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INTRODUCTION
Biomechanical scaling of caterpillars

Typically, in terrestrial animals with rigid skeletons and constant bone
density, the cross-sectional area of the skeleton scales disproportionally
relative to the representative linear dimension as the body increases
in size. This characteristic helps support the increasing body mass
and resists the accompanying forces of locomotion, which scale
roughly with body volume (Demetrius, 2006; Prange et al., 1979;
West et al., 1997).

Mechanical scaling in soft-bodied animals is different because
soft tissues undergo very large deformations and increased rigidity
can only be achieved through pressurization. Rather than relying
on increasing the amount of skeletal material, soft animals can
employ hydrostatics to resist the increase in forces associated with
locomotion. A true hydrostat, such as the earthworm, can scale
isometrically over many orders of magnitude while maintaining a
similar static body stress (Quillin, 1998; Quillin, 1999). Leeches
also move similarly at all body sizes (Jordan, 1998). Numerous
geometric models of hydrostats based on a constant body volume
assumption capture the kinematics and dynamics of annelid
locomotion (Dobrolyubov and Douchy, 2002; Skierczynski et al.,
1996). In locomotor modes with a more complex substrate
interaction, body loading depends greatly on body size (Quillin,
2000). During burrowing, for example, behavioral and

morphological adaptations are necessary in order to operate at
different scales (Che and Dorgan, 2010). Studying the scaling of
hydrostatic skeletons helps us understand how a soft-bodied animal
copes with mechanical loads at different body sizes.

Soft animals do not all have the same body structure, and for
some the maintenance of a pressurized fluid cavity is limited by
physiological and mechanical factors. Caterpillars, for example,
deviate from the existing constant-volume worm models because
they contain air. While worms breathe through their skin, caterpillars
have a waxy external body surface to minimize water loss and an
extensive internal system of gas-filled tubes (trachea) to facilitate
gas exchange (Kramer and Wigglesworth, 1950; Locke, 1997;
Wasserthal, 1996). It has been shown behaviorally that gas inside
the trachea can be compressed and expelled from the spiracles during
locomotion (H.T.L., personal observation). Some caterpillars even
exploit this air expulsion mechanism to produce predator startle
whistles (Bura et al., 2011). This air leak could compromise the
efficiency of the hydrostatic skeleton. Instead of relying on a stiff
hydrostatic structure, ground reaction forces of Manduca suggest
that crawling caterpillars can use the substrate for force transmission
(an ‘environmental skeleton’) during normal locomotion (Lin and
Trimmer, 2010). In contrast, inchworms lift most of their body every
stride and must be stiff enough to support elevated body positions.
This difference suggests that the use of hydrostatic skeletons could
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SUMMARY
Caterpillars can increase their body mass 10,000-fold in 2weeks. It is therefore remarkable that most caterpillars appear to
maintain the same locomotion kinematics throughout their entire larval stage. This study examined how the body properties of a
caterpillar might change to accommodate such dramatic changes in body load. Using Manduca sexta as a model system, we
measured changes in body volume, tissue density and baseline body pressure, and the dimensions of load-bearing tissues (the
cuticle and muscles) over a body mass range from milligrams to several grams. All Manduca biometrics relevant to the
hydrostatic skeleton scaled allometrically but close to the isometric predictions. Body density and pressure were almost constant.
We next investigated the effects of scaling on the bending stiffness of the caterpillar hydrostatic skeleton. The anisotropic non-
linear mechanical response of Manduca muscles and soft cuticle has previously been quantified and modeled with constitutive
equations. Using biometric data and these material laws, we constructed finite element models to simulate a hydrostatic skeleton
under different conditions. The results show that increasing the internal pressure leads to a non-linear increase in bending
stiffness. Increasing the body size results in a decrease in the normalized bending stiffness. Muscle activation can double this
stiffness in the physiological pressure range, but thickening the cuticle or increasing the muscle area reduces the structural
stiffness. These non-linear effects may dictate the effectiveness of a hydrostatic skeleton at different sizes. Given the shared
anatomy and size variation in Lepidoptera larvae, these mechanical scaling constraints may implicate the diverse locomotion
strategies in different species.
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be fundamentally different between animals that employ crawling
as their primary form of locomotion and animals that employ an
inching gait.

Adding to the complexity of caterpillar body mechanics, there is
a developmental shift in the relative proportion of various tissues
as the animals grow. First instar hatchlings sink in water but fifth
instar Manduca caterpillars float, suggesting a change in body
density. Unlike vertebrates, which tend to display isometric scaling
of lung volume relative to body mass (West et al., 1997), many
insects increase their mass-specific tracheation across instars to
maintain sufficient oxygen intake (Lease et al., 2006). Although
fast growing caterpillars such as Manduca sexta decrease their gas
exchange capacity as they grow (Greenlee and Harrison, 2005), a
decrease in body density could be through a change in tissue
composition, for example through the accumulation of fat tissues
(Fernando-Warnakulasuriya et al., 1988; Tsuchida and Wells,
1988).

In this study, we investigated the effects of different body
properties (such as body size, tissue cross-sectional area and the
state of muscle activation) on the overall bending stiffness of the
internal hydrostatic skeleton in caterpillars. Although Manduca
can crawl using a tension-based strategy (Lin and Trimmer, 2010),
both first instar hatchlings (weighing 1–7mg) and fifth instar
caterpillars (>1g) are able to cantilever their bodies with only
three pairs of attached prolegs for support (Fig.1A,B). Because
complete anesthetization suppresses muscle activation and causes
the animals to lose turgor (Fig.1C), it is apparent that Manduca
does not possess any structure that has significant bending
stiffness. Instead, body stiffness relies on pressurization of the
external soft body shell.

To characterize the hydrostatic skeleton in Manduca
caterpillars, we measured their body length, diameter, volume,
density and baseline internal pressure. Caterpillar body pressure
is known to be highly variable (Mezoff et al., 2004) because of
the internal flow of hemolymph and air cavities (H.T.L. and
B.A.T., personal observations) (Wasserthal, 1981). Here, we
present a new measurement technique to define the baseline

pressure in resting caterpillars. Finally, while previous studies
document dramatic morphogenesis of load-bearing tissues, such
as the external cuticle, with respect to body mass (Wolfgang and
Riddiford, 1981; Wolfgang and Riddiford, 1986), it is unclear
how these tissues scale over the entire life cycle of the larvae.
We determined the scaling of cuticle thickness and muscle cross-
sectional area for Manduca caterpillars using histology imaging
methods. These data allowed us to numerically evaluate the
loading characteristics of the hydrostatic skeleton in the
physiological range and during growth.

Hydrostatic skeleton models in biology
The prevailing view of movement by animals without hard skeletons
is that they must stiffen their body by pressurizing an internal body
cavity such that forces can be transmitted to the substrate instead
of being lost to tissue deformation (Chapman, 1958; Trueman, 1975;
Vogel, 2003; Wainwright, 1988). For structures consisting of
muscles, the muscles can act as both the structural support and the
actuator (muscular hydrostats) (Kier, 1992). Although an alternative
locomotion strategy based on the controlled release of tension has
recently been proposed (Lin and Trimmer, 2010; Simon et al., 2010),
it is limited to substrates that are stiffer than the animal. Directed
movements on soft media and behaviors involving single point
attachments must involve body stiffening, mostly through
hydrostatics.

The modeling of biological hydrostatic structures (e.g. cnidarians,
annelids and nematodes) generally focuses on morphologies
composed of soft tissues without any rigid skeleton (internal or
external) supported by pressurized fluid. In particular, it has been
shown that soft-bodied animals achieve extreme changes in overall
length by using helical reinforcing fibers in the body wall (Clark and
Cowey, 1958), a property commonly found in cylindrical biological
structures including those of plants (Wainwright, 1982; Wainwright,
1988). To move forward, animals can couple these dramatic extensions
with the control of friction or grip (Keller and Falkovitz, 1983). This
extension–grip–pull locomotion strategy can be found in many
limbless animals, even snakes (Dobrolyubov, 1986).

Hatchling (~0.002 g)

Fifth instar (~2 g)

Fifth instar casting: three pairs of proleg support

Anesthetized animals collapse

1 cm

A

B

C
Fig.1. (A)Manduca caterpillars can develop sufficient
hydrostatic pressure to cantilever their bodies.
(B)During casting behavior, hatchlings three orders
of magnitude smaller (by mass) than the fifth instar
animals also cantilever their body. (C)Complete
anesthetization suppresses muscle tone and causes
the caterpillar to lose turgor.

THE JOURNAL OF EXPERIMENTAL BIOLOGY



1196

Hydrostatic mechanisms assume, in general, that the fluid content
is incompressible and no significant change in body volume occurs,
which for most organisms is a reasonable assumption (Chiel et al.,
1992; Kier and Smith, 1985; Wadepuhl and Beyn, 1989;
Wainwright, 1982; Wainwright, 1988). Finite element models for
medical leeches have been created under these conditions (Muller
et al., 1981; Sawyer, 1986; Stern-Tomlinson et al., 1986; Wadepuhl
and Beyn, 1989). These models incorporate animal geometry, elastic
properties of the body wall, internal volume and body pressure to
reveal some principles of antagonism in worm-like structures as
well as the pressure–volume interactions. As a further step, an
empirically based leech model has been implemented with passive
tissue properties and muscle activation from motor neurons
(Skierczynski et al., 1996). It assumes elliptical cross-sections and
constant volume, and simulates the vermiform elongation and
pressure changes of a leech. The motions of leeches have also been
described using Lagrangian mechanics and a large system of
differential–algebraic equations (Alscher and Beyn, 1998) and by
modeling a mass transfer wave that describes peristalsis (Accoto et
al., 2004; Dobrolyubov and Douchy, 2002).

Although these models describe credible mechanisms for
locomotion, they cannot be applied to hydrostatic skeletons that
violate the constant body volume constraint. Caterpillars are yet to
be described by any of the existing hydrostatic skeleton models for
several reasons: (1) extension in the longitudinal direction is
accounted for by numerous intersegmental folds instead of body
wall stretching (the classical helical fiber-reinforced cylinder model
does not apply), (2) body pressure is variable, especially during
motion (reflecting fluid flow in the body, not static pressure), (3)
the volume may not be constant as the tracheal air can escape (a
constant volume assumption cannot be applied), (4) there is no
segmental septum that compartmentalizes the animals (localized
pressure control is not feasible), and (5) caterpillars are legged
systems with discrete on–off attachments (frictional models based
on mass transfer do not apply). Additionally, analytical techniques
based on linear elastic theory are not applicable, as the mechanical
behavior of caterpillar tissues is non-linear and anisotropic. Under
typical loading scenarios, these tissues undergo large deformations
and have complex boundary conditions. The approach we propose
is more general and widely applicable to soft animals because it
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facilitates structural analyses at different pressure states by relaxing
the constant body volume requirement. We treat the hydrostatic
skeleton as a shell structure in which the major tissue properties are
described by anisotropic, non-linear hyperelastic stress–deformation
laws. For any applied body load, the body deformation is determined
using large deformation theory and the material models developed
in previous studies. This approach provides a more realistic
approximation of a caterpillar’s hydrostatic skeleton. For simplicity
in this study, we evaluated only the static conditions.

MATERIALS AND METHODS
Experimental animals

Manduca sexta L. larvae were reared on an artificial diet in an
incubator at 27°C with a light:dark cycle of 17:7h (Bell and Joachim,
1976). Third to fifth instars were selected for experimentation,
ranging from 0.01 to 3g in mass. Twenty animals were used for
biometry measurements, 39 animals for histology imaging, 27 for
the body density measurement, 14 for determining the net tissue
density and 32 for the baseline pressure measurements.

Load-bearing tissue quantification
Tissue fixation and histology

Animals were killed by exposing them to ethyl acetate fumes for
30min. They were then fixed using 10% formalin with phosphate-
buffered saline (PBS) and 10% dimethyl sulfoxide (DMSO) for
24–48h until the external cuticle became rigid enough for slicing.
The thoracic segments and terminal segments were removed from
all animals to facilitate fixative perfusion. If possible, the gut content
was also removed with the peritrophic membrane, leaving the
interior hollow and allowing better penetration of the fixative. The
third abdominal segment (A3) was sectioned from each animal with
all muscle attachments intact. The samples were then kept in the
same formalin mixture and sent to Tufts Cummings School of
Veterinary Medicine Histology Lab for paraffin embedding and
slicing. Cross-sectional slices (10m) were taken from the middle
of segment A3 in all samples and stained with hematoxylin and
eosin (H&E). Typically H&E stains cell nuclei blue and many
proteins in the cytoplasm pink. The result allowed us to distinguish
muscles from the cuticle and epithelium layers on the histology
slides. Selected samples of the fifth abdominal (A5) segment were

Manduca abdominal
segment 3 cross-section

Cuticle layers

Gut wall

Fat bodies

Muscles

Exocuticle in white

Endocuticle in
light purple

Epithelial cell layer

1 mm 200 µm

Cuticle thickness
measurement

A B

C

Fig.2. Histology of M. sexta caterpillar.
(A)Adjacent histology images of
abdominal segment 3 were obtained by
merging multiple microscopic images.
The example cross-section came from a
fifth instar animal. Hematoxylin and
eosin (H&E) stained most of the soft
tissues inside the body. (B)Blue light
excitation (observed in green)
emphasized muscle fibers so that they
could be identified by image analysis.
(C)The endocuticle and exocuticle
layers are easily distinguished from the
soft flaky epithelial cell layer, which was
excluded from the cuticle thickness
measurements. The gut wall is orders of
magnitude softer than the muscle fibers
in the longitudinal direction and cuticle in
the circumferential direction. It was
therefore omitted in measurements of
mechanical components.
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prepared in the same way, but we found no evident difference from
the tissue thickness of A3 samples. All scaling measurements were
therefore obtained from A3 samples.

Imaging and image analysis
The histology cross-sections were imaged with a Zeiss Axiovert
40 CFL inverted microscope with standard dichromic mirrors
(Fig.2). Image collection was performed using QCapture Pro
(QImaging, Surrey, BC, Canada). Color was autobalanced prior
to collecting images and all images were collected at �5
magnification with a 2560�1920 acquisition resolution. It was
found that the blue excitation light produced the most contrast
between the muscles and the surrounding tissues. Because the
sections were too large to view as a single image, multiple images
were taken and merged using the Photomerge function in Adobe
Photoshop (Adobe Systems, Inc., San Jose, CA, USA). For the
larger images, the resolution was halved during the image merging
process. All image analysis was done using ImageJ (NIH). First,
a global calibration scale was applied by imaging a hemocytometer
with lines of known length. Next, the cuticle thickness was
measured along the ventral body wall between the prolegs (a
location that can be easily identified in all slides). A mean thickness
was obtained from five measurements. All cuticle thickness
measurements were taken from A3 sections. Next, all easily
discriminated non-muscle structures were manually removed from
the image. The image was then converted to an 8-bit grayscale
image and a grayscale histogram analysis was performed.
Typically, two peaks were observed on the histogram, one
representing the muscles and the other representing other structures
and background noise. A threshold was set between these two
peaks and the image was then converted to a binary image
containing only muscle. Using the ‘analyze particles’ function,
the area of each muscle was determined and summed to yield the
total cross-sectional muscle area. Before accepting the particle
analysis, each image was checked manually and cross-referenced
with the original image to ensure that the particles being counted
represented all muscles and were specific to only muscles.

Body density measurements
The overall body density of third, fourth and fifth instar M. sexta
larva was determined by comparing the animal’s body weight in
the air and under water. First, an isometric force transducer (Grass
Products Group, West Warwick, RI, USA) was calibrated with
objects of known mass. The caterpillars were then placed on a
substrate (made of 2.4mm diameter carbon fiber rod encapsulated
by silicon tubing and sealant) suspended from the force transducer.
The air weight of the caterpillar was measured by subtracting the
transducer offset due to the substrate. The measured air weight was
repeatable within 1% of the animal mass, determined from a Mettler
laboratory scale (0.1mg accuracy). The animal was slowly lowered
into a beaker of de-ionized water at room temperature containing
a few drops of surfactant to reduce surface effects upon submersion.
The buoyant force of the caterpillar was calculated from the
submerged total weight by subtracting the pre-determined effect of
substrate immersion alone. Dividing the animal’s body weight by
its measured body volume gave the overall body density. Changes
in water density due to surfactant and temperature were insignificant
compared with the accuracy of the force transducer.

Tissue density measurements
Tissue density was determined by homogenizing third, fourth and
fifth instar M. sexta in 0.2ml (for animals less than 0.5g) or 0.5ml

(for larger animals) Manduca saline (6.5mmoll–1 NaCl, 33.5mmoll–1

KCl, 16.2mmoll–1 MgCl2, 13.6mmoll–1 CaCl2, 166.5mmoll–1

dextrose, 1.25mmoll–1 KHCO3 and 1.25mmoll–1 KH2PO4) (Weeks
and Truman, 1984). This dilution resulted in a 1:2 to 4:1 animal to
saline ratio, with the smallest total volume of at least 0.3ml. The
remaining tissue fragments were further broken down using a sonifier
(Branson Ultrasonics Inc., Danbury, CT, USA) for 15s at 20% power.
This mincing and sonication process was repeated until a smooth tissue
homogenate was produced. The samples were then centrifuged for
2min to remove any remnant air vesicles in the tissue solution, which
allowed the final sonication step to produce a solution of uniform
density. A fixed volume (0.1ml for animals less than 0.5g and 0.2ml
for larger animals) of the homogenate was extracted with a calibrated
pipette and weighed to calculate the density. The measured density
was then scaled up to account for the previous saline dilution. This
sampling was performed twice per animal to obtain the mean tissue
density.

Body pressure measurements
In preliminary measurements of Manduca body pressure fluctuation,
silicon catheters (i.d. ~0.8mm, o.d. ~1mm) were inserted into the
tail horn of mildly anesthetized caterpillars and connected to a small
silicon piezoresistive pressure sensor (Honeywell, Freeport, IL,
USA). These recordings revealed small, rhythmic pressure
fluctuations (data not shown) that matched the Manduca caterpillar
heart rate (Smits, 2000) and were attributed to hemolymph flow
produced by the dorsal vessel and abdominal contractions (Sláma,
1984; Sláma, 2003). As the animals resumed motion, the pressure
changed inconsistently, rising or falling with the smallest movements
and making this method inappropriate for establishing the static
pressure range of a resting caterpillar.

An alternative method was therefore used based on balancing
fluid height in a capillary pipette. To minimize movements, the
animals were uniformly air chilled to 10–15°C using a cold
chamber. This temperature does not anesthetize the animals and is
the minimum at which the muscles still respond to stimulation in
the normal way (W. Woods, personal communication). Thin
acupuncture needles (0.12mm diameter; Seirin-America,
Weymouth, MA, USA) were used to introduce a weak point on the
dorsal posterior cuticle surface to one side of the dorsal midline. A
glass micropipette (tip i.d. ~0.1mm, tip o.d. ~0.15mm, tube o.d.
1mm) was then wedged into the body at this weak point and
hemolymph was drawn into the tube by capillary action aided by
the internal body pressure. An adjustable water column was
connected to the other end of the capillary tube to counterbalance
the hemolymph pressure by forcing the hemolymph back into the
animal. This water column also buffered transient pressure
fluctuations and its height was recorded and converted to units of
pressure. This method was calibrated using a silicone rubber
‘caterpillar mockup’ with controllable internal pressure (a large
water column reservoir, Fig.3A). During calibration the height of
the water column directly mapped to the height of the water reservoir
with a constant offset determined by the capillary effect of each
glass pipette. A pressure transducer was used to detect any pressure
fluctuation during each measurement. Typically, it took 5s to reach
equilibrium and readings were repeatable within 8% (54 calibration
samples). Most animals were not responsive during glass pipette
insertion (Fig.3B) and some survived to pupation.

Biometry measurement
Caterpillar bodies are fairly cylindrical (Fig.2A). To determine
scaling of the hydrostatic skeleton, we measured the body length
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and radius of caterpillars over a wide size range (Fig.4). The body
radius was defined as one half of the mean height of the first, third
and seventh abdominal segments viewed in the sagittal plane.
Measurements were made from resting caterpillars photographed
on a calibrated substrate using ImageJ.

Scaling data analysis
By convention, biological scaling data are modeled as a power
function using the slope of a linear regression of each measured
parameter plotted against body mass on a logarithmic plot. The slope
obtained in this way represents the power by which the measured
parameter scales with body mass. We use the terms ‘scaling factor’
and ‘scaling power’ interchangeably throughout this paper when
referring to this important scaling constant. For any object that scales
isometrically, the linear dimension would scale as a power of 1/3
and area 2/3 with respect to the volume. Assuming a constant density
(very small variation in caterpillars), the isometric scaling power
would be 0.33 for a linear dimension and 0.67 for an area. To
evaluate the ontogenetic scaling of various biometrics in caterpillars,
we compared the scaling factors from the experimental data against
a reference value using Student’s t-statistics (Quillin, 1998). All the
isometric reference curves in this study were constructed by scaling
up the lowest values in the experimental data with the isometric
scaling factors.

H. T. Lin and others

RESULTS
Manduca body aspect ratio

Biometric data from our Manduca colony show that the overall
body length and radius scale allometrically but are not far off
isometric predictions (Fig.4). Caterpillars generally grow from a
slender body aspect ratio to a stouter one. Based on our data, the
diameter:length aspect ratio scales from 0.118 to 0.137 (from a
hatchling to a ~2g fifth instar). Other species of caterpillar have
much more dramatic allometric body scaling (H.T.L. and B.A.T.,
personal observation).

Manduca cuticle ontogeny and muscle development
Both the mean thickness of the endocuticle layers and overall muscle
cross-sectional area scale allometrically, even though the data are
very close to the isometric predictions (Fig.5). The cuticle thickness
scaling power was 0.43, which is significantly larger than the 0.33
isometric power (t2.52, P0.008, d.f.37). The muscle cross-
sectional area increased in a step-wise manner at the beginning of
each instar but roughly along the isometric reference (0.67). The
typical ecdysis mass values were derived from an empirical
Manduca growth model (Nijhout et al., 2006). Because of the
technical difficulty of fixing all the internal structures, only 13 animal
samples (out of 39 animals) allowed total muscle cross-section
measurements on the A3 segment.

Glass capillary tube

Water column
Calibration water reservoir

h2

P

A B

Silicon tube ‘fake caterpillar’

h1

Water column

hm

Fig.3. Baseline body pressure measurement. (A)To calibrate pressure measurements using the capillary system, a ‘fake caterpillar’ was constructed from
silicon tubing similar in diameter to the animal. The internal pressure was controlled and buffered by a large water reservoir. The linearity of the change of
pressure was independently monitored by the pressure transducer, P, on the other end. A glass capillary micropipette was inserted into the fake caterpillar
to assess the internal pressure. The level of the water column h1 was mapped to the calibration water reservoir h2 in the calibration process. (B)The pipette
was then inserted into a live Manduca to obtain a baseline resting pressure using the height of the water column hm.
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Fig.4. Ontogenetic scaling of Manduca body
proportions. Body length (L) was measured
between the head capsule and anus, while
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for body length (P<0.001) and radius
(P0.0346). The 95% confidence band and
95% predicted band are plotted in red and
blue, respectively.
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Manduca body volume scaling
Manduca caterpillars become water buoyant after they molt into
fifth instar. By comparing the air weight and submerged water
weight of the same animal, the body volume can be estimated for
a range of animals from third to fifth instar. The scaling coefficient
of volume and mass on a logarithmic plot is 1.0184±0.0046
(r20.9997) with an almost negligible y-intercept. This suggests that
Manduca caterpillars become less dense than water when they
exceed 1g of body mass, crossing the point (0,0) on a log plot
(Fig.6A). This corresponds to the expected body mass (1.071g) at
the end of the fourth instar (Nijhout et al., 2006). A one-sample,
two-tailed Student’s t-test revealed that the 1.84% extra volume
expansion is significantly different from the constant density unity
scaling coefficient (t4.03285, P<0.001, d.f.25). Manduca
caterpillars decrease in density as they get larger. While the
accumulation of body fat could account for this change in body
density (Tsuchida and Wells, 1988), it could also result from changes
in the tracheal system. Our data show decreasing trends with non-
zero slopes in both the mean body density (t–4.0178, P0.0005,

d.f.25) and the net tissue density (t–3.0925, P0.0093, d.f.12)
(Fig.6B). However, these two parameters also decrease with the
same exponential power (slopes) (t1.2132, P0.2327, d.f.37),
suggesting that changes in body density are predominantly due to
increasing body fat or other low-density tissue growth. Nevertheless,
the air cavity volume (as a percentage of the total body volume)
increases significantly from 2.87% for a 0.05g animal to 7.69% for
a 2g animal. This large volume of internal gas could influence
dynamic loading of the hydrostatic skeleton.

Manduca baseline body pressure
Even under carefully controlled conditions, Manduca baseline
pressure varied widely, with most measurements clustering between
1 and 1.6kPa (Fig.7). Although body pressure tended to be lower
in larger animals, there was no satisfactory linear regression to this
trend (r2<0.2). Evidently, caterpillars in different stages can function
in a similar pressure range. The mechanical consequences of this
large operation pressure range were evaluated using a non-linear
finite element model, as discussed below.
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fitting cannot be applied (therefore not shown in logarithmic scales). However, the data closely follow the isometric scaling power (0.67, green isometric
reference curve).
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Modeling a hydrostatic skeleton
Unlike engineered structures, it is difficult to subject living animals
to standard mechanical tests. As an alternative approach,
mathematical and numerical models can be used to investigate and
predict the structural responses of animals. There has been a great
deal of effort in developing analytical solutions for inflatable
structures, going beyond elementary beam bending theory (Le Van
and Wielgosz, 2005; Thomas et al., 2006). To remove constraints
and simplifications associated with analytical solutions, we
developed an empirically based numerical approach to explore the
mechanical responses of the hydrostatic skeleton in caterpillars. The
ontogenetic scaling data presented in this paper provide realistic
values with which to implement a numerical simulation.

Caterpillar hydrostatic skeleton
Caterpillars have a very complex, multi-scale structure with body
weight and other applied loads jointly supported by the cuticle and
muscles. Experimental results show that the mechanical response
of the cuticle in the longitudinal and circumferential directions is
highly non-linear, with stresses increasing exponentially with stretch
(Lin et al., 2009). For a given stretch, stresses are larger for cuticle
specimens loaded in the circumferential direction than for specimens
loaded in the longitudinal direction, indicating anisotropy in the
material response (Fig.8A). In particular, greater stiffness in the
circumferential direction is necessary to support hoop stress
generated by pressurization. Muscles are primarily oriented in the
longitudinal direction and can be activated to increase body pressure.

H. T. Lin and others

A detailed description of the mechanical response of the ventral
interior lateral muscle of A3, both with and without stimulation, is
given in recent publications (Dorfmann et al., 2007; Dorfmann et
al., 2008; Lin et al., 2009).

Our data show that muscles have deformation-dependent
properties, exhibit loading–unloading hysteresis and are capable of
increasing stiffness during stimulation. The effect of the stimulus
depends non-linearly on the amount of deformation (Fig.8B). All
other tissues of Manduca are highly compliant relative to the cuticle
or muscles. While these tissues do not carry a significant load, they
are necessary to maintain internal pressure and to prevent the cuticle
from collapsing. Also, leg structures are protrusions that do not affect
the overall stiffness of the hydrostatic skeleton.

Finite element model
To model the hydrostatic skeleton of a caterpillar, we considered
an inflatable, horizontal, cylindrical tube with a circular cross-
sectional area. The shell of this tube was composed of two groups
of perfectly aligned, homogeneous, superimposed fibers. Fibers in
the circumferential direction accounted for the anisotropic behavior
of the cuticle (Fig.8A); fibers in the longitudinal direction accounted
for the behavior of major body muscles. The muscles could be
switched between passive (tonic) and active (tetanus) states (Fig.8B).
In the proposed model the total length is denoted by L, the radius
by R, the cuticle layer thickness by t1 and the equivalent muscle
layer thickness by t2 (Fig.9). We assumed that the total cross-
sectional muscle area could be spread uniformly around the
perimeter of the model. Therefore, the muscle layer thickness t2 is
given by the equality 2pRt2total cross-sectional muscle area. Two
shell layers having thicknesses t1 and t2 are superimposed and share
the same nodal points, in accordance with the parallel modeling
approach (Nelson and Dorfmann, 1995). Finally, the left end of the
finite element model is restrained to eliminate any rigid body motion,
while the right end is capped.

The constitutive equations used to describe the non-linear
mechanical response of the cuticle in the longitudinal and
circumferential directions are based on an exponential stress-stiffening
formulation (Fig.8A) (Lin et al., 2009). The force–extension
characteristics of Manduca muscles under constant-rate loading and
unloading can be simulated using a pseudo-elastic reinforcing model
both in a passive state and during tetanic stimulation (Fig.8B)
(Dorfmann et al., 2007). In addition to strain-dependent stress
softening, the responses of Manduca muscle depend on the rate of
loading and unloading (Dorfmann et al., 2008). For the purposes of
this work, we focused on the time-independent formulation, thereby
ignoring rate and viscous effects. To examine the effects of scaling
on caterpillar hydrostatic skeletons, we considered the sizes of a fifth
instar and a hatchling Manduca. Table1 summarizes the values of
the geometric parameters used for both size scales. In addition, we
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considered muscle fibers to be in either an active (tetanus) or passive
(tonic) state. With the two possible size scales and the two muscle
conditions, we considered four models in total.

Each of the four models was analyzed following a two-step process.
During the initial step, pressure was applied to the inner surface of
the cylindrical tube and to the cap at the free end. This pressure
increased monotonically to a predefined target value. During
pressurization, the model was subjected to longitudinal extension and
radial inflation. The correlation between the change in radius R and
the change in length L, at a given pressure, was non-linear and
depended on the magnitude of the geometric parameters, the cuticle
stiffness, the passive properties of the muscles and the force developed
during activation. The resulting stable deformed configuration was
cylindrical with a circular cross-section and the longitudinal axis
pointed in the horizontal direction. In the second step of the analysis,
a body force was added with the vertical component gradually
increasing from zero, with the applied pressure held constant. We
monitored the vertical deflection of the free end until the configuration
became unstable following a compression buckling mode, localized
at the fixed end. The model detailed here was implemented in the
non-linear finite element package Abaqus (Simulia, Providence, RI,
USA). The above two-step procedure decoupled the body
pressurization from muscle activation, and therefore allowed us to
simulate the hydrostatic skeleton at any target state.

The results of the four models are reported as normalized body
force versus normalized tip deflection. The body force was
normalized by the selected body masses (2g and 0.05g) and the tip
deflection by the initial body length L. The geometric dimensions
of the undeformed configuration were derived from the experimental
fits presented above. The total cross-sectional area of the muscles
was assumed to be isometric (0.67 power scaling) (Table1). The
initial slope of the normalized body force as a function of the
normalized tip deflection was used to define the specific bending
stiffness (a dimensionless parameter in this case).

Modeling results
At any given internal pressure, the model tip deflection increased
linearly in the initial phase with applied body force up to a critical
point (examples are given in Fig.10). The specific bending stiffness
of the large scale model was much lower than that of the small scale
model. This is the combined result of the increasing bending moment
and the scaling of overall structural parameters (Table1). In addition,
previous studies on inflatable beams (with a linear-elastic membrane)
showed that pressurization delayed the buckling deflection but had
little effect on the initial flexural stiffness (Fichter, 1966; NASA,
1965; Veldman et al., 2005). In contrast, the results from our finite
element simulation show how an increasing pressure directly
stiffens the structure (increase in initial slope). This is due to the
non-linear, stress-stiffening properties in the tissues and the large
deformation kinematics considered in the analysis.

The bending stiffness increased non-linearly with increasing
internal pressure (Fig.11) across the two model sizes, and the two
muscle states, passive (tonic) and active (tetanus). The resulting
trends clearly show that the increase in stiffness due to pressurization
is much higher for the smaller model (by at least an order of
magnitude as shown in the semi-log plot in Fig.11). Also, the
increase in stiffness is more pronounced at low values of internal
pressure, becoming less significant at high pressures.

The effect of cuticle thickness on model stiffness was very
revealing. Specifically, we considered the small scale model with
muscle in the passive (tonic) state and with an internal pressure of
1kPa (typical body pressure in Manduca). We doubled the cuticle
thickness t1 from the original value of 0.007mm to 0.014mm.
Contrary to intuition, the model appeared softer during loading, and
became unstable at a smaller applied body force. This is a direct
consequence of the non-linear constitutive model used for the cuticle.
The exponential increase in stress with applied stretch is equivalent
to an increase in stiffness with increasing load in the cuticle (Fig.8).
For a given internal pressure, the increase in cuticle thickness reduces
the hoop and longitudinal stresses and therefore the material
stiffness. A similar argument applies, but to a lesser extent, when
the total cross-sectional area of the muscles is increased (Fig.11).

DISCUSSION
Our findings have several implications for the use of a hydrostatic
skeleton for body support. First of all, bending stiffness in a
pressurized cylinder with a hyperelastic shell is determined by three
major factors: internal pressure, shell wall thickness and material
properties. Baseline internal pressure dictates the amount of stress
in the shell wall before a body load is applied. Shell wall thickness
determines the distribution of this stress. The non-linear material
properties relate the stress in the shell wall to the resulting strain
which produces the structural deformation. These three parameters
therefore have a major impact on the initial conditions and structural
stiffness of an inflated cylinder. Of course, whether this stiffness is
sufficient to allow the body to be functional when cantilevered

Table 1. Modeling parameters derived from the experimental
scaling data fits for two body sizes

Small body size (0.05g) Large body size (2g) Scaling factor

L 18.6mm 50.3mm 0.27
R 1.10mm 3.45mm 0.31
t1 0.007mm 0.034mm 0.43
A 0.144mm2 1.71mm2 ~0.67
t2 0.021mm 0.079mm Derived from A

L, body length; R, body radius; t1, body wall thickness; t2, muscle layer
thickness; A, area.

Circumferential fiber
direction (cuticle model)

Axial fiber direction 
(muscle model)

L

Fixed end

Capped end

Structural model

R
t1

t2

Fig.9. Structural model of the hydrostatic skeleton in caterpillars. The
hydrostatic skeleton in the caterpillar was realized as an inflatable
cylindrical tube with transverse isotropy due to fiber reinforcement. The
body length L, radius R, body wall thickness t1 and equivalent muscle layer
thickness t2 were derived from the animal biometric data fits at body
masses of 2 and 0.05g, respectively (see Table 1). The body wall contains
two sets of fiber reinforcement, the first in the circumferential direction
characterized by cuticle mechanics (cuticle thickness) and the second
characterized by muscle mechanics. The muscle’s stress-dependent
stiffness simulates the behavior of Manduca muscles in either the tetanus
or the tonic condition.
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depends on the body loading condition, which comes from the
overall body dimensions and body weight.

There are two major mechanisms to control the body stiffness in
caterpillars; body pressurization and muscle activation. Body
pressurization stretches the body shell in the longitudinal and
circumferential directions. Because of the stress-stiffening property
of the tissues, the overall body bending stiffness increases in
response to pressurization. However, the stiffness eventually plateaus
as the stress-stiffening effect diminishes in the tissues at high stress
states. Further stiffening can be achieved by muscle activation, which
not only increases body shell stiffness but also resists body
elongation. The animals are most likely to employ the two
mechanisms simultaneously. This study explored these two
mechanisms independently in order to reveal the range of capable
states a caterpillar can achieve. The next step will be to examine
how muscle activation determines body volume and pressure.

Curiously, increasing muscle cross-sectional area or cuticle
thickness will not result in higher structural bending stiffness for a
given internal pressure. For a pressurized cylindrical shell, an
increase in the wall thickness decreases the stress for the same
applied forces (i.e. internal pressure). To stress the added material
to the same state, the hydrostatic skeleton has to operate at a higher
baseline pressure, which may not be ideal for the animal. This may
be why caterpillars such as Manduca maintain almost isometric
scaling for muscle and cuticle thickness.

Alternatively, the animal can solve the body support problem by
simply limiting its size. As the body load scales with body volume,
and the body dimensions scale almost linearly, overall size reduction
alleviates the body load dramatically. For an inflatable cylinder with
a constant internal pressure, the hoop stress is proportional to the
body radius and disproportional to the body wall thickness. In
Manudca caterpillars, slight allometric scaling in the body wall
implies higher hoop stress in small hydrostatic skeletons. This puts
stress-stiffening material under a higher initial stress. Consequently,
small hydrostatic skeletons are actually operating at higher stress
for the same pressure. Of course, changing the body diameter:length
aspect ratio could affect the overall structural stiffness and the
loading condition. Therefore, another simple solution to improve
body support is to change the aspect ratio with increasing body size,
as seen in most caterpillars. This is in fact quite dramatic in some
caterpillar species where the hatchling has a diameter:length ratio
of ~0.1, which triples to ~0.3 in the last instar (H.T.L. and B.A.T.,
unpublished data). In fact, some small inchworms can also maneuver
and remain stable even with a diameter:length ratio of ~0.05.

The above analyses may allow us to address an important
dichotomy in caterpillar locomotion: why do some inch and others
crawl? Inching involves well-controlled casting behavior to find a
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target substrate and precise placement of the posterior legs to meet
the anterior ones. This mode of locomotion requires an effective
hydrostatic skeleton and body coordination as predicted in computer
simulations (Ghanbari et al., 2008). On the other hand, crawling
can be identified by the propagation of an anteriograde body
contraction wave (Snodgrass, 1993). This mode of locomotion does
not necessarily rely on a hydrostatic skeleton. Ground reaction force
analysis of Manduca locomotion shows that a crawling caterpillar
can use the substrate as an ‘environmental skeleton’ to transmit
compressive forces while keeping most of the body in tension (Lin
and Trimmer, 2010). Why do different species of caterpillar adapt
inching and/or crawling while sharing the same general body
anatomy? The answer could simply be a matter of size. There might
be a mechanical limitation to maneuvering primarily with a
hydrostatic skeleton when the caterpillar is big.

Hydrostatic body support for large caterpillars requires muscle
activation and significant pressurization. To avoid constant high
pressure in the body and to minimize muscle work, large caterpillars
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keep their body aligned with the substrate most of the time,
supported by closely spaced prolegs. Small caterpillars, on the other
hand, can easily achieve self-supporting body stiffness even with
muscle in the tonic state. The hydrostatic skeleton can operate at
normal physiological pressure and the body responds to muscle
control dynamically. Under these conditions, smaller caterpillars do
not need many leg supports and inching becomes an appealing
locomotion strategy, especially when they are very small compared
with the branched plant structures. This argument may apply to all
small caterpillars, as well as hatchlings of large caterpillars. Why
then does Manduca not change from inching to crawling as it grows?
Perhaps such a switch is difficult for the control of prolegs as it
involves a major modification of the gripping pattern. It is interesting
to note, however, that Manduca caterpillars in the first two instars
have noticeably smaller mid-abdominal prolegs (more like
inchworms). It is very likely that hatchlings spend more time picking
up their bodies in search of new food substrates. In fact, gait
switching has been reported in some caterpillar species during
development (Hinton, 1955). An extensive behavioral survey should
be able to confirm this hypothesis.

CONCLUSIONS
To summarize, we have determined the biometric scaling of
Manduca caterpillars over two orders of magnitude of body mass
during development. The body density and baseline pressure drop
only slightly. Combining these new scaling data with two previously
published constitutive models of caterpillar muscles and cuticle, we
used a non-linear finite element model of an inflatable cylinder to
represent the hydrostatic skeleton of a caterpillar. This model shows
that increasing body pressure has a direct impact on the overall
bending stiffness up to the physiological pressure range. Starting
from the minimum physiological pressure, any increase of body
pressure does not give rise to a significant increase in structural
bending stiffness. However, muscle activation can double this
stiffness regardless of body size. The model also demonstrates that
near-isometric scaling can decrease the overall bending stiffness
dramatically. Although the initial parameters were based on
Manduca, this modeling approach can be applied to different body
forms and sizes. It can be used to examine mechanical constraints
on caterpillars of different sizes or species. More specifically, the
decrease of inherent stiffness due to up-scaling may impose a great
biomechanical cost to large caterpillars and therefore lead to a
behavior preference for crawling. In contrast, inching is much more
commonly found in caterpillars with small bodies.
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