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SUMMARY

We have examined the aerodynamic effects of corrugation in model insect wings that closely mimic the wing movements of
hovering insects. Computational fluid dynamics were used with Reynolds numbers ranging from 35 to 3400, stroke amplitudes
from 70 to 180deg and mid-stroke angles of incidence from 15 to 60deg. Various corrugated wing models were tested (care was
taken to ensure that the corrugation introduced zero camber). The main results are as follows. At typical mid-stroke angles of
incidence of hovering insects (35-50 deg), the time courses of the lift, drag, pitching moment and aerodynamic power coefficients
of the corrugated wings are very close to those of the flat-plate wing, and compared with the flat-plate wing, the corrugation
changes (decreases) the mean lift by less than 5% and has almost no effect on the mean drag, the location of the center of
pressure and the aerodynamic power required. A possible reason for the small aerodynamic effects of wing corrugation is that
the wing operates at a large angle of incidence and the flow is separated: the large angle of incidence dominates the corrugation
in determining the flow around the wing, and for separated flow, the flow is much less sensitive to wing shape variation. The
present results show that for hovering insects, using a flat-plate wing to model the corrugated wing is a good approximation.
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INTRODUCTION

Flapping flight is employed by most flying insects, birds and bats.
Scientists have long been interested in the aerodynamics of flapping
wings, and recently, the aerodynamics of small insects is gaining
more attention because of the possible applications in micro-aerial
vehicles (MAVs). Much work has been done on the aecrodynamics
of flapping insect wings using experimental and computational
methods (e.g. Ellington et al.,, 1996; Dickinson et al., 1999;
Usherwood and Ellington, 2002a; Usherwood and Ellington, 2002b;
Sane and Dickinson, 2001; Liu et al., 1998; Sun and Tang, 2002;
Wang et al., 2004), and considerable understanding of the
aerodynamic-force-generation mechanisms has been achieved. In
these studies, flat-plate model wings were employed; however, it
is well known that insect wings are corrugated (e.g. Dudley, 2000).
The authors of the studies using flat-plate wings have implicitly
assumed that the corrugation has a minor effect on aerodynamic
forces of the wings. It is of great interest to test this assumption,
and to know whether the wing corrugation significantly influences
the aerodynamic force production of flying insects.

There has been some work on the effects of wing corrugation
under steady flow conditions (e.g. Rees, 1975a; Kesel, 2000; Vargas
et al., 2008). Rees tested a corrugated wing (model hoverfly wing)
and a smooth wing [the section of the smooth wing was formed by
drawing a smooth ‘envelope’ through the corner points of the
corrugated section (Rees, 1975a)]. Lift and drag were measured at
Reynolds numbers (Re) of 450, 800 and 900. He found little
difference in aerodynamic forces between the smooth and corrugated
models. His flow visualization experiment showed that flow over
the corrugated wing seemed to introduce some fluid becoming
trapped in the folds, where it was either stagnant or recirculating,
and the main flow seemed to behave as if the folds were solidly
infilled. Kesel tested various corrugated sectional profiles at Re=7880

and 10* (Kesel, 2000). The profiles were constructed using
measurements taken from the cross sections at different locations of
a dragonfly forewing. His results showed that the corrugated profile
had a slightly better aerodynamic performance than the corresponding
flat-plate airfoils. Recently, Vargas et al. conducted a comprehensive
computational study of a corrugated airfoil in the flow velocity range
of gliding dragonflies and in that of fixed-wing micro-aerial vehicles
(Vargas et al.,, 2008). They also computed the flows of the
corresponding profiled airfoil (the smoothed counterpart) and flat-
plate airfoil. Their results demonstrated that the corrugated wing
performed as well as, and at times slightly better than, the profiled
airfoil and the flat-plate airfoil.

These studies (Rees, 1975a; Kesel, 2000; Vargas et al., 2008)
were conducted for fixed-wing flight (gliding), and the flow was
steady. Luo and Sun conducted a computational study on a
corrugated wing operating under unsteady flow condition, but it was
only for a sweeping motion (the wing started from still air and rotated
for approximately 150deg) (Luo and Sun, 2005). To our knowledge,
the effects of wing corrugation on aerodynamic forces of wings in
flapping motion have not been reported. It is important to know
whether the effects are significant, or the effects are negligible, and
smooth model wings can be used in experimental and computational
studies. Another problem with the previous studies (Rees, 1975a;
Kesel, 2000; Vargas et al., 2008) was that it was not clear whether
or not the corrugated wing and the smoothed counterpart had the
same camber. As a result, it is uncertain whether the slightly better
aerodynamic performance is due to the camber effect or the
corrugation effect.

In the present study, we address the above questions by studying
the aerodynamic effects of corrugation of wings in flapping motion
using the method of computational fluid dynamics (CFD). Different
corrugation patterns are considered. The effects of wing corrugation
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were investigated by comparing the aerodynamic forces and flows
between corrugated and flat-plate wings. Care was taken to ensure
that the corrugated wing introduced zero camber. Our group has
studied the effect of wing camber recently (Du and Sun, 2010). Here,
we try to isolate the effect of wing corrugation. It is possible that
there exists camber—corrugation interaction, and this will be studied
in our future work. Wing kinematics in forward flight is generally
very different from that in hovering flight (e.g. in forward flight,
the stroke plane tilts forward, the angles of incidence of the wings
are lower and the down- and upstrokes are asymmetrical), and hence
the corrugation effect might be different for these two types of flight.
Because in each type of flight, there are many factors to consider
(Reynolds number, stroke amplitude, angle of incidence, wing aspect
ratio, corrugation pattern, etc.), it is better to restrict the present
study to one type of flight. As a first step, we have studied the
corrugation effects in hovering flight.

MATERIALS AND METHODS
The corrugated model wings and the flat-plate wing

To study the effects of wing corrugation, we used four model wings:
three corrugated wings with different corrugation patterns and one
flat-plate wing. A rectangular planform wing with a length (R) to
chord length (c) ratio of 3 (aspect ratio of 6) was used for the model
wings. The wing sections of these model wings are shown in Fig. 1.
The thickness of the flat-plate wing was 0.03¢. The other wings were
the same thickness, but their chordal profiles were corrugated. On
the basis of the study by Rees (Rees, 1975b) on the sectional shapes
of wings of some insects (two dipterans and a hymenopteran), it is
reasonable to model the corrugation as triangular waves; between the
leading edge and a point 0.5-0.7¢ from the leading edge. For model
A, the corrugations were of six waves between the leading edge and
a point 0.6¢ from the leading edge (Fig. 1). For model B, six waves
were also used but they were between 0.1c¢ and 0.7¢ from the leading
edge (Fig. 1). For model C, four waves were used between 0.1¢ and
0.5¢ from the leading edge (Fig.1). In studying the structural
properties of insect wings, Rees also modeled the corrugations as
triangular waves (Rees, 1975a; Rees, 1975b). He measured the
wavelengths and amplitudes of the corrugations of seven species of
insect (see table 1 in Rees, 1975b), and the average values of the
wavelength and the amplitude of the corrugations were approximately
0.1c and 0.03c, respectively. In the present study, we set the
wavelength of the triangular wave as 0.1¢ and the amplitude as 0.05¢.
The corrugation amplitude used here (0.05¢) is larger than the
measured value (average, 0.03¢). The reason for this is that the present
work tested the assumption that the corrugation does not significantly
influence the aerodynamic force production and so it is safe to use a
value that is a little larger than the average value.

The wing motion
The flapping motion is outlined in Fig.2. O,X.Y,Z is an inertial
system (fixed on the body of an insect in hovering or constant-speed
flight) and o,x,y,z is a non-inertial coordinate system fixed on the
flapping wing. The flapping motion of the wing is approximated as
follows. The motion consists of two parts: the translation (azimuthal
rotation, about the Z-axis; see Fig. 2A) and the rotation (flip rotation,
about the y-axis; see Fig.2A); the out-of-plane motion of the wing
(deviation) is ignored. The time variation of the translation speed
(¢b) of the wing is approximated by the simple harmonic function:

¢ =-nn ®sin2nnt), (M

where 7 represents differentiation with respect to time ¢, ¢ is the
positional angle, n the wingbeat frequency and @ the stroke
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Fig. 1. Sections of the model wings.

amplitude. The angle of incidence of the wing (o) takes a constant
value during the downstroke or upstroke translation (the constant
value is denoted by oy for the downstroke translation and o, for
the upstroke translation; o4 and o, are known as mid-stroke angles
of incidence); around stroke reversal, the wing flips and o changes
with time, also according to the simple harmonic function. The
function representing the time variation of o during the supination
at the mth cycle is:

At .
o =04+ a{(t—tl)—z—sm[ZTr,(t—tl)/At,]}, H<t<fH+Af, (2a)
T

where At is the time interval of wing rotation during the stroke
reversal and « is a constant:

a=(180deg — o1, — 0tg) / Aty, (2b)
and ¢, is the time when the wing rotation starts:
ti=mT—0.5T— At /2. Qc)

Pronation can be expressed in the same way. It is assumed that
the axis of the pitching rotation is located at 0.25¢ from the leading
edge of the wing. For many insects, Eqns1 and 2 are good
approximations to the measured data (Liu and Sun, 2008; Ellington,
1984). From Eqns1 and 2, we see that to prescribe the flapping
motion, @, the wingbeat frequency (n), Af; and the angles of
incidence in the downstroke and upstroke translations, o4 and o,
respectively, need to be given.

The flow equations and the solution method
The governing equations of the flow are the three-dimensional (3-
D) incompressible unsteady Navier—Stokes equations. They have
the following dimensionless form:

V-u=0 3)

Jdu 1,

at+uVu Vp+ReVu, “
where u is the non-dimensional fluid velocity field, p is the non-
dimensional fluid pressure, V is the gradient operator and V? is the
Laplacian operator. In the non-dimensionalization, U, ¢ and ¢/U are
taken as reference velocity, length and time, respectively (U is the
mean flapping velocity, defined as U=2®nr, where 7 is the radius
of second moment of wing area); Re is defined as Re=cU/v, where
v is the kinematic viscosity of the air. Similar to our previous work
(e.g. Sun and Tang, 2002; Sun and Yu, 2006), Eqns3 and 4 are
solved using an algorithm based on the method of artificial
compressibility. The algorithm was developed by Rogers and Kwak
(Rogers and Kwak, 1990) and Rogers et al. (Rogers et al., 1991)
and is outlined below.
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Fig. 2. (A) Sketches of the reference frames and wing motion. O,X,Y,Zis an
inertial frame, with the XY plane horizontal and coincident with the stroke
plane. o,x,y,z is a frame fixed on the wing, with the x-axis along the wing
chord and the y-axis along the wing span. (B) Time courses of the
translation speed (¢) and the rotational speed (&) in one cycle. ¢, positional
angle of the wing; o, angle of incidence of the wing; R, wing length. (C) A
sketch of the motion of a section of the wing; a dot is placed on the leading
edge of the wing section; f, non-dimensional time.

The equations are first transformed from the Cartesian coordinate
system (X,Y,Z,7) to the curvilinear coordinate system (§,1,,7) using
a general time-dependent coordinate transformation. For a flapping
wing in the present study, a body-fixed coordinate system (0,x,,z)
is also employed (Fig.2). The inertial coordinates (O.,X,Y,Z) are
related to the body-fixed coordinates (o,x,y,z) through a known
relationship, and the transformation metrics in the inertial coordinate
system (& EasEo). (MuoTly o) and (GGG, which are needed
in the transformed Navier—Stokes equations, can be calculated from
those in the body-fixed, non-inertial coordinate system (&y,&y.E),
(MxMy-N2) and (§,.Gy.C,), which need to be calculated only once.
The time derivatives of the momentum equations are differenced
using a second-order, three-point backward difference formula. To
solve the time-discretized momentum equations for a divergence
free velocity at a new time level, a pseudo-time level is introduced
into the equations and a pseudo-time derivative of pressure, divided
by an artificial compressibility constant, is introduced into the
continuity equation. The resulting system of equations are iterated
in pseudo-time until the pseudo-time derivative of pressure
approaches zero, thus, the divergence of the velocity at the new
time level approaches zero. The derivatives of the viscous fluxes

in the momentum equation are approximated using second-order
central differences. For the derivatives of convective fluxes, upwind
differencing based on the flux-difference splitting technique is used.
A third-order upwind differencing is used at the interior points and
a second-order upwind differencing is used at points next to
boundaries. Details of this algorithm can be found in papers by
Rogers and Kwak (Rogers and Kwak, 1990) and Rogers et al.
(Rogers et al., 1991).

The computational grids are generated using a Poisson solver,
which is based on the work of Hilgenstock (Hilgenstock, 1988).
They are O—H-type grids. The grids will be further described in the
Results, and discussion and examination of the convergence of
solutions will also be conducted there. Boundary conditions are as
follows. For far-field boundary conditions, at inflow boundary, the
velocity components are specified as free-stream conditions
(determined by flight speed), whereas pressure is extrapolated from
the interior; at the outflow boundary, pressure is set equal to the
free-stream static pressure and the velocity is extrapolated from the
interior. On the wing surface, impermeable wall and non-slip
conditions are applied and the pressure is obtained through the
normal component of the momentum equation written in the moving
grid system.

Once the Navier—Stokes equations are numerically solved, the
fluid velocity components and pressure at discretized grid points
for each time step are available. The aerodynamic forces and moment
[lift, L, drag, D and pitching moment, M (moment about the spanwise
axis at quarter chord)] acting on the wing are calculated from the

Grid dimension=20x33X20"
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Fig. 3. Portions of the grids of corrugated model wing B.
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Fig. 4. Time courses of the lift (C) and drag (Cp) coefficients of the flat-
plate wing for different grids. f, non-dimensional time.

pressure and the viscous stress on the wing surface. The lift, drag
and moment coefficients (denoted as Cy, Cp and Cyy, respectively)
are defined as follows: Cp=L/0.5p U3S, Cp=D/0.5p U2S and
Cm=M/0.5pUSc, where p is the fluid density and S is the wing
area.

Non-dimensional parameters that affect the aerodynamic
force coefficients
For a wing of given geometry, solution of the non-dimensional
Navier—Stokes equations (Eqns3 and 4) under given boundary
conditions gives Cp, Cp and Cy;.

The only non-dimensional parameter in the Navier—Stokes
equations is Re. The boundary condition of the Navier—Stokes
equations is determined by the wing motion. It can be shown that
after non-dimensionalizing Eqns1 and 2, non-dimensional
parameters that prescribe the flapping motion of the wing are ®,
At.* (non-dimensional time interval of wing rotation, non-
dimensionalized by ¢/U), o4 and o. Therefore, non-dimensional
parameters that might affect Cy, Cp and Cy; are Re, @, At,*, og and
Oy

As observed in Ellington’s comprehensive experiments on wing
kinematics of many hovering insects (Ellington, 1984), At,* does
not change greatly between insects (A#* is approximately 20% of
the wingbeat cycle). Furthermore, Wu and Sun have shown that Cp,
and Cp and are only slightly affected by change in Az,* (Wu and
Sun, 2004). Thus in the present study we fixed Az* as 20% of the
wingbeat cycle and only changed Re, ® and o

RESULTS AND DISCUSSION
Code validation and grid resolution test

The code used in this study is the same as that in Sun and Tang
(Sun and Tang, 2002). It was tested by measured unsteady
aerodynamic forces on a flapping model fruit fly wing (Sun and
Wu, 2003), on revolving model wings (Wu and Sun, 2004) and on
a pair of wing in ‘fling motion’ (Sun and Yu, 2006). These tests
showed that the unsteady aerodynamic forces computed by the
present CFD code agreed well with the experimental measurements.

Previous work by our group (Luo and Sun, 2005) showed that a
grid with approximately 110 points around the wing section could
resolve the flow around the corrugated wing. In the present study,
grids with dimensions of approximately 70X 110X 70 in the normal
direction, around the wing section and in the spanwise direction,
respectively, were used for the corrugated wings (for model wing
A: 65X105X70; for model wing B: 70X 111X70; for model wing
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Fig.5. Time courses of the lift (C) and drag (Cp) coefficients of corrugated

model wing B for different grids. f, non-dimensional time.

C: 65X113X70). A grid with dimensions 86X99X 114, in the
normal direction, around the wing section and in the spanwise
direction, respectively, was used for the flat-plate wing. The first
layer grid thickness was 0.001c. In the normal direction, the outer
boundary was set at 20¢ from the wing and in the spanwise direction
the boundary was set at 6¢ from the wing. The non-dimensional
time step (non-dimensionalized by ¢/U) was 0.02 (the effect of the
time step value was studied and it was found that a numerical
solution effectively independent of the time step was achieved if
the time step value was <0.02).

In order to give some quantitative assessment of the accuracy of
the solution, we tested the following grids. For the corrugated wing
(model wing B), two more grids, 38X59X38 (first layer grid
thickness was 0.002) and 20X33X20 (first layer grid thickness was
0.004), were considered. Two more grids were also considered for
the flat-plate wing, 45X 53X 57 (first layer grid thickness was 0.002)
and 23X27X29 (first layer grid thickness was 0.004). As an
example, the three grids for the corrugated wing (course:
20X33X20; medium: 38X59X38; dense: 70X 111X70) are shown
in Fig.3 (note that in each refinement, the grid dimension in each

6rA

Fig. 6. Time courses of the lift (C.), drag (Cp) and pitching moment (Cy)
coefficients of corrugated model wing A and the flat-plate wing at Re=200,
®=150deg and oy (and o,)=40deg. The lines A and D indicate corrugated
model wing A and the flat-plate wing, respectively. Re, Reynolds number;
@, stroke amplitude; o4 and o, down- and upstroke angles of incidence,
respectively. { non-dimensional time.
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direction is approximately doubled). Calculations were performed
using the above grids for the case of oty (and or,)=40deg and Re=3400
(this Re was the highest considered in this study).

For a clear description of the results, we express the time during
a cycle as a non-dimensional parameter, , such that /=0 at the start
of'a downstroke, and =1 at the end of the subsequent upstroke. The
computed results of the flat-plate wing and the corrugated wing are
shown in Figs 4 and 5, respectively. It can be seen that for both the
flat-plate wing and the corrugated wing, the first grid refinement
produces a relatively large change in the results, but the second grid
refinement produces a very small change in the results.

For the corrugated wing, using the first grid refinement (from
grid 20X33X20 to grid 38X59X38), the mean magnitudes of
change in Cp and Cp are 0.24 and 0.29, respectively, and the numbers
for the second grid refinement (from grid 38X59X38 to grid
70X111X70) are 0.06 and 0.08, respectively. The ratio between
the changes in Cp (0.06/0.24) and that in Cp (0.08/0.29) are
approximately 1/4, as expected for the second-order method. Let
us use the above data to give an estimate of the accuracy of the
solution obtained by grid 70X 111X70. Suppose that the grid is
further refined (doubling the grid dimension in each direction), one
could expect that the changes in Cy, and Cp would be approximately

=31 A #=0.125 Flat-plate wing

26 lemar ciidana  mmmmmmee-- ¢ ted wi
2 ,_\Upper surface orrugated wing

-1 ~e . . AN y]

Cr

Lower surface

2 . . . . )

< Lower surface

0 0.2 0.4 0.6 0.8 1
x/c

Fig.7. Surface pressure distributions (C,) at half-wing length of corrugated
model wing A and the flat-plate wing at various times during a downstroke
at Re=200, ®=150deg, oq4 (and oy)=40deg. Re, Reynolds number; @,
stroke amplitude; og and oy, down- and upstroke angles of incidence,
respectively; f, non-dimensional time; ¢, chord length.

0.015 and 0.02, respectively (0.06/4=0.015 and 0.08/4=0.02). Based
on the 1/4-convergence ratio, we could estimate that the solution
by grid 70X111X70 has errors in Cp, and Cp of 0.02 and 0.027,
respectively [0.015X(4/3)=0.02 and 0.02X(4/3)=0.027]. The mean
Crand Cp are 2.09 and 1.98, respectively. Therefore, it is estimated
that the solution based on the grid 70X 111X70 has a ~1% error in
the mean Cy and Cp.

Trailing

edge vortex Trailing

edge vortex

Fig. 8. Vorticity plots at half-wing length of the flat-plate wing and
corrugated model wing A at various times during a downstroke at Re=200,
®=150deg, og (and oy,)=40deg. Re, Reynolds number; ®, stroke
amplitude; oy and oy, down- and upstroke angles of incidence,
respectively. Solid and broken lines indicate positive and negative vorticity,
respectively. The magnitude of the non-dimensional vorticity at the outer
contour is 4 and the contour interval is 3. f, non-dimensional time; LEV,
leading edge vortex.
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For the flat-plate wing, using the first grid refinement, the mean
magnitudes of changes in Cp and Cp are 0.31 and 0.23, respectively,
and using the second refinement, the values are 0.07 and 0.07. Again,
the ratio between the changes in Cp (0.07/0.31) and that in Cp
(0.07/0.23) are approximately 1/4, as expected for the second-order
method. Similarly, we could estimate that for the flat-plate wing,
the solution based on the grid 86X99X114 also has approximately
1% error in the mean Cy, and Cp.

Corrugated model wing A at typical values of Re, ® and o
We first investigate the aerodynamic effects of corrugation of one
of the above corrugated model wings (model wing A) at typical
values of Re, @ and o [Re=200, ®=150deg, oy (and oy,)=40deg].
We will consider the cases of other corrugation patterns and the
corrugation effects at other values of Re, @ and o below.

Fig. 6 gives the time courses of Cy, Cp and Cy;, of the corrugated
wing in one cycle; results for the flat-plate wing are included for
comparison. The time courses of Cp, Cp and Cy; of the corrugated
wing are almost the same as their counterparts for the flat-plate wing,
although the lift of the corrugated wing is slightly smaller than that

Fig. 10. Time courses of the lift (C.), drag (Cp) and pitching moment (Cy)
coefficients of various corrugated wings and the flat-plate wing at Re=200,
®=150deg and o4 (and o,,)=40deg. Lines A, B and C show corrugated
models A, B and C, respectively and line D, the flat-plate wing. Re,
Reynolds number; @, stroke amplitude; o4 and o, down- and upstroke
angles of incidence, respectively. f non-dimensional time.
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Fig. 9. Vorticity plots at various
spanwise locations of the flat-
plate wing and corrugated
model wing A at the middle
downstroke (£=0.25) at Re=200,
®=150deg, og (and oy)=40deg.
Re, Reynolds number; ®,
stroke amplitude; oy and oy,
down- and upstroke angles of
incidence, respectively. { non-
dimensional time; r, radial
distance along the wing length;
R, wing length; LEV, leading
edge vortex.

of the flat-plate wing and the drag of the corrugated wing is slightly
larger in some parts of the wingbeat cycle and slightly smaller in
other parts of the wingbeat cycle than that of the flat-plate wing.

The mean lift (Cp), drag (Cp) and moment (Cy) coefficients
(averaged over the wingbeat cycle) of the corrugated wing are 1.89,
2.01 and 0.40, respectively. Their counterparts for the flat-plate wing
are 1.97, 2.01 and 0.39, respectively. From the pitching moment,
the chordwise location of the center of pressure can be computed
(the contribution of the surface viscous stress to the pitching moment
is negligible). Let / denote the distance between the leading edge
and the center of pressure. For the corrugated wing and the flat-
plate wing, the mean //c is 0.43 and 0.42, respectively. The
corrugation decreases the mean lift of the flat-plate wing by
approximately 4% but has almost no effect on the mean drag and
the mean location of center of pressure (the change in the mean
location of center of pressure caused by the corrugation is only
0.01c¢).

Fig.7 gives the surface pressure distributions at half-wing length
at various times in the downstroke for the corrugated wing and the
corresponding flat-plate wing (results in the upstroke are similar).
It can be seen that in the region of the folds, the surface pressure
of the corrugated wing varies around that of the flat-plate wing.
That is, the corrugation only produces some local ‘waves’ in the
surface pressure distribution, hence it has very little effect on the
aerodynamic force (note that generally the surface pressure is more
than one order of magnitude larger than the surface viscous stress,
and the aerodynamic force on the wing is mainly due to the surface
pressure).

We can use the flow information to gain some insights into the
effects of wing corrugation. Fig.8 shows the contour plots of the

Table 1. Mean lift, drag and pitching moment coefficients of various
corrugated wings and a flat-plate wing at typical values of Re, ®
and o.[ Re=200, ®=150deg and oy (and o,,)=40 deg]

Wing model* C. Co Cw

A 1.89 2.01 0.40 (0.43)
B 1.91 2.00 0.39 (0.41)
(¢} 1.95 2.01 0.40 (0.43)
D 1.97 2.01 0.39 (0.42)

*A, B and C, corrugated wings models; D, flat-plate wing. C;, Cp, Cy, mean
lift, drag and pitching moment coefficients, respectively; Re, Reynolds
number; @, stroke amplitude; o4 and o, down- and upstroke angles of
incidence, respectively. Numbers in the parentheses are the
dimensionless distance between the pressure center and leading edge.
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spanwise component of vorticity at half-wing length at various times
in the downstroke for the corrugated wing and the corresponding
flat-plate wing (the vorticity plots in the upstroke are similar). The
flows are separated and with a leading edge vortex (LEV) attaching
to the upper wing surface. The positive vorticity (solid lines) shed
from the trailing edge of the corrugated wing (i.e. the starting vortex
or trailing vortex) is almost the same as that of the flat-plate wing
(see plot at /=0.125). Because the total vorticity is conserved, this
indicates that the corrugated wing and the flat-plate wing have
approximately the same total negative vorticity around the wing.
On the basis of the relationship between the aerodynamic force and
the vorticity moment (e.g. Wu, 1981), the two wings would have
approximately the same aerodynamic force.

It should be noted that in Fig. 8, plots of vorticity are given only
for the mid-wing section. For the flapping 3-D wing, because of
the finite wing length and the variation of relative velocity along
the wing span, flows will be different along the wing span. Fig.9
shows the vorticity line plots at various wing sections at the middle
downstroke (#=0.25). It is apparent that for both the flat-plate wing
and the corrugated wing, near the wing root (#/R=0.1; r denotes the
radial distance along the wing length), the LEV is very small; and
as r/R becomes larger, the LEV increases. This clearly shows the
3-D features of the flow.

A possible reason for the corrugations having only a small effect
on aerodynamic forces is that the wing operates at a large angle of
incidence (approximately 40 deg) and the flow is separated. The large
angle of incidence dominates the corrugation in determining the
flow around the wing (see analysis on results of varying angle of
incidence below), and for separated flow the aerodynamic forces
are much less sensitive to wing shape variation.

Various corrugated model wings at typical values of Re, @
and o
Here we consider the cases of different corrugation patterns at the
same typical values of Re, ®@ and o as above [Re=200, ®=150deg,
0 (and oy)=40deg].

Fig. 10 gives the time courses of Cr, Cp and Cy of the corrugated
wings (model wings A, B and C) in one cycle; results for the flat-
plate wing are included for comparison. Similar to the case of wing
A, the time courses of C, Cp and Cy; for wings B and C are almost
the same as their counterparts of the flat-plate wing. Also similar
to the case of wing A, the lift of wings B and C is slightly smaller
than that of the flat-plate wing and the their drag is slightly larger
in some parts of the wingbeat cycle and slightly smaller in other
parts than that of the flat-plate wing. The mean force and moment
coefficients and the mean location of center of pressure of the
corrugated and flat-plate wings are given in Table 1. For all the
corrugated wings considered, the effects of corrugation on
aerodynamic forces are small.

Although the effects of corrugation are small, we can still identify
some differences between the different corrugated wings considered
here. As seen from Fig. 10 and Table 1, the corrugation effect for
wing A is a little larger than that for wing B, and the corrugation
effects for wing B are a little larger than that for wing C. Wings A
and B have the same number of corrugation waves, but their leading-
edge shape is different: wing A has a corrugation at its leading edge
and wing B does not (Fig. 1). This could account for the slightly
larger corrugation effect for wing A. The leading-edge shapes of
wing B and wing C are the same, but wing C has less corrugation
waves than wing B (Fig. 1); this could account for the corrugation
effect for wing B being slightly larger than that for wing C.

Because the aerodynamic effects of corrugation in these model
wings are rather small, the differences in aerodynamic effects
between them are not really important. The important point here is
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Fig. 11. Time courses of the lift (C.), drag (Cp) and pitching moment (Cy)
coefficients of the corrugated and flat-plate wings at various Re
[®=150deg, o4 (and oy)=40deg]. (A) Re=35; (B) Re=1800; (C) Re=3400.
Re, Reynolds number; @, stroke amplitude; oy and o, down- and upstroke
angles of incidence, respectively. Lines A, B and C show corrugated
models A, B and C, respectively and line D, the flat-plate wing. £, non-
dimensional time.
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that all different corrugation patterns considered here have a very
small effect on the aerodynamic forces and moments of the flapping
wing.

The effects of wing corrugation at various Re
Computations for Re lower and higher than that used above were
conducted (Re=35, 1800 and 3400). As mentioned above, in the
present study the reference velocity used for Re was the mean
flapping velocity at the radius of the second moment of wing area
(72), thus Re=35 would be representative of very small insects, such
as Encarsia formosa and Re=3400 would be representative of
relatively large insects, such as hawkmoths and dragonflies.

Fig. 11A-C gives the time courses of C;, Cp and Cy of the
corrugated wings in one cycle at Re=35, 1800 and 3400, respectively;
corresponding results for the flat-plate wing are included for
comparison. It is seen that, similar to the case of Re=200, the time
courses of Cp, Cp and Cy; of the corrugated wings are almost the
same as their counterparts of the flat-plate wing, however, when Re
is higher (e.g. at Re=3400; Fig. 11C) the effects of wing corrugation
are slightly larger.

The mean force and moment coefficients and the mean location
of center of pressure are listed in Table 2; those for Re=200 are also
included for comparison. It is seen that even at Re=3400, the
magnitudes of change in the mean lift and mean drag caused by the
corrugation are no more than 5 and 2% of those of the flat-plate
wing, respectively. The average of the magnitudes of change in C.
and Cp resulting from the corrugation is less than 3.5%. The change
in the mean location of center of pressure caused by the corrugation
is no more than 0.01c.

Fig. 12 shows the contour plots of the spanwise component of
vorticity at half-wing length at various times in the downstroke for
a corrugated wing (model wing A) and the flat-plate wing at Re=35,
and Fig. 13 shows the vorticity plots at Re=3400. Similar to the case
of Re=200, the positive vorticity (solid lines) shed from the trailing
edge of the corrugated wing (the starting vortex or trailing vortex)
is almost the same as that of the flat-plate wing (see plots at =0,
#=0.125 and #=0.5 in Figs 12 and 13) and the flow patterns of the
corrugated wing and the flat-plate wing are approximately the same.
Again, a possible reason for the small effect of corrugation on
aerodynamic forces is that the wing operates at a large angle of
incidence and the flow is separated: the large angle of incidence
dominates the corrugation in determining the flow around the wing,
and for separated flow, the aecrodynamic forces are less sensitive to
wing shape variation.

The effects of wing corrugation at various @
To see if the effects of wing corrugation would vary when the stroke
amplitude is changed, three more stroke amplitudes were examined,
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Trailing

Traili
rafing edge vortex

edge vortex

Fig. 12. Vorticity plots at half-wing length of the flat-plate wing and
corrugated model wing A at various times during a downstroke at Re=35
[®=150deg, o4 (and oy)=40deg]. Re, Reynolds number; @, stroke
amplitude; oy and oy, down- and upstroke angles of incidence,
respectively. Solid and broken lines indicate positive and negative vorticity,
respectively. The magnitude of the non-dimensional vorticity at the outer
contour is 1 and the contour interval is 3. f, non-dimensional time; LEV,
leading edge vortex.

Table 2. Mean lift, drag and pitching moment coefficients of the corrugated wings and a flat-plate wing at various Re
[®=150 deg and oy (and o,,)=40 deg]

Re=35 Re=200 Re=1800 Re=3400
Wing model* CL CD 7M CL CD 7M CL CD CM éL éD éM
A 1.30 2.38 0.42 (0.42) 1.89 2.01 0.40 (0.43) 2.08 1.98 0.37 (0.42) 2.09 1.95 0.37(0.42)
B 1.32 236  0.41(0.42) 1.91 200 0.39(0.41) 207 197  035(041) 212 1.98 0.36(0.42)
C 1.33 2.36 0.41 (0.42) 1.95 2.01 0.40 (0.43) 212 1.96 0.36 (0.41) 2.16 1.97 0.38(0.42)
D 1.36 2.37 0.40 (0.41) 1.97 201 039(042) 216  1.97 0.35(0.41) 221 1.99 0.34(0.41)

*A, B and C, corrugated wings models; D, flat-plate wing. C,, Cp, Cy, mean lift, drag and pitching moment coefficients, respectively; Re, Reynolds number; @,
stroke amplitude; og and o, down- and upstroke angles of incidence, respectively. Numbers in the parentheses are the dimensionless distance between

pressure center and leading edge.
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Trailing

Trailing
edge vortex

edge vortex

Fig. 13. Vorticity plots at half-wing length of the flat-plate wing and
corrugated model wing A at various times during a downstroke at Re=3400
[®=150deg, oqy (and oy)=40deg]. Re, Reynolds number; ®, stroke
amplitude; oy and oy, down- and upstroke angles of incidence,
respectively. Solid and broken lines indicate positive and negative vorticity,
respectively. The magnitude of the non-dimensional vorticity at the outer
contour is 4 and the contour interval is 3. £, non-dimensional time; LEV,
leading edge vortex.

®=180, 110 and 70 deg (one larger and two smaller than the ® value
considered above), were investigated for a corrugated wing (model
wing A) and the flat-plate wing [at Re=1800 and o4 (and oy,)=40deg].
®=180deg is about the largest stroke amplitude an insect can use
because of its geometrical restriction; @=70 deg is about the smallest
stroke amplitude insects use [hoverflies hovering with an inclined
stroke plane and some dragonflies use such a small ® (see Ellington,
1984; Dudley, 2000)].

Fig. 14A,B gives the time courses of Cp, Cp and Cy of the
corrugated wing in one cycle at ®=70 and 180deg, respectively,
compared with the corresponding results of the flat-plate wing.
Similar to the case of ®=150, the time courses of C, Cp and Cy
of the corrugated wings are almost the same as those of the flat-
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Fig. 14. Time courses of the lift (C), drag (Cp) and pitching moment (Cy)
coefficients of corrugated model wing A (A lines) and the flat-plate wing (D
lines) at various stroke amplitudes (®) [Re=1800, o4 (and o,)=40 deg].

(A) ®=70deg; (B) ®=180deg. Re, Reynolds number; o4 and oy, down- and
upstroke angles of incidence, respectively. £, non-dimensional time.

plate wing. The mean force and moment coefficients and the mean
location of center of pressure are listed in Table 3. The magnitude
of change in the mean lift caused by the corrugation is
approximately 4% of that of the flat-plate wing at all the ® values;
the magnitude of change in the mean drag caused by the
corrugation is approximately 1% at ®=180deg and increases to
approximately 4% at ®=70deg. The average of the magnitudes
of change in the mean lift and mean drag due to the corrugation
is 2.5% at ®=180deg and 4% at ®=70deg. The change in the
mean location of center of pressure caused by the corrugation is
0.01c at ®=180deg and 0.02¢ at ®=70deg. When the stroke
amplitude changes from ®=70deg to 180deg, the effect of wing
corrugation varies only slightly.
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Table 3. Mean lift, drag and pitching moment coefficients of corrugated wing model A and a flat-plate wing at various ®[Re=1800; o4 (and

o,)=40 deg]
d=70 =110 d=150 =180
Wing model* C. Co Cu C. Co Cu C. Co Cu CL Co Cwu
A 223 322  1.01(043) 199 214 048(042) 208 198 037(042) 192 175 0.30(0.41)
D 2.31 3.08 0.94 (0.41) 2.06 2.09 0.44 (0.42) 2.16 1.97 0.35 (0.41) 2.03 1.78 0.29 (0.40)

*A, corrugated wing model A; D, flat-plate wing. C,, Cp, Cy, mean lift, drag and pitching moment coefficients, respectively; Re, Reynolds number; ®, stroke
amplitude; o4 and oy, down- and upstroke angles of incidence, respectively. Numbers in the parentheses are the dimensionless distance between pressure
center and leading edge.

Table 4. Mean lift, drag and pitching moment coefficients of corrugated wing model A and a flat-plate wing at various angles of incidence
(Re=1800; ®=150 deg)

C. Co Cu

og (and oy,; deg) D A D A D A

15 0.70 0.61 0.74 0.83 0.23 (0.37) 0.26 (0.41)
20 0.98 0.90 0.81 0.88 0.20 (0.37) 0.23 (0.41)
25 1.30 1.20 1.03 1.09 0.22 (0.37) 0.25 (0.39)
30 1.65 1.55 1.37 1.41 0.29 (0.38) 0.32 (0.40)
35 1.92 1.83 1.63 1.65 0.30 (0.39) 0.33 (0.41)
40 2.16 2.08 1.97 1.98 0.35 (0.41) 0.37 (0.42)
45 2.29 2.24 2.37 2.35 0.41 (0.41) 0.41 (0.41)
50 2.29 2.25 2.77 2.71 0.47 (0.40) 0.47 (0.42)
55 2.29 2.21 3.26 3.12 0.56 (0.42) 0.52 (0.41)
60 2.1 2.18 3.61 3.65 0.62 (0.42) 0.63 (0.42)

C., Cp, Cy, mean lift, drag and pitching moment coefficients, respectively; Re, Reynolds number; ®, stroke amplitude; o,y and o, down- and upstroke angles of
incidence, respectively. Numbers in the parentheses are the dimensionless distance between pressure center and leading edge.

The effects of wing corrugation at various o incidence [0y (and ay,)=20deg]. Comparing the results in Fig. 15
In above sections, the only angles of incidence of the wing with that at a relatively large angle of incidence [Fig. 11B; o4 (and
considered were 04 (and o,,)=40deg, but it is of interest to see how a,)=40deg], it can be seen that the effects of wing corrugation
the effects of wing corrugation would vary when the angle of  become larger at smaller angle of incidence. The mean force and
incidence is changed. Nine more angles of incidence (four larger moment coefficients and mean location of center of pressure for all
and five smaller than 40 deg) were considered for a corrugated wing

(model wing A) and the flat-plate wing [at Re=1800 and ®=150deg]. {=0.125
Fig. 15 shows the time courses of Cy, Cp and Cy; of the corrugated ) Trailing 0 Trailing
and flat-plate wings in one cycle at a relatively small angle of = ey, edge vortex _ edge vortex

Fig. 15. Time courses of the lift (C.), drag (Cp) and pitching moment (Cy) Fig. 16. Vorticity plots at half-wing length of the flat-plate wing and
coefficients of corrugated model wing A (A lines) and the flat-plate wing (D corrugated model wing A at various times during a downstroke at o4 (and
lines) at og (and ow)=20deg (Re=1800, ®=150deg). Re, Reynolds number; 0,)=20 deg (Re=1800, ®=150deg). Re, Reynolds number; @, stroke

@, stroke amplitude; oy and o, down- and upstroke angles of incidence, amplitude; o4 and oy, down- and upstroke angles of incidence,
respectively. £, non-dimensional time. respectively. f, non-dimensional time; LEV, leading edge vortex.
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Fig. 17. Time courses of the aerodynamic power coefficient (Cp a) of various
corrugated wings and the flat-plate wing at Re=200, ®=150deg and oy
(and oy,)=40deg. Lines A, B and C show corrugated model wings A, B and
C, respectively; line D shows the flat-plate wing. Re, Reynolds number; @,
stroke amplitude; o4 and oy, down- and upstroke angles of incidence,
respectively. £, non-dimensional time.

angles of incidence considered are given in Table4. When the angle
of incidence is above 35 deg, the magnitudes of change in the mean
lift and mean drag caused by the corrugation are less than 5% of
those of the flat-plate wing and the change in the mean location of
center of pressure caused by the corrugation is less than 0.02c,
whereas when the angle of incidence is small, e.g. below 20deg,
the magnitudes of change in the mean lift and mean drag become
relatively large, approximately 10-15% of those of the flat-plate
wing, and the change in the mean location of center of pressure is
also relatively large, approximately 0.04¢ (but it should be noted
that insects when hovering and flying at low speed usually do not
use such small angles of incidence) (see Ellington, 1984; Ennos,
1989; Walker et al., 2009).

As observed above, at relatively large angle of incidence [0 (and
o, )=40deg], the flow patterns of the corrugated wing and the flat-
plate wing are approximately the same [see Figs 8 and 9]. Here, we
examine the flow patterns of the corrugated wing and the flat-plate
wing at a relatively small angle of incidence [ctg (and oy,)=20deg].
Fig. 16 shows the contour plots of the spanwise component of

Table 5. Mean aerodynamic power coefficient of the corrugated
wings and a flat-plate wing at various Re [®=150 deg and
og (and oy)=40 deg]

CP,a
Wing model* Re=35 Re=200 Re=1800 Re=3400
A 3.42 2.99 2.99 2.98
B 3.39 2.98 3.00 3.03
C 3.40 3.00 2.99 3.02
D 3.43 3.00 2.99 3.05

*A, B and C, corrugated wings models; D, flat-plate wing. Cp,a, mean
aerodynamic power coefficient; Re, Reynolds number; ®, stroke
amplitude; oq4 and oy, down- and upstroke angles of incidence,
respectively.

vorticity at half-wing length. Comparing the flow patterns in Fig. 16
with those in Fig. 8, it is apparent that, at a small angle of incidence,
differences between the flow patterns of the corrugated and the flat-
plate wings are relatively large. This clearly shows that when it is
large, the angle of incidence dominates the corrugation in
determining the flow around the wing, but when it gets smaller, the
wing corrugation can affect the flow more.

The effects of wing corrugation on aerodynamic power
Aerodynamic power (P,) of the above flapping wings is determined
by the following equation:

P,=0b+Ma, (5)

where Q is the torque about the axis perpendicular to the stroke
plane (which is produced by the drag), M is the pitching moment,
and & is the rotation speed.

During the stroke reversal phases, ¢ is close to zero, & is large
(see Fig.2B) and the aerodynamic power is mainly due to the
pitching moment M (see Eqn5). In the above sections, it was shown
that the corrugation only just affects the pitching moment. Hence
the corrugation would have little effect on aerodynamic power during
the stroke reversal phases.

During the translation phases, ¢ is zero and ¢ is large (see
Fig.2B), the aerodynamic power comes from the torque of the drag
0 (see Eqn5). O is dependent on the drag and the spanwise location
of the line of action of the drag. In the above sections, we discussed
the effects of corrugation on the drag and showed that the corrugation
has very small effects on the drag. However, we do not know if the
corrugation affects the spanwise location of the line of action of the
drag, hence do not know how the corrugation affects the
aerodynamic power in the translation phases.

Here we compute aerodynamic power coefficients of the wings
and investigate how the corrugation affects the aerodynamic power.
Fig. 17 gives the time courses of the acrodynamic power coefficient
(denoted by Cp,, defined as P, non-dimensionalized by 0.5pUSc)
of the corrugated wings and the flat-plate wing in one cycle, at
Re=200, ®=150deg, 0,4 (and o,)=40deg (results at other Re, @, oy
and oy, were similar). During the stroke reversal phases (=0-0.1,
=0.4-0.6 and 7=0.9-1), the corrugation has little effect on
aerodynamic power. This is expected because the corrugation only
just affects the pitching moment. During the translation phases
(£=0.1-0.4 and #=0.6-0.9), the corrugation has a slight effect on the
aerodynamic power. Comparing the aerodynamic power in the
translation phases in Fig. 17 (=0.1-0.4 and /=0.6-0.9) with those
for the drag in Fig. 10, we find that the effect of corrugation on the
aerodynamic power is almost the same as that on the drag. This
shows that the corrugation has little effect on the spanwise location
of the line of action of the drag. The mean Cp, (GCp,) is given in
Table5. Wing corrugation only has a small effect on the mean
aerodynamic power coefficient, similar to drag.

Table 6. Mean lift, drag and pitching moment coefficients of corrugated wing model A and a flat-plate wing at various aspect ratios
[Re=1800; o4 (and o,)=40 deg]

Aspect ratio 6

Aspect ratio 7

Aspect ratio 8 Aspect ratio 9

Wing model* C. Co Cu C. Co Cu C. Co Cu C. Co Cwu
A 208 198  0.37(042) 206 1.88  0.36(0.41) 201 179 035(041) 203 177  0.34(0.41)
D 216 197  0.35(0.41) 211 186  0.35(0.41) 208 181 035(041) 206 1.80 0.35(0.41)

C., Cp, Cy, mean lift, drag and pitching moment coefficients, respectively; Re, Reynolds number; ®, stroke amplitude; o,g and o, down- and upstroke angles of
incidence, respectively. Numbers in the parentheses are the dimensionless distance between pressure center and leading edge.
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Results at various wing aspect ratios

In the above sections, wings with an R/c ratio of 3 (aspect ratio of
6) were considered. R/c ratios of insects range from approximately
2.5 to 5 [aspect ratio from 5 to 10 (see Dudley, 2000). Next we
examined whether the effects of wing corrugation would vary when
the R/c ratio was increased. Three more R/c ratios, 3.5, 4 and 4.5
(aspect ratios, 7, 8 and 9), were considered for corrugated model
wing A and the flat-plate wing [at Re=1800 and ®=150deg]. For
the corrugated wing, when the R/c ratio was 3, as described above,
the number of spanwise grid points was 70; when the R/c ratio is
increased to 3.5, 4 and 4.5, the number of spanwise grid points is
increased to 84, 99 and 114, respectively, to keep the grid density
unchanged when the wing length is increased. These spanwise grid
points, 84, 99 and 114, were also used for the corresponding flat-
plate wings of R/c ratios of 3.5, 4 and 4.5, respectively.

Fig. 18 A—C show the time courses of Cp, Cp and Cy of the
corrugated and flat-plate wings of R/c ratios 3.5, 4 and 4.5 (aspect
ratios 7, 8 and 9), respectively, in one cycle. Table 6 gives the mean
force and moment coefficients (G, Cp and Cy) and the mean
location of center of pressure [for comparison, the results for R/c
ratio 3 (aspect ratio 6) are also included].

It is seen that for the wings with larger aspect ratios, similar to
the case of the wing with an aspect ratio of 6, the magnitude of
change in the mean lift or the mean drag caused by the corrugation
is no more than 4% of that of the flat-plate wing, and the change
in the mean location of center of pressure caused by the corrugation
is no more than 0.01c. These results show that change in aspect
ratio has little influence on the effect of corrugation.

Change in aspect ratio has little influence on the aerodynamic
force and moment coefficients of the flapping wings. For example,
for the flat-plate wings, when the aspect ratio changes from 6 to 9,
Cp changes from 2.16 to 2.06, Cp changes from 1.97 to 1.80 and
Cwu is almost unchanged. This is in agreement with the experimental
data of Usherwood and Ellington and the computational data of Luo
and Sun [Usherwood and Ellington measured the aerodynamic
forces of revolving wings and Luo and Sun computed the
aerodynamic forces of wings performing a sweeping motion; both
studies showed that change in aspect ratio had only a very small
influence on the aerodynamic force and moment coefficients of the
wings (Usherwood and Ellington, 2002a; Usherwood and Ellington,
2002b; Luo and Sun, 2005).]

Some discussions on modeling the wing as a flat plate

In the study of the aerodynamics of insect flapping wings using
experimental and computational models, if wing corrugation needs
to be modeled, the experimental wing model would be much more
difficult to manufacture and the computational wing model would
need quite complex and dense grids. Furthermore, it is difficult to
measure the exact corrugation of the wing of an insect in free-flight
conditions. Therefore, it is of great interest to know how well a
rigid flat-plate wing can model the corrugated wing.

The above results show that at typical angles of incidence of
hovering insects wings [35-50deg (see Ellington, 1984; Ennos,
1989; Walker et al., 2009)], the time courses of the force and moment
coefficients (Cr, Cp and Cy) of the corrugated wing are very similar
to those of the rigid flat-plate wing, and the magnitude of change
in the mean aerodynamic forces caused by the corrugation is less
than 5% of that of the flat-plate wing and the location of center of
pressure and the aerodynamic power required are little affected by
the corrugation. Thus, using a flat-plate wing to model the corrugated
wing is a good approximation.
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Fig. 18. Time courses of the lift (C.), drag (Cp) and pitching moment (Cy)
coefficients of corrugated model wing A and the flat-plate wing of various
R-to-c or aspect ratios [Re=1800, a4 (and ay,)=40deg]. A, B and C show
aspect ratios=7, 8 and 9, respectively. Re, Reynolds number; ®, stroke
amplitude; o4 and oy, down- and upstroke angles of incidence,
respectively. { non-dimensional time.

The above results show that the corrugation does not have
obvious aerodynamic advantages or shortcomings. But its structural
advantages are well known. To provide aerodynamic forces
effectively and efficiently, an insect wing needs to be light for fast
flapping motion and at the same time to be stiff enough to maintain
certain aerodynamic shape. Researchers have shown that corrugation
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plays an essential role in meeting these requirements; for example,
Rees, using a theoretical model, calculated that the use of corrugation
greatly increased both the stiffness and strength of insect wings (Rees,
1975b), Newman and Wootton showed that in such corrugations,
the membrane of the wing could stiffen the wing by means of a
‘stress skin’ effect (Newman and Wootton, 1986), and Ennos, by
means of theoretical modeling and experimental measurement,
further showed that the corrugation of an insect wing gave desirable
wing deformation (camber and twist) during flapping flight (Ennos,
1988). We thus see that the corrugation provides structural advantages
without producing negative aerodynamic effect.

LIST OF SYMBOLS AND ABBREVIATIONS

c chord length

Cp drag coefficient

CFD computational fluid dynamics (CFD)
CL lift coefficient

Cpa aerodynamic power coefficient

D drag

L lift

LEV leading edge vortex

M pitching moment

MAV micro-aerial vehicles

wingbeat frequency

. aerodynamic power

torque about the axis perpendicular to the stroke plane
wing length

Reynolds numbers

wing area

time

non-dimensional time parameter

fluid velocity field

mean flapping velocity

gradient operator

Laplacian operator

mid downstroke angle of incidence

mid upstroke angle of incidence

rotation speed

time interval of wing rotation during the stroke reversal
non-dimensional time interval of wing rotation
fluid density

positional angle

wing translation speed

stroke amplitude
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