodidae and Miniopteridae. The superfamily
Noctilionoidea includes Noctilionidae, Mormoopidae and Phyllostomidae.

in the Rhinolophidae and Hipposideridae (Yinpterochiroptera) and
in the mormoopoid P. parnellii (Yangochiroptera).

Increasing the strength of the outgoing vocalization from the
larynx was an essential adaptation in the evolution of echolocation
to track flying insects (Fenton et al., 1995). Echolocation in air is
a relatively short-range operation because of the physics of sound
propagation through the atmosphere. Two factors are involved.
First, geometric spreading (i.e. the inverse square law) reduces
energy in both outgoing sounds and returning echoes equally across
all frequencies. Second, the absorption of sound energy by water
molecules in the atmosphere increases dramatically at frequencies
above 30kHz (Lawrence and Simmons, 1982), compounding
attenuation by geometric spreading. Many echolocating bats emit
signals with amplitudes in excess of 130dB SPL (re. 20uPa) at
10cm in front of the bat’s mouth (Holderied et al., 2005; Surlykke
and Kalko, 2008). Such high SPLs allow bats to detect insect targets
at 20-30m (Surlykke and Kalko, 2008), much greater detection
distances than previously reported [ca. 3—5m (Kick, 1982)].
Together, detection distance and flight speed have an important
impact on foraging by aerial-hawking bats. A bat flying at Sms™!
that detects a moth at 30m has 6s to react, while one flying at
10ms™" has only 3 s to react. Thus, reducing outgoing call strength
results in a shorter effective operating range, giving bats less time
to detect, track and intercept airborne targets.

The echolocation calls of laryngeally echolocating bats show
structured changes in frequency over time. Call frequencies range
from ~8 to >200kHz, and most species emit calls with peak energy
between 20 and 60kHz (Jacobs et al., 2008). Sounds of higher
frequency have shorter wavelengths and reflect more efficiently
from small targets such as fluttering insects. Bats that emit
echolocation calls with a large signal bandwidth have more
listening frequencies available to extract details from echoes about
the size, shape, velocity and distance to a target (Simmons and
Stein, 1980). Conversely, sounds of lower frequencies have longer
wavelengths, are less subject to excess attenuation, and provide a
greater operating range of echolocation.

Long duration, narrowband calls (Figs 1, 2) are not unique to
HDC echolocators as many bats emit long narrowband search phase
signals in open habitats (e.g. E. fuscus, Lasiurus cinereus, T.
brasiliensis, Tadarida midas, Tadarida teniotis, Otomops
martiensseni, N. leporinus, N. albiventris). The use of long duration
narrowband calls is adaptive in these situations because it focuses
spectral energy and provides for a larger operating range (Simmons
and Stein, 1980). According to Parseval’s theorem, power spectral
density level increases by 10dB for every decade reduction in
signal bandwidth with no additional costs of call emission
(Oppenheim et al., 1999). Flutter detection is not limited to bats
using HDC echolocation as some vespertilionids [Pipistrellus
stenopterus (Sum and Menne, 1988); Murina spp. and Kerivoula
spp. (Lazure and Fenton, 2011)] and both Noctilio spp. also have
this ability. Both HDC and LDC bats may use passive hearing to
detect the fluttering and/or walking sounds of insects on surfaces
(e.g. Bell, 1982; Link et al., 1986; Faure and Barclay, 1992).

Bats that employ LDC echolocation are unlikely to receive
echoes with multiple acoustic glints (Schnitzler and Denzinger,
2011). Indeed, the echolocation calls of Kerivoula spp. and Murina
spp. are the antithesis of those used by HDC echolocators because
they are extremely short (~1ms), broadband (~100kHz) FM
sweeps (Schmieder et al., 2010). Some Kerivoula and Murina spp.
detect flutter, but the cues they use remain unknown (Lazure and
Fenton, 2011).

Temporal overlap between outgoing sounds and returning
echoes is an important feature of HDC echolocation. In P. parnellii,
the beginning of the approach phase is signalled by an increase in
pulse duration resulting in prominent pulse—echo overlap (Novick
and Vaisnys, 1964). Pulse—echo overlap is well known for the
echolocation calls of HDC bats and is essential for proper Doppler
shift compensation in R. ferrumequinum (Griffin, 1962; Schuller,
1974), whereas the FM component in the CF-FM calls of R.
Sferrumequinum is not necessary for Doppler shift compensation
(Schuller, 1977). In theory, a bat could use pulse—echo overlap to
detect the presence of and distance to objects (Novick, 1971).
Biosonar pulses overlapping with echoes from an insect’s body or
from stationary targets in the background will generate interference
patterns that differ from the acoustical glints generated by fluttering
prey. The interference patterns generate amplitude modulations in
the echoes corresponding to the frequency difference between
overlapping sounds (i.e. pulse and echo, echo and echo), and such
signals have an additional cue that may play a role in object
detection by HDC bats (Pye, 1960; Pye, 1961; Kay, 1961; Novick
and Vaisnys, 1964; Novick, 1971; Henson et al., 1987).

Detailed studies on the neural basis of hearing and HDC
echolocation have been performed on two species: the Old World
greater horseshoe bat (R. ferrumequinum) and the New World
moustached bat (P. parnellii). Both possess an auditory fovea with
mechanical and physiological specializations of the cochlea and
extremely sharply tuned neurons in the peripheral and central
auditory systems (Bruns, 1976a; Bruns, 1976b; Suga and Jen, 1976;
Suga and Jen, 1977; Pollak et al., 1979; Vater, 1982; Henson et al.,
1985; Kossl and Vater, 1985). Neurons in the inferior colliculus of
R. ferrumequinum and P. parnellii have specialized response
properties that encode signal parameters such as fundamental
wingbeat frequency and amplitude and frequency glints present in
echoes from fluttering insects (Vater, 1981; Bodenhamer and
Pollak, 1983; Schuller, 1984; O’Neill, 1985).

Two populations of cells with specialized response properties
may further facilitate combinatorial processing of loud outgoing
vocalizations with information contained in later returning weaker
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echoes. These are delay-tuned and duration-tuned neurons. Delay-
tuned neurons are found in the inferior colliculus and cortex of both
LDC and HDC bats, and are thought to be important for extracting
information about target range/distance (O’Neill and Suga, 1979;
Sullivan, 1982; Schuller et al., 1991; Casseday et al., 1994; Yan
and Suga, 1996; Galazyuk and Feng, 1997; Portfors and Wenstrup,
1999). Delay-tuned neurons show a facilitated response and fire
maximally when the timing (delay) between two sounds — the
outgoing pulse and returning echo — corresponds to the cell’s best
delay. Duration-tuned neurons are temporally selective cells that
respond only when signals of the correct frequency are presented
at a specific duration (Faure et al., 2003). Duration-tuned neurons
are also tuned in frequency and some are tuned to stimulus
amplitude (Fremouw et al., 2005). Because duration-tuned neurons
are found in both echolocating and non-echolocating vertebrates,
the ability to echolocate cannot be a prerequisite for the evolution
of duration selectivity in bats. Nevertheless, this does not preclude
a functional role for duration tuning in the neural basis of
echolocation (Sayegh et al., 2011; Aubie et al., 2012). Duration-
tuned neurons have also been reported from the inferior colliculus
of LDC and HDC bats, and in both New World and Old World
species (e.g. Casseday et al., 1994; Fuzessery and Hall, 1999; Mora
and Kossl, 2004; Luo et al., 2008; Macias et al., 2011).

In short, the brains of echolocating bats have populations of
neurons that fire action potentials only in response to stimuli that
possess a specific combination of signal duration, frequency,
amplitude and/or delay. We hypothesize that this type of
temporal—spectral-amplitude response selectivity may be crucial
for locking on and tracking flying targets using echolocation.

Advantages of HDC echolocation

The preceding background demonstrates that, compared with LDC
bats, the unique combination of features associated with HDC
echolocation — long duration calls dominated by a CF component,
an acoustic fovea and Doppler shift compensation — allowed bats
to detect, lock onto and track fluttering insects. Therefore, we
propose that HDC echolocation originated because it allowed
hunting bats better access to nocturnal prey, especially in cluttered
habitats. The difference in foraging effectiveness reflects the reality
that HDC bats may acquire a stream of roughly 2—4 times as much
information with the same number of call emissions as LDC bats
(Fig.1; Table1). The longer duration calls of HDC bats also offer
the potential for detecting multiple amplitude and frequency glints
generated by fluttering insects. This hypothesis generates four
specific and testable predictions.

First, compared with LDC bats, HDC echolocators should
respond more often to presentations of fluttering insect targets,
especially in areas with increased background clutter. By
presenting artificial fluttering targets to foraging bats it is possible
to assess the willingness of bats to investigate and attack such
targets. By monitoring echolocation calls at the same time,
researchers can compare the responses of HDC and LDC
echolocators, and identify other strategies that bats may use to
detect fluttering targets [e.g. LDC bats in the genera Murina and
Kerivoula (Lazure and Fenton, 2011)].

Second, compared with LDC bats, HDC bats should be better
able to exploit wingbeat signatures of fluttering insects and be more
likely to show selective foraging. This prediction can be tested by
identifying and comparing the diversity of insect prey in the diets
of sympatric HDC and LDC bats. Specifically, this can be done
using DNA barcodes obtained from insect fragments in faeces in
areas where HDC and LDC bats forage sympatrically (Clare et al.,
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2009; Clare et al., 2011; Goertlitz et al., 2010). HDC bats are
expected to take fewer prey species and show more consistent
patterns of prey selection. Hipposiderids appear to feed heavily on
moths (Habersetzer et al., 1984; Link et al., 1986). Moths should
be preferred prey because many are soft-bodied, medium- to large-
sized insects and relatively slow flyers. Fluttering insects that have
auditory deficits or that lack bat-detecting ears may be particularly
easy targets for ‘lock and track’ echolocators (Faure and Hoy,
2000).

Third, if delay-tuned and duration-tuned neurons allow HDC
bats to better lock onto and track fluttering insects, then the
response physiology of these cells should differ between HDC and
LDC echolocators. Delay-tuned and duration-tuned neurons occur
in both HDC and LDC bats, suggesting a more general role in
hearing and echolocation. We speculate that HDC bats should have
delay-tuned and duration-tuned neurons tuned to longer pulse
intervals and signal durations than LDC bats (e.g. Schuller et al.,
1991; Mora and Kossl, 2004; Luo et al., 2008). Moreover, the
bandwidth of the frequency tuning curves of duration-tuned and
delay-tuned neurons should be narrower in HDC bats, with a high
proportion of neurons tuned at or just above the CF resting
frequency.

Fourth, HDC bats should spend proportionally more time
foraging for insects in cluttered habitats than LDC bats of
comparable body size, wing morphology and flight characteristics.
In acoustically cluttered habitats, we expect HDC echolocators to
have an advantage over most LDC echolocators in detecting,
tracking and identifying fluttering insect prey, but this prediction
applies only to bats using echolocation to detect prey in cluttered
habitats.

There are many records of bats attacking airborne, insect-sized
targets, from small pebbles to dry flies used in fishing (Acharya
and Fenton, 1992; Barclay and Brigham, 1994). This raises the
question: do HDC echolocators sometimes behave as if they were
LDC echolocators? If so, like many LDC echolocators, they should
sometimes detect, track and attack airborne, non-fluttering insect-
sized prey. However, if HDC echolocators are primed to respond
to fluttering targets, then we predict that they will not attempt to
attack airborne but non-fluttering targets. Field and flight room
observations suggest the latter may be the case (Bell and Fenton,
1984; Jacobs et al., 2008), as some HDC bats did not track aerial
insect-sized targets whose wings were not moving (Goldman and
Henson, 1977; Link et al., 1986).

Disadvantages of HDC echolocation
One obvious disadvantage of using HDC echolocation arises
because this strategy involves broadcasting calls over a longer
period of time, an important feature for glint detection. Longer
duration calls contain more energy, which can increase information
leakage and make HDC echolocation signals more conspicuous to
conspecifics, predators and prey (Faure et al., 1990; Jacobs et al.,
2008). Longer duration calls are presumably more expensive to
produce than shorter duration calls of the same frequency. Kingston
and Rossiter recognized the potential impact on communication of
the echolocation calls used by HDC bats (Kingston and Rossiter,
2004). Focusing signal energy into a narrower bandwidth can also
make HDC calls more conspicuous to insects with hearing-based
defences (Jacobs et al, 2008). Because the peak spectral
frequencies of bats using HDC echolocation are often higher than
those using LDC echolocation, the costs of emitting longer duration
signals may be offset by the benefits of shifting peak energy to
higher frequencies. The ears of bat-detecting insects are typically
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most sensitive to sound frequencies ranging from 20 to 60kHz,
which may explain the prevalence of higher frequency sounds in
the echolocation calls of HDC bats (Jones, 1999) and supports
Fullard’s (Fullard, 1987) allotonic frequency hypothesis (e.g. Pavey
and Burwell, 1998; Jacobs, 2000). Once an HDC bat has locked
onto a flying target, it may be less vulnerable to evasive
manoeuvres of prey compared with an LDC bat, in part because of
the absence of long intervals between successive target echoes.

The specialization of the thoracic skeleton in some species of
HDC echolocators suggests that a high duty cycle approach
requires a different pattern and rhythm of respiration than LDC
echolocation. It remains to be determined whether the broad flat
ribs characteristic of rhinolophids and hipposiderids are
morphological specializations associated with HDC echolocation
(Desroche et al., 2007). Data on the cost of echolocation call
production are all from LDC species (Speakman and Racey, 1991).

The prevalence of LDC echolocation among insectivorous bats
demonstrates that this approach to detecting and tracking prey is
successful and works well in most situations. There is no evidence
of an HDC species adopting an LDC echolocation strategy,
although some bats (e.g. Molossus spp., M. temminckii, Noctilio
spp.) may alternate between an LDC- and HDC-like signalling
strategy (Tablel). The fundamental dichotomy between the
strategies may come down to more time-focused (HDC) versus
frequency-focused (LDC) analyses by the brains of echolocators.
More specific details about patterns of habitat use are required to
demonstrate any foraging advantage accruing to HDC bats,
especially in cluttered environments.

Evolution of bats

The origin and evolution of flight and echolocation in bats remains
a topic of debate (e.g. Fenton et al., 1995; Simmons and Geisler,
1998; Speakman, 2001; Schnitzler et al., 2004). Powered flight is
a diagnostic feature that sets bats apart from all other mammals.
The evolution of echolocation has profoundly influenced the
diversification of Chiroptera, but the ability to echolocate is neither
diagnostic of nor unique to bats. Post-cranial anatomy of the earliest
known fossil bat, Onychonycteris finneyi, reveals that this Eocene
species could fly, but whether it could echolocate is unclear
(Simmons et al., 2008; Veselka et al., 2010a; Veselka et al., 2010b).
There are three points of view about the origin of flight and
echolocation in bats: (1) that flight evolved first, giving the
ancestors of bats increased mobility in forested/cluttered habitats
(Simmons and Geisler, 1998); (2) that echolocation evolved first,
giving the gliding ancestors of bats access to a previously under-
exploited food source (nocturnal flying insects) in
forested/cluttered habitats (Fenton et al., 1995); and (3) that
echolocation and flight co-evolved because coordinating the
production of repetitive, high amplitude vocalizations with the
downstroke of flight reduced the overall costs of sound production
(Speakman and Racey, 1991). The possible origins of echolocation
in bats has been the topic of some discussion and has repercussions
for interpreting chiropteran phylogeny and evolutionary divergence
(Teeling, 2009; Simmons et al., 2010; Veselka et al., 2010b).

We agree with the view that the ancestors of bats hunted from
perches and glided in pursuit of flying insects that were detected
and tracked using LDC laryngeal echolocation. HDC echolocation
calls developed as a specialized extension of using long,
narrowband echolocation calls that improved the ability of bats
with powered flight to detect, lock onto and track flying prey,
probably in areas of high clutter. The evolution of HDC
echolocation involves considerable anatomical and physiological

specialization over and above LDC echolocation, and this may
account for its relative scarcity among insectivorous bats (~160
HDC versus ~900 LDC species). Additional phylogenetic
reconstructions and comparative studies are needed to better
understand and estimate the pattern of adaptations favouring the
evolution of HDC echolocation in bats.
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