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INTRODUCTION
Hovering is an important type of flight of insects. Most hovering
insects flap their wings in a horizontal plane, called ‘normal
hovering’ (Weis-Fogh, 1973). But some of the best hoverers (e.g.
true hoverflies and dragonflies who can remain motionless at a point
in the air for a long time) hover with an inclined stroke plane.

In recent years, much work has been done on aerodynamics,
energetics and dynamic flight stability of insect flight and
considerable progress has been achieved (e.g. Ellington et al., 1996;
Liu et al., 1998; Dickinson et al., 1999; Wang, 2000; Sane and
Dickinson, 2001; Sun and Tang, 2002a; Taylor and Thomas, 2003;
Wang et al., 2004; Sun and Xiong, 2005; Dickson et al., 2008; Wu
et al., 2009; Bergou et al., 2010; Walker et al., 2010). Most of the
previous studies, however, have focused on, or are related to, normal
hovering, and studies on hovering with an inclined stroke plane are
very few. One reason for this is that there is a lack of wing motion
data on this type of hovering.

There have been some studies on measuring the wing motion in
insects hovering with an inclined stroke plane. Norberg measured
the wing-tip kinematics of a freely hovering dragonfly using one
high-speed camera, and obtained the stroke plane angle, stroke
frequency, stroke angle and elevation angle (Norberg, 1975).
Wakeling and Ellington made similar measurement for dragonflies
and damselflies in near-hovering and forward flight (Wakeling and
Ellington, 1997). Ellington measured the wing-tip kinematics of a
true hoverfly in free hovering flight using one camera, and also
obtained data on stroke plane angle, stroke frequency, stroke angle
and elevation angle (Ellington, 1984b). In these works (Norberg,
1975; Wakeling and Ellington, 1997; Ellington, 1984b), because

only one camera was used, the continuous time variation of wing
orientation (wing angle of attack, wing rotation rate at stroke
reversal, etc.) could not be obtained. Wing angle of attack and its
rate are important parameters for determining aerodynamic force,
and without data on these parameters, wing motion could not be
described. Recently, Wang and Russell obtained the continuous time
variation of wing angle of attack, in addition to the stroke angle and
elevation angle, of hovering dragonflies using three high-speed
cameras (Wang and Russell, 2007). However, because of difficulty
in handling the insects, only the case of tethered flight was
considered.

Because, as aforementioned, some excellent hoverers hover with
an inclined stroke plane, it is of great interest to obtain detailed free-
flight wing kinematic data and study the aerodynamic mechanisms,
power requirements and other problems related to this type of
hovering. In the present study, we measured the time course of the
three-dimensional (3-D) wing motion of hovering true hoverflies
using three orthogonally aligned high-speed cameras and the
required morphological data. On the basis of the measured data, we
used computational fluid dynamics (CFD) to compute the
aerodynamic forces of the flapping wings and the power required
for hovering, and to compute the aerodynamic derivatives and
analyse the dynamic properties of the flight system. Comparison
between the computed results and the force balance condition
(vertical force being equal to the weight) can provide a test of the
computational model; analyzing the time courses of the wing motion,
aerodynamic forces and flow fields can provide insights into the
aerodynamic force production mechanism; comparing the power
requirement of the inclined stroke-plane hovering with that of normal
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SUMMARY
Most hovering insects flap their wings in a horizontal plane (body having a large angle from the horizontal), called ‘normal
hovering’. But some of the best hoverers, e.g. true hoverflies, hover with an inclined stroke plane (body being approximately
horizontal). In the present paper, wing and body kinematics of four freely hovering true hoverflies were measured using three-
dimensional high-speed video. The measured wing kinematics was used in a Navier–Stokes solver to compute the aerodynamic
forces of the insects. The stroke amplitude of the hoverflies was relatively small, ranging from 65 to 85deg, compared with that of
normal hovering. The angle of attack in the downstroke (~50deg) was much larger that in the upstroke (~20deg), unlike normal-
hovering insects, whose downstroke and upstroke angles of attack are not very different. The major part of the weight-supporting
force (approximately 86%) was produced in the downstroke and it was contributed by both the lift and the drag of the wing, unlike
the normal-hovering case in which the weight-supporting force is approximately equally contributed by the two half-strokes and
the lift principle is mainly used to produce the force. The mass-specific power was 38.59–46.3 and 27.5–35.4Wkg–1 in the cases
of 0 and 100% elastic energy storage, respectively. Comparisons with previously published results of a normal-hovering true
hoverfly and with results obtained by artificially making the insects’ stroke planes horizontal show that for the true hoverflies, the
power requirement for inclined stroke-plane hover is only a little (<10%) larger than that of normal hovering.
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hovering could answer the interesting question of whether power
required for these two types of hovering is very different; and
comparing the dynamic flight stability properties of the inclined
stroke-plane hovering with that of normal hovering might provide
insight into the maneuverability associated with the two types of
hovering.

MATERIALS AND METHODS
Animals and 3-D high-speed filming

We netted hoverflies Episyrphus baltealus (De Geer, 1776) in a
suburb of Beijing in June 2010. All experiments were conducted
on the same day of capture. Only the most vigorous individuals
were selected for the experiments.

We filmed the hovering flight of the hoverflies in an enclosed
flight chamber using three orthogonally aligned synchronized high-
speed cameras (MotionXtra HG-LE, Redlake MASD, Inc., San
Diego, CA, USA; 5000framess–1, shutter speed 50s, resolution
512�320pixels) mounted on an optical table. The flight chamber,
a cube of 15�15�15cm3, was built from translucent glass. We
backlit each camera view using densely packed arrays of light
emitting diode (LED) covered with diffusion paper. We used LED
arrays as the light source because they produced much less heat
than cine lights at the elevated light levels required for high-speed
filming. We manually triggered the synchronized cameras when the
insect was observed to hover in the approximately 5�5�5cm3 cubic
zone at the central region of the chamber, which represented the
intersecting field of views of the three cameras.

Measurement of wing and body kinematics
After the flight events were recorded, a method was required to
extract the 3-D body and wing kinematics from the filmed data.
The method we used here was the same as that used by Fry and
others (Fry et al., 2005; Liu and Sun, 2008) [for recent development
of the measuring methods, see Belhaoua et al. (Belhaoua et al.,
2009), Ristroph et al. (Ristroph et al., 2009) and Walker et al.
(Walker et al., 2009)]. The method is described in detail in the
Appendix and is outlined here. The body and wings were represented
by models (see Appendix), e.g. the model of a wing was the outline
of the wing obtained by scanning the cut-off wing (Fig.1A). We
developed an interactive graphic user interface using MATLAB (v.
7.1, The Mathworks, Inc., Natick, MA, USA) to extract the 3-D
body and wing positions from the frames recorded by the three
cameras (an example of the frames is shown in Fig.1B). The
positions and orientations of the models of the body and wings were
adjusted until the best overlap between a model image and the
displayed frame was achieved in three views (the fitting process
was done manually). At this point, the positions and orientations of
these models would be taken as the positions and orientations of
the body and the wings.

Errors in the method came from several sources. One was the
deformation of the flapping wings: the wings were not flat-plate
wings as they were modeled in the method (as described in the
Appendix and mentioned above, the model of a wing was the outline
of the wing obtained by scanning the cut-off wing, which was
necessarily of a flat plate). Other error sources included errors due
to camera model inaccuracy (a pinhole model was used to
characterize the camera), camera calibration, stereo rig calibration,
and discretization. It was shown that errors due to camera model
inaccuracy, camera calibration and stereo rig calibration were small
(see Appendix), and the primary errors of the method were errors
due to wing deformation and discretization. We estimated the wing
deformation and discretization errors as a whole by applying the

method to a computer-generated virtual insect, which had similar
wing motion as the hoverflies (see Appendix). Based on the
observation of the flight of many insects (Ellington, 1984b; Ennos,
1989a; Walker et al., 2009), the wing deformation of the virtual
insect was assumed to have a 15deg twist and 6% camber during
the translation phase of the downstroke or upstroke and the twist
and camber increased to 25deg and 10%, respectively, at stroke
reversal. Analysis showed that errors in positional angle and
elevation angle of the wing were within 3deg and errors in pitch
angle (or angle of attack) were within 4deg (see Appendix).

Measurement of morphological parameters
The present method of measuring the morphological parameters
follows, for the most part, that given by Ellington, whose paper can
be consulted for a more detailed description of the method (Ellington,
1984a).

The insects were killed with ethyl acetate vapor after filming.
The total mass (m) was measured to an accuracy of ±0.01mg. The
wings were then cut from the body and the mass of the wingless
body was measured. The wing mass (mwg) was determined from
the difference between the total mass and the mass of wingless body.

Immediately after the wings were cut from the body, the shape
of one of them was scanned using a scanner (HP scanjet 4370;
resolution 3600�3600d.p.i.). A sample of the scanned picture of a
wing is shown in Fig.1A. Using the scanned picture, wing length
(R, the distance between the wing base and the wing tip) and local
wing chord length were measured to an accuracy greater than ±0.5%.
Parameters including wing area, mean chord length and radius of
second moment of wing area were computed using the measured
wing shape.

The wingless body was scanned from two perpendicular
directions (the dorsoventral and lateral views; Fig.2). Following
Ellington (Ellington, 1984a; Ellington, 1984b), the cross-section of
the body was taken as an ellipse and a uniform density was assumed
for the body. With these assumptions and the measured body shape,
the center of mass of body could be estimated. Body length (lb) and
distance between the wing roots (lr) were measured from the dorsal
views; distance between the wing-base axis and the center of mass
(l1) and distance between the wing-base axis and the long axis of
the body (h1) were measured from the lateral view (using these data,
moments and products of inertia about the center of mass were also
estimated).

A B

R

1 mm

Axis of pitch rotation

Fig.1. (A)Wing model. R, wing length. (B)Example of frames recorded by
the three cameras and the wing and body models.
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Computation of aerodynamic forces and power requirements
The aerodynamic forces and moments were computed using the CFD
method. Under hovering flight conditions, Aono and others showed
that interaction between wing and body was negligibly small: the
aerodynamic force in the case with the body–wing interaction was
less than 2% different from that without body–wing interaction
(Aono et al., 2008; Yu and Sun, 2009). Although the left and right
wings might interact via a ‘clap and fling’ mechanism, this
mechanism was irrelevant in the present study because of small
stroke amplitude. Therefore, in the present CFD model, the body
was neglected and only the flows around one wing were computed
(the aerodynamic forces produced by the other wing were derived
from the results of the computed wing). Recently, Walker et al.
measured the deformation of the wings of freely hovering hoverflies
(Walker et al., 2010). Using Walker et al.’s data, Du and Sun
investigated the effect of wing deformation on aerodynamic forces
in hovering hoverflies and showed that as a first approximation, the
deformable wing could be modeled by a rigid flat-plate wing with
its angle of attack being equal to the local angle of attack at the
radius of second moment of wing area (Du and Sun, 2010). Thus
in the CFD model, we further assumed that wings were rigid flat-
plate wings; the planform of the wing was obtained from the
measured data, and the wing section was a flat plate with a thickness
of 3% of the chord length and with rounded leading and trailing
edges.

The flow equations and solution method were the same as those
used in Sun and Tang (Sun and Tang, 2002a) and the method was
developed by Rogers and others (Rogers and Kwak, 1990; Rogers
et al., 1991). In the method, the time derivatives of the momentum
equations ware differenced using a second-order, three-point
backward difference formula. To solve the time-discretized
momentum equations for a divergence free velocity at a new time
level, a pseudo-time level was introduced into the equations and a
pseudo-time derivative of pressure divided by an artificial
compressibility constant was introduced into the continuity equation.
The resulting system of equations was iterated in pseudo-time until
the pseudo-time derivative of pressure approached zero and, thus,
the divergence of the velocity at the new time level approached
zero. The derivatives of the viscous fluxes in the momentum
equation were approximated using second-order central differences.
For the derivatives of convective fluxes, upwind differencing based
on the flux-difference splitting technique was used. A third-order
upwind differencing was used at the interior points and a second-
order upwind differencing was used at points next to boundaries.
Details of this algorithm can be found in previous studies (Rogers
and Kwak, 1990; Rogers et al., 1991).

The computational grids (OH type) were generated using a
Poisson solver, which was based on the work of Hilgenstock
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(Hilgenstock, 1988). The grids will be further described in the
Results and discussion section as will analysis of the convergence
of solutions.

Boundary conditions were as follows. For the far-field
boundary condition, at inflow boundary, the velocity components
were specified as free-stream conditions (determined by flight
speed), whereas pressure was extrapolated from the interior; at
the outflow boundary, pressure was set equal to the free-stream
static pressure and velocity was extrapolated from the interior.
On the wing surface, impermeable wall and non-slip conditions
were applied and the pressure was obtained through the normal
component of the momentum equation written in the moving grid
system.

Solving the Navier–Stokes equations yielded the fluid velocity
and pressure at discretized grid points and time steps. The
aerodynamic forces acting on the wing were calculated from the
pressure and the viscous stress on the wing surface.

RESULTS AND DISCUSSION
Four hoverflies hovering at the central region of the flight chamber
(the zone of the intersecting field of view of the three cameras) were
filmed. They were denoted as HF1, HF2, HF3 and HF4, respectively.
All of the hoverflies except HF2 were female. For each of the
hoverflies, film of approximately six wing strokes were digitized.

lb

lr

h1 l1

l2
Center of mass

Long axis of body

1 mm

Fig.2. Morphological parameters of the wing and body. h1,
distance from the wing-root axis to the long axis of the
body; l1, distance from the wing-root axis to the center of
mass of the body; l2, distance from anterior end of the
body to the center of mass; lb, body length; lr, distance
between two wing roots.
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Fig.3. (A)Angles of a flapping wing that determine the wing orientation.
The (X, Y, Z) coordinates are in a system with its origin at the wing root;
the Y-axis points to the side of the insect and the X–Y plane coincides with
the stroke plane. l, a line that is perpendicular to the wing span and parallel
to the stroke plane; , stroke plane angle; ,  and : positional angle,
pitch angle and deviation angle of the wing, respectively. (B)A wing stroke
diagram highlighting the motion of the wing chord during a typical stroke
(the black circle represents the leading edge). , angle of attack of the
wing ( in the downstroke, =180– in the upstroke).
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Samples of the original video sequences for HF1 are presented as
supplementary material Movie1.

Wing kinematics
We determined the stroke plane in the same way as Ellington
(Ellington, 1984b). In a wingbeat cycle, approximately 35 pictures
were taken and the same number of points on the curve traced by
the wing tip was determined. We projected all the wing-tip points
of both the left and right wings in the six wingbeats onto the plane
of symmetry of the insect. A linear regression line of these projected
points on the plane of symmetry was then determined. The stroke
plane was defined as a plane that passed the two wing roots and
was parallel to the above line. This plane is tilted at an angle  to
the horizontal (called the stroke plane angle). The angles determining
the wing orientation are defined as follows. A line is drawn between
the wing base and wing tip (see Fig.1A and Fig.3A). Let (X, Y, Z)
be a reference frame with origin at the wing base and an X–Y plane
coinciding with the stroke plane (Fig.3). The orientation of the wing
is determined by the three Euler angles: positional angle (), stroke
deviation angle () and pitch angle () (see Fig.3A), where  is the
angle between the projection of the line joining the wing base and
wing tip onto the stroke plane and the Y-axis,  is the angle between
the line joining the wing base and wing tip and its projection onto
the stroke plane, and  is the angle between the local wing chord
and line l (l is perpendicular to the wing span and parallel to the
stroke plane).  is related to the angle of attack of the wing () as
follows: in the downstroke, ; in the upstroke, 180–. The
measured data of these angles as functions of time for the left and
the right wings of HF1 are shown in Fig.4 (for each of the four
insects, approximately six well-repeated wing strokes in which the
left and right wings were moving symmetrically were captured).
For a clear description of the data, we express time during a cycle
as a non-dimensional parameter, t, such that t0 at the start of a
downstroke and t1 at the end of the subsequent upstroke. Fig.5
plots the phase-average value (mean ± s.d.) of the positional angle
(averaged over six wingbeat cycles) for each hoverfly against non-
dimensional time. Figs6 and 7 give the corresponding data for the
pitch angle and the deviation angle, respectively.

As seen in Figs4–7, the motion of the right wing is approximately
the same as that of the left wing, as expected for hovering flight.
For a given hoverfly, the positional angle shows less variation
between successive wingbeats than the geometrical angle of attack
and the deviation angle.

The stroke positional angle varied with time approximately as a
sinusoidal function (Fig.5). From the data, the stroke amplitude (�)
and mean stroke angle (�) can be determined using the following
equations: �(max+min)/2 and �max–min, where max and min

are the maximum and minimum values of , respectively (see
Ellington 1984b) (Table1). The stroke amplitude of the hoverflies
ranged from 65 to 85deg. Ellington obtained � for two freely
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Fig.4. Instantaneous wing kinematics of hoverfly HF1 in hovering. ,
positional angle; , pitch angle; , deviation angle.

Fig.5. Positional angle () against non-dimensional time (t ) for the four
hoverflies. (A)HF1; (B) HF2; (C) HF3; (D) HF4. The shaded region around
each line represents the s.d. over the six wingbeats.
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hovering true hoverflies [the same species (E. baltealus) as in the
present study]: one was in inclined hovering with �66deg and the
other in normal hovering with �95deg (Ellington, 1984b).
Recently, Walker and others obtained � for hoverflies of another
species, Eristalis tenax, which only performed normal hovering
(Walker et al., 2010; Liu and Sun, 2008); � ranged from
approximately 70 to 115deg (there were five individuals in Walker
et al.’s experiment and three in Liu and Sun’s experiment). We thus
see that the stroke amplitude of hovering flies in inclined hovering
is relatively small compared with that in normal hovering.

X. L. Mou, Y. P. Liu and M. Sun

The pitch angle (Fig.6) had very sharp variation at the stroke
reversal (t0.4–0.6, 0.9–1 and 0–0.1), but varied relatively slowly
in the mid-position of the downstroke or upstroke (t0.1–0.4 or
0.6–0.9). The angle of attack in the mid-position of the downstroke
was approximately 50deg, and that in the mid-position of the
upstroke was approximately 20deg. This is unlike hoverflies in
normal hovering (Ellington, 1984b; Walker et al., 2010; Liu and
Sun, 2008) and other normal-hovering insects (e.g. Ellington,
1984b), whose downstroke and upstroke angles of attack are not
very different.

The stroke deviation angle (Fig.7) was relatively small; it was
higher at the beginning and the end of a downstroke or upstroke,
and lower at the middle of the downstroke or upstroke, which led
to a shallow U-shaped wing-tip trajectory (the mean deviation angle
was approximately 6, 0, 4 and 1deg for HF1, HF2, HF3 and HF4,
respectively, and the amplitude of the deviation angle was
approximately 4, 5, 5 and 6deg for the four insects, respectively).

The wingbeat frequency (f), stroke plane angle () and body angle
() are also given in Table1 [the body angle is the angle between
the long axis of the body and the horizontal, see Ellington (Ellington,
1984b)].

The insects filmed in the present study were only in
approximate hovering, i.e. some of them moved at very low
velocity. The non-dimensional velocity of the body motion,
denoted by advance ratio (J), was measured as the velocity of the
body motion divided by the mean wing-tip speed 2�fR; the values
of J are also included in Table1. J was very small for HF1, HF3
and HF4, not more than 0.07. For HF2, J was 0.13 and the insect
was in slow forward flight. However, its wing kinematics was
not very different from that of the other insects, except for the
upstroke pitch angle: for HF1, HF3 and HF4,  was approximately
constant in the mid-upstroke (t�0.6–0.9) and the wing started to
pitch at t�0.9, whereas for HF2, the wing started to pitch much
earlier, at t�0.7 (Fig.6).
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Morphological parameters
Morphological parameters of the insects are given in Table2.
Parameters in the table include total mass (m), wing mass (mwg),
wing length (R), wing area (S), radius of the second moment of
wing area (r2), body length (lb), distance between the two wing roots
(lr), distance between the wing-base axis and the center of mass (l1),
distance from the anterior end of the body to the center of mass (l2),
distance between the wing-base axis and the long axis of the body
(h1), and the moments and product of inertia of the body about its
center of mass, Ix,b, Iy,b, Iz,b and Ixz,b (here x is an axis along the
long axis of the body, pointing forward, y is an axis pointing to the
right side of the body, and z is the other axis; the origin is at 
the center of mass of the body).

Computed aerodynamic forces
With the measured wing kinematics and using the CFD method
described above, aerodynamic forces produced by the flapping wings
were computed. We used a sinusoidal function to fit the data and
obtain the time course of , and the first two terms and first four
terms of the Fourier series to fit the data of  and , respectively.
Let V and H be the computed vertical and horizontal forces of a
wing, respectively; let L and D be the lift and drag of a wing,
respectively (wing lift is the force component perpendicular to the
stroke plane and wing drag is the force component in the stroke
plane and perpendicular to the wing span). The force coefficients
are defined as CVV/0.5U2S, etc., where U is the mean velocity
of wing at r2 (U2�fr2) and  is the fluid density. The Reynolds
number (Re) is 320, 330, 260 and 240 for HF1, HF2, HF3 and HF4,
respectively (Re is defined as RecU/, where c is mean chord length
and  is the kinematic viscosity of the air).

Before proceeding to study the flows and aerodynamic forces,
we conducted a grid resolution test. Three grids were considered:
26�25�32 (in the normal direction of the wing surface, around the
wing section and in the spanwise direction of the wing, respectively;
first layer grid thickness was 0.004c), 52�51�65 (first layer grid
thickness was 0.002c) and 100�99�130 (first layer grid thickness
was 0.001c). Note that in each refinement, the grid dimension in
each direction was approximately doubled. In the normal direction,
the outer boundary was set at 20 chord lengths from the wing, and

in the spanwise direction, the boundary was set at six chord lengths
from the wing. Portions of the dense grid (100�99�130) are shown
in Fig.8. [Note that the wing tip is slightly different from that of
the real wing shown in Fig.1, the pointed tip being cut off; without
the tip cut off, the wing tip would be much narrower than the middle
portion of the wing and the grid near the wing tip would have very
large distortion, which would make the computation less accurate;
experimental (Usherwood and Ellington, 2002) and computational
(Luo and Sun, 2005) studies have shown that a slight change in
wing shape had little effect on the aerodynamic force coefficients.]
The non-dimensional time step was 0.02 (non-dimensionalized by
c/U; the effect of time step value was studied and it was found that
a numerical solution effectively independent of the time step was
achieved if the time step value was ≤0.02). Calculations were

Table1. Wing and body kinematic parameters (mean ± s.d.) of the hoverflies

� (deg) � (deg)

ID f (Hz) Left Right Left Right  (deg)  (deg) J

HF1 162±2 65.9±1.3 65.2±1.3 17.2±1.7 13.5±1.2 34.4 –0.9±0 0
HF2 183±2 66.2±2.9 63.9±2.1 11.5±1.6 10.7±0.4 29.0 14.0±0.5 0.13
HF3 186±2 86.1±3.7 84.0±3.6 18.0±1.1 16.7±1.1 21.6 8.5±1.0 0.07
HF4 164±3 84.2±2.2 83.4±2.1 12.6±1.2 14.4±1.1 25.3 11.6±0.4 0.06

HF1, HF2, HF3 and HF4, hoverflies 1, 2, 3 and 4, respectively (HF2, male; others, female); J, advance ratio; f, stroke frequency; , stroke plane angle; , body
angle; �, stroke amplitude; �, mean stroke angle.

Table2. Morphological parameters of the hoverflies

ID m (mg) mwg (mg) R (mm) S (mm2) lb (mm) h1/lb l1/lb l2/lb lr/lb r2/R Ix,b (kgm2) Iy,b (kgm2) Iz,b (kgm2) Ixz,b (kgm2)

HF1 22.08 0.285 9.70 21.88 11.04 0.06 0.15 0.42 0.26 0.574 1.48�10–11 1.79�10–10 1.83�10–10 5.85�10–12

HF2 23.63 0.225 9.68 19.96 10.64 0.05 0.11 0.41 0.28 0.576 1.51�10–11 1.73�10–10 1.75�10–10 2.40�10–12

HF3 10.39 0.105 6.93 11.87 8.13 0.06 0.13 0.41 0.26 0.567 3.97�10–12 4.70�10–11 4.77�10–11 1.21�10–12

HF4 10.41 0.195 7.13 12.17 8.75 0.04 0.10 0.39 0.26 0.577 4.25�10–12 5.07�10–11 5.13�10–11 1.92�10–12

HF1, HF2, HF3 and HF4, hoverflies 1, 2, 3 and 4, respectively (HF2, male; others, female); m, mass of the insect; mwg, mass of one wing; R, wing length; S,
area of one wing; lb, body length; h1, distance from wing-root axis to long axis of body; l1, distance from wing-root axis to body center of mass; l2, distance
from anterior end of body to center of mass; lr, distance between two wing roots; r2, radius of second moment of wing area; Ix,b, Iy,b, Iz,b and Ixz,b, moments
and product of inertia of the body about the center of mass.

A

B

Fig.8. Portions of the computation grid of the hoverfly wing (A) in the plane
of wing planform and (B) in a sectional plane. The red circle in A indicates
the wing base.
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performed using the above grids for the hovering flight of HF1; the
results are shown in Fig.9. The first grid refinement (from grid
26�25�32 to grid 52�51�65) produced relatively large mean
magnitudes of change in CL and CD of 0.19 and 0.18, respectively,
but the second grid refinement (from grid 52�51�65 to grid
100�99�130) produced only a small change in the results (0.05
for both CL and CD). The ratio between the changes in CL (0.05/0.19)
and the changes in CD (0.05/0.18) are approximately 1/4, as
expected for the second-order method. Let us use the above data to
give an estimate of the accuracy of the solution obtained by the
largest grid (100�99�130). Suppose that the grid is further refined
(doubling the grid dimension in each direction), one could expect
that the changes in CL and CD would be approximately 0.0125
(0.05/40.0125). Based on the 1/4-convergence ratio, we could
estimate that the solution by grid 100�99�130 has errors in CL

and CD of 0.017 [0.0125�(4/3)0.017]. The mean CL and CD values
are 1.1 and 1.9, respectively. Therefore, it is estimated that, when
using the 100�99�130 grid, the numerical discretization and
convergence errors in the mean CL and CD are approximately 1%.
The 100�99�130 grid was used for the present flow computations.

First, we looked at the computed mean forces and determined
whether the vertical force could support the insect weight and the
horizontal force was zero (time courses of the forces and flows will
be examined in the next section). The computed mean vertical force
and horizontal force coefficients (CV

— and CH
— , respectively; averaged

over one wingbeat cycle) are given in Table3. The non-dimensional
weight of an insect, denoted as CG [CGmg/0.5U2(2S)] is also given

X. L. Mou, Y. P. Liu and M. Sun

in Table3. For all four hoverflies considered, the weight balance
condition was approximately met: CV

— was different from CG by
less than 15% (the computed mean vertical forces of HF1 and HF4
were 12 and 2% less than the weight, respectively; those of HF2
and HF3 were 6 and 14% greater than the weight, respectively).
The horizontal force balance condition was also approximately met,
although a little more poorly than the case of weight balance
condition (the horizontal forces of HF1, HF2, HF3 and HF4 were
20, 6, 19 and 20% of their respective weights). Possible reasons for
the discrepancies include idealization in the CFD model and the
fact that the insects might not be in exactly balanced flight.

Time courses of the aerodynamic forces and flows
Here we look at the time courses of the aerodynamic forces and
flows and examine the properties of the aerodynamic forces.
Because the wing motions of the four insects were similar, only the
results for one insect, HF1, are discussed in detail here. Fig.10 shows
the time courses of CV, CH, CL and CD for HF1 in one cycle.

From Fig.10A, it is apparent that most of the vertical force, or
the weight-supporting force, is produced in the downstroke (unlike
in the case of normal hovering, in which the downstroke and
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Fig.9 Time courses of the lift (CL) and drag (CD) coefficients of the wing of
HF1 at hovering flight for different grids. t, non-dimensional time.

Table3. Computed mean vertical and horizontal forces of the wings

ID CV CH CG

HF1 1.63 0.38 1.86
HF2 1.85 –0.11 1.74
HF3 1.70 0.29 1.49
HF4 1.71 0.35 1.75

HF1, HF2, HF3 and HF4, hoverflies 1, 2, 3 and 4, respectively (HF2, male;
others, female); CV

— and CH
—, mean vertical force and horizontal force

coefficients, repsectively; CG, non-dimensional weight of the insect.
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Fig.10. Time courses of the computed force coefficients of HF1 in one
cycle. CV and CH, vertical and horizontal force coefficients, respectively; CL

and CD, wing lift and drag coefficients, respectively; t, non-dimensional
time.
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upstroke contribute to the weight-supporting force approximately
equally); this is expected for a flapping wing with highly inclined
stroke plane. From the data in Fig.10A, it is calculated that
approximately 86% of the vertical force is produced in the

downstroke (for hoverflies HF2, HF3 and HF4, this value is 89, 81
and 89%, respectively). The horizontal force produced in the
downstroke is approximately the same as that in the upstroke, but
they have opposite signs (Fig.10B).

The vertical and horizontal forces of a wing are the results of the
lift and drag of the wing. For HF1, the downstroke CD is a little
larger than CL (Fig.10C,D) (for hoverflies HF2, HF3 and HF4, CL

and CD in the downstroke are about the same). Because the stroke
plane is inclined, this means that the vertical force, or the weight-
supporting force, produced in the downstroke is contributed by both
the lift and the drag of the wing, unlike in the case of normal
hovering, in which the weight-supporting force is mainly contributed
by the lift of the wing. From data in Fig.10C,D, it is calculated that
approximately 51% of the vertical force is contributed by the drag
(for hoverflies HF2, HF3 and HF4, this value is 36, 33 and 38%,
respectively).

The corresponding flowfield is shown in Fig.11. The leading-
edge vortex does not shed in an entire downstroke (t0–0.5),
showing that the large CL and CD, and hence the large vertical force
(CV) in the downstroke, are mainly due to the delayed stall
mechanism.

Flight power
With the flows computed by the CFD method, the mechanical power
of a wing (P) can be easily calculated:

P  (Ma +Mi) �. (1)

Here, Ma is the aerodynamic moment about the wing root, Mi is the
inertial moment and � is the angular velocity vector of the wing. Ma

is readily calculated using the force distribution obtained from the
flow computation and � is known from the measured data. The way
to determine Mi has been described in our previous works (e.g. Sun
and Tang, 2002b). In calculating Mi, moments and products of inertia
of the wing mass are needed. They are estimated using the wing mass
measured in the present study and the density distribution of a dronefly
wing measured previously (Ennos, 1989b); the results are given in
Table4. With the moments and products of inertia known and wing
acceleration computed from �, Mi can be calculated.

The instantaneous non-dimensional power (Cp) and the non-
dimensional aerodynamic (Cp,a) and inertial (Cp,i) power of a wing
(non-dimensionalized by 0.5U2Sc) for HF1 are given in Fig.12
(those for HF2, HF3 and HF4 are similar). It is interesting to note
that the time course of Cp is more similar to that of Cp,i than to that
of Cp,a, because the inertial power is larger than the aerodynamic
power in many parts of the stroke cycle. This means that elastic
energy storage could be important for the hoverflies.

Integrating P over the part of a wingbeat cycle where it is positive
gives the positive work (W+); integrating P over the part of a
wingbeat cycle where it is negative gives the negative work (W–).
The mass-specific power (P*) is determined as the mean mechanical
power over a wingbeat cycle divided by the mass of the insect. In

LE

LE

   

LE

LE

   

LE

LE

   

LE

LE

t =0ˆ

t =0.875ˆ

t̂ =0.75
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t̂ =0.375

t̂ =0.25
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Fig.11. Vorticity plots at spanwise location r2 at various times during one
cycle for the left wing of hoverfly HF1. Solid and broken lines indicate
positive and negative vorticity, respectively. The magnitude of the non-
dimensional vorticity at the outer contour is 1 and the contour interval is 3.
LE, leading edge; t, non-dimensional time; t0, start of downstroke (end of
upstroke); t0.25, mid downstroke; t0.5, end of downstroke (start of
upstroke); t0.75, mid upstroke.

Table4. Estimated moments and products of inertia of wing mass

ID Ix,w (kgm2) Iy,w (kgm2) Iz,w (kgm2) Ixz,w (kgm2)

HF1 1.97�10–13 4.96�10–12 4.76�10–12 2.08�10–13

HF2 1.55�10–13 3.89�10–12 3.74�10–12 1.63�10–13

HF3 3.70�10–14 9.32�10–13 8.95�10–13 3.91�10–14

HF4 7.17�10–14 1.81�10–12 1.73�10–12 7.58�10–14

HF1, HF2, HF3 and HF4, hoverflies 1, 2, 3 and 4, respectively (HF2, male; others, female); Ix,w, Iy,w, Iz,w moments of inertia of a wing about the x, y and z axes,
respectively; Ixz,w, product of inertia of the wing (here x is an axis along the long axis of the wing, pointing from wing root to wing tip, y is an axis
perpendicular to the wing surface, and z is an axis pointing from leading edge to trailing edge of the wing; the origin is at the wing root).
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the case of zero elastic energy storage, with the added assumption
that the cost for dissipating the negative work is negligible,
P*P1*W+/twm, where tw is the wingbeat cycle. In the case of 100%
elastic energy storage, P*P2*(W+–|W–|)/twm.

The computed mass-specific power is given in Table5. In the
case of zero elastic energy storage, P1* is 39–46Wkg–1 for the four
hoverflies; in the case of 100% elastic energy storage, P2* is
27–35Wkg–1. For HF1, the largest possible effect of elastic energy
storage reduces the power by approximately 29% (for HF2, HF3
and HF4, the values are 24, 24 and 37%, respectively).

As most of the wing mass is located near the axis of spanwise
rotation of the wing and the pressure center is not far from the axis
of spanwise rotation, it is expected that contribution by the spanwise
rotation of the wing to the aerodynamic and inertial moments, and
hence to the mechanical power, is small. Because the elevation angle
is much smaller than the stroke angle, it is expected that contribution
by the elevation of the wing to the mechanical power is also small.
Cp, Cp,a and Cp,i, computed by neglecting contributions by the
spanwise rotation and the elevation of the wing, are shown in Fig.13,
and values of the corresponding mass-specific power are included
in Table5 (numbers in parentheses). The contributions by the
spanwise rotation and the elevation of the wing are indeed small:
the mass-specific power without the contributions from spanwise
rotation and elevation is only approximately 5% different from that
with the contributions.

True hoverflies also perform normal hovering. It is of interest to
know whether there is any significant difference in power between
these two types of hovering for true hoverflies. We examined this
problem in two ways. First, we compared the mass-specific power
of the inclined-stroke hoverflies of the present study with that from
previously published normal hovering simulation studies. Sun and
Du, using Ellington’s wing kinematics data (Ellington, 1984b),
computed the mass-specific power of a true hoverfly in normal
hovering; P1* and P2* were 39 and 27Wkg–1, respectively (Sun
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and Du, 2003). These values are the same as those of HF1 in the
present study, and a little smaller than those of HF2, HF3 and HF4.
Next, we artificially changed the insects’ body angle so that the
stroke plane became horizontal and adjusted the downstroke and
upstroke angles of attack so that the same weight-supporting force
and horizontal force were produced. The corresponding power
becomes 35.2–43.4Wkg–1 for the case of zero elastic energy
storage and 25.2–34.3Wkg–1 for the case of 100% elastic energy
storage (Table6); these values are less than 10% smaller than those
found for inclined stroke-plane hovering.

From the above comparisons, we see that for the true hoverflies,
the power requirement for inclined stroke-plane hovering is only
slightly (approximately 10%) larger than that of normal hovering.

Aerodynamic derivatives and flight stability analysis
With the present CFD model, aerodynamic derivatives of a hovering
insect can be readily computed. With the aerodynamic derivatives
and the measured morphological parameters (mass, moment of
inertia, etc.; Table2), the system matrix of the insect can be
determined. The eigenvalues and eigenvectors of the system matrix
give the stability properties of the flight, from which insight into flight
maneuverability can be obtained. Here, we conduct a longitudinal
stability analysis of the hovering flight of HF1 (among the four insects
considered in the paper, HF1 has the largest inclined stroke-plane
angle). A description of the stability analysis method can be found
in previous studies (Taylor and Thomas, 2003; Sun and Xiong, 2005).

The longitudinal system matrix of a hovering insect (A) is as
follows:

A =

Xu / m Xw / m Xq / m − g

Zu / m Zw / m Zq / m 0

Mu / Iy ,b Mw / Iy ,b Mq / Iy ,b 0

0 0 1 0

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

  (2),
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Fig.12. Time courses of power. Cp, non-dimensional power; Cp,a and Cp,i,
non-dimensional aerodynamic and inertial power, respectively. t, non-
dimensional time.

Table5. The computed mass-specific power 

ID P1* (Wkg–1) P2* (Wkg–1)

HF1 38.52 (41.27) 27.46 (25.49)
HF2 44.20 (44.98) 33.69 (31.34)
HF3 46.30 (47.66) 35.41 (33.92)
HF4 44.10 (48.02) 27.89 (26.74)

HF1, HF2, HF3 and HF4, hoverflies 1, 2, 3 and 4, respectively (HF2, male;
others, female); P1* and P2*, mass-specific power in the cases of 0 and
100% elastic energy storage, respectively. Number in the parentheses
represents the mass-specific power computed by neglecting contributions
due to the spanwise rotation and elevation of the wing.

Table6. Mass-specific power when artificially changing the insects’
body angle so that the stroke plane becomes horizontal 

ID P1* (Wkg–1) P2* (Wkg–1)

HF1 35.15 25.18
HF2 42.18 34.34
HF3 40.64 31.85
HF4 43.37 26.69

HF1, HF2, HF3 and HF4, hoverflies 1, 2, 3 and 4, respectively (HF2, male;
others, female); P1* and P2*, mass-specific power in the cases of 0 and
100% elastic energy storage, respectively.
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Fig.13. Time courses of power. Cp, non-dimensional power; Cp,a and Cp,i,
non-dimensional aerodynamic and inertial power, respectively. t, non-
dimensional time.
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where g is the gravitational acceleration; Xu, Zu, etc. are the
aerodynamic derivatives [for example, Xu is the derivative of X
with respect to u (X and Z are the x- and z-components of the
aerodynamic force, respectively)]; M is the aerodynamic pitching
moment (x and z are coordinate axes fixed on the body with the
origin at the center of mass; at equilibrium flight, i.e. hovering, x
is horizontal, pointing forward, and z is vertical, pointing
downward); u and w are the x- and z-components of the velocity
of the center of mass; and q is the pitching rate of the body. For
comparison with other insects, non-dimensional quantities are
used: Xu, Xw, etc. are non-dimensionalized by 0.5U(2S); Xq and
Zq by 0.5U2(2S)/f; Mu and Mw by 0.5U(2S)c; Mq by
0.5U2(2S)c/f; m by 0.5U(2S)/f; Iy,b by 0.5U2(2S)/f2; and g by
Uf [we use the superscript ‘+’ to denote a non-dimensional
quantity, e.g. Xu

+Xu/0.5U2(2S)].
The computed aerodynamic derivatives of HF1 are given in

Table7. Sun and Wang conducted longitudinal stability analysis
of a hoverfly in normal hovering (Sun and Wang, 2007); here,
we call this hoverfly HFnorm. For comparison, the aerodynamic
derivatives of HFnorm are included in Table7. We also computed
the stability derivatives with HF1 rotated to normal hovering (in
the same way as done in the power analysis); the insect in this
case is denoted as HF1rot. The aerodynamic derivatives of HF1rot

are also given in Table7.
As seen in Eqn 2, the elements of the system matrix, and hence

the stability properties, are determined not only by the
aerodynamic derivatives, but also by the derivatives divided by
the mass or moment of inertia of the insect. The derivatives,
normalized by mass or moment of inertia, i.e. Xu

+/m+, Zu
+/m+,

etc., are shown in Table8. The difference in each element of the
system matrix between HF1 and HF1rot is very small; there is
some difference between HF1 and HFnorm, but it is not very large.
This indicates that the eigenvalues and eigenvectors, and hence
the stability properties of HF1, HF1rot and HFnorm, would not be
very different.

The eigenvalues for the three cases are shown in Table9. As
anticipated, there is little difference in the eigenvalues between
HF1 and HF1rot, and only a small difference between HF1 and
HFnorm (this is also true for the eigenvectors; data not shown).

The system matrix or the eigenvalues and eigenvectors
represent the inherent property of a flight system: the less stable

a system is, the easier it is to change its state. The above results,
especially the results of HF1 and HF1rot (the same insect in
inclined stroke-plane hovering and in normal hovering), show that
stability properties are almost the same for the two types of
hovering. Thus, we see that the two types of hovering have little
difference in maneuverability.

APPENDIX
Measurement method and error assessment

Measuring wing and body kinematics
The method of measuring the kinematic parameters of the body and
wings using the filmed data is based on stereovision-based
triangulation (see Fry et al., 2003; Fry et al., 2005; Liu and Sun,
2008; Belhaoua et al., 2009; Ristroph et al., 2009; Walker et al.,
2009). The general structure of a trinocular stereo vision system is
shown in Fig.A1 [in the figure, (Xw, Yw, Zw) is the world coordinate
system; (XC1, YC1, ZC1), (XC2, YC2, ZC2) and (XC3, YC3, ZC3) are the
camera coordinate systems of camera 1, 2 and 3, respectively; and
(u1, v1), (u2, v2) and (u3, v3) are the image coordinate systems of
camera 1, 2 and 3, respectively]. Based on the basic principles of
stereo vision, the projections of the scene point in the world
coordinate system onto any image coordinate system can be
calculated on the condition that the point’s coordinate in the world
coordinate system and projection matrices are known. The
calculation procedure is as follows.

Let P be an arbitrary point, whose coordinates are Xw, Yw and Zw

in the world frame and XC1, YC1 and ZC1 in the frame of camera 1.
Let p1 be the projective point of P on camera 1; p1’s coordinates in
the image frame of camera 1 are u1 and v1. The coordinate

Table 7. Non-dimensional stability derivatives

ID Xu
+ Zu

+ Mu
+ Xw

+ Zw
+ Mw

+ Xq
+ Zq

+ Mq
+

HF1 –1.71 0.22 1.96 0.22 –1.84 0.47 –0.26 –0.15 –0.15
HF1rot –1.31 –0.35 1.99 0.05 –1.78 –0.57 –0.31 –0.05 –0.15
HFnorm –1.28 –0.04 2.32 0.01 –1.26 0.05 –0.28 –0.00 –0.03

HF1, hoverfly 1; HF1rot, hoverfly 1 rotated to normal hovering; HFnorm, hoverfly studied by Sun and Wang in normal hovering (Sun and Wang, 2007); Xu
+, Zu

+

and Mu
+, non-dimensional derivatives of the x- and z-component of the aerodynamic force and aerodynamic moment, respectively, with respect to the x-

component (u+) of the non-dimensional velocity; Xw
+, Zw

+ and Mw
+, non-dimensional derivatives of the x- and z-component of the aerodynamic force and

aerodynamic moment, respectively, with respect to the z-component (w+) of the non-dimensional velocity; Xq
+, Zq

+ and Mq
+, non-dimensional derivatives of

the x- and z-component of the aerodynamic force and aerodynamic moment, respectively, with respect to the non-dimensional pitching rate (q+).

Table 8. Non-dimensional stability derivatives normalized by non-dimensional mass or moment of inertia

ID Xu
+/m+ Zu

+/m+ Mu
+/Iy,b

+ Xw
+/m+ Zw

+/m+ Mw
+/Iy,b

+ Xq
+/m+ Zq

+/m+ Mq
+/Iy,b

+ g+

HF1 –0.027 0.003 0.110 0.003 –0.029 0.026 –0.004 –0.002 –0.008 –0.029
HF1rot –0.021 –0.006 0.111 0.001 –0.028 –0.032 –0.005 –0.001 –0.008 –0.029
HFnorm –0.020 –0.001 0.199 0.000 –0.020 0.004 –0.004 0.000 –0.003 –0.023

HF1, hoverfly 1; HF1rot, hoverfly 1 rotated to normal hovering; HFnorm, hoverfly studied by Sun and Wang in normal hovering (Sun and Wang, 2007); definitions
of Xu

+, Zu
+ etc., as in Table7; m+, non-dimensional mass; Iy,b

+, non-dimensional moment of inertia; g+, non-dimensional gravitational acceleration.

Table 9. Non-dimensional eigenvalues of the system matrix

ID l1,2 l3 l4

HF1 0.062±0.128i –0.158 –0.030
HF1rot 0.064±0.129i –0.156 –0.030
HFnorm 0.074±0.144i –0.171 –0.020

HF1, hoverfly 1; HF1rot, hoverfly 1 rotated to normal hovering; HFnorm,
hoverfly studied by Sun and Wang in normal hovering (Sun and Wang,
2007). l1,2, a pair of complex conjugate eigenvalues; l3 and l4, real
eigenvalues.
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transformation between the world coordinate system and the image
coordinate systems is:

where M1 is the projection matrix of camera 1 (the projection matrix
is determined by camera calibration, see below). Let m1i,j (i, j1,
2, 3) denote the elements ofM1. Eliminating ZC1 from Eqn A1 gives:

The coordinates of point P’s projection onto the image coordinate
system of camera 1 can be determined via Eqn A2. By consecutively
replacing M1 by projection matrices of camera 2 (M2) and camera
3 (M3) and repeating the above calculation, we can obtain all
projections on the three image coordinate systems.

We use a line segment, whose length is equal to the body length
of the insect, to represent the body of the insect, and the outline of
the wing, obtained from scanning the wing (see Fig.1A), to
represent the wing. The line segment of the body and the outline
of a wing are referred to as the models of the body and the wing,
respectively. Each of them is represented as a set of points. Using
the method described above, we could easily compute the projection
of the point set on all the three image coordinate systems.

We put the models of the body and the wings into the world
coordinate system, then change the positions and orientations of
those models until the best overlap between a models’ projection
and the displayed frame is achieved in all three views. At this point,
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the positions and orientations of those models would be taken as
the positions and orientations of the body and wings of the insect.
Generally, several re-adjustments of each model’s position and
orientation are required to obtain a satisfactory overlap. The
matching is done manually. We have developed a graphical user
interface subroutine for MATLAB to execute the above procedures.

Camera calibration
We used a flat glass panel with a high accuracy black-and-white
checkerboard pattern printed on it to calibrate the three orthogonally
aligned cameras. The calibration gave the intrinsic and extrinsic
parameters of each camera (these parameters determined the
transform matrix of the camera). Each image of the calibration panel
contained 324 automatically identified corner points as required
feature points. Fifty-five of the 90 images of the calibration panel
were used for calibrating each single camera and the stereo rigs.
The calibrations were carried out using a custom-written program
in MATLAB.

Error analysis
The stereovision-based triangulation method has several types of
error (Belhaoua et al., 2009). In the present case, the errors are due
to camera model inaccuracy (pinhole model was used to characterize
the cameras), camera calibration, stereo rig calibration and
discretization (the projection of a 3-D point in the image plane is
approximated to the nearest pixel). Another error source is wing
deformation. Insect wings have time-dependent deformation during
flapping motion. Our model of the wing is a rigid flat plate that has
the same outline as the cut-off wing, and errors will arise when one
tries to match the model’s projection with the image of the flapping
wing.

Errors due to the camera model, camera calibration and stereo
rig calibration are categorized as system error. Thirty-five images
of the calibration panel that had not been used in calibrating the
cameras were used to estimate these errors and the results were as
follows. We used the reprojected pixel error (RPE) (Walker et al.,
2009) as an indicator of camera model accuracy. For all three
cameras, the RPE was less than 0.16pixels in both directions on
the image plane. Adding distortion and/or skew parameters to the
pinhole model did not reduce the RPE significantly. Accuracy in
describing the relative orientation and position between every two
cameras was 0.02deg and 0.03mm, respectively. In the above
processes, all computations reached a sub-pixel level accuracy based
on the features detected, so the results were not affected by the
discretization errors, which will be considered below.

The above results show that errors due to the camera model,
camera calibration and stereo rig calibration are very small. It is
expected that the other two types of errors, i.e. discretization errors
and errors due to wing deformation, are the primary errors of the
method. Here, we estimate these two types of errors as a whole;
this estimate will be taken as the error of the method.

To estimate discretization and wing deformation errors, we
applied our method to a computer-generated virtual insect consisting
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Fig.A1. Model of trinocular stereo vision system. (Xw Yw Zw), world
coordinate system; (XC1 YC1 ZC1), (XC2 YC2 ZC2) and (XC3 YC3 ZC3), camera
coordinate systems of cameras 1, 2 and 3, respectively; (u1, v1), (u2, v2)
and (u3, v3), image coordinate systems of cameras 1, 2 and 3, respectively.
f1, f2 and f3, the focal length of cameras 1, 2 and 3, respectively; P, an
arbitrary point; p1, p2 and p3, the projective points of P on cameras 1, 2
and 3, respectively.

B C DA

Fig.A2. An example of the of the virtual insect (A) and its three projective
images (B,C,D).
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of a rigid body and two deforming wings. The wings can rotate
around their roots (being joints with three degrees of freedom) and
have time-dependent twist and camber deformations. The body is
unrestrained in space, having six degrees of freedom. The wing and
body motions and the wing deformation of the virtual insect are as
follows. The positional and elevation angles and the pitch angle at
r2 of the wing are set the same as those of HF1. Based on
observations of flight in many insects (Walker et al., 2009; Ellington,
1984b; Ennos, 1989a), the wing is assumed to have a 15deg twist
and 6% camber during the translation phase of the downstroke or
upstroke and the twist and camber increase to 25deg and 10%,
respectively, at stroke reversal. It is assumed that the center of mass
of the body has a horizontal harmonic oscillation of 2.5mm
amplitude and the pitch angle of the body has a harmonic oscillation
of 5deg amplitude. Each wingbeat cycle contains 35 data points.

First, we used the projection matrices to project the virtual insect
onto the image planes of the cameras (setting the resolution and
pixel ratio the same as those of the real cameras) and obtained three
nearly orthogonal projective images of the virtual insect (an example
of the 3-D virtual insect and its images is given in Fig.A2). This
step contains the discretization errors. Next, as was done in the real
experiment, we represented the virtual insect by the body and wing
models (body represented by a line segment and wing represented
by its outline; each of the models was a set of points). We put the
models of the body and the wings into the world coordinate system
and then changed the positions and orientations of the models until
the best overlap between each model’s projection and the
corresponding image of the virtual insect was achieved in all three
views. We thus obtained the measurements of body and wing
kinematics of the virtual insect.

Comparison between the measured and the imposed body and
wing kinematics gives the errors. Six wingbeats were analyzed.
Fig.A3 shows the differences between the measured and imposed
kinematic parameters and the corresponding histograms for the body
and the right wing (results for the left wing are similar). As seen in
Fig.A3A, for positional angle and elevation angle of the wing, errors
are within 3deg and the residuals are nearly centered around zero,
indicating that there are only small systematic deviations; for the
pitch angle of the wing, errors are a little larger, within 4deg. For
the body orientation (Fig.A3B), errors in yaw and pitch angles are
approximately 1deg and error in roll angle is within 3deg. Errors
in the body position (Fig.A3C) are typically less than 0.2mm, or
2% of body length.

LIST OF SYMBOLS
A system matrix
c mean chord length
CD wing drag coefficient
CG weight coefficient
CH horizontal force coefficient
CL wing lift coefficient
Cp non-dimensional power
CV vertical force coefficient
CV mean vertical force coefficient
D drag of a wing
f stroke frequency
g gravitational acceleration
H horizontal force
h1 distance from wing-root axis to long axis of the body
Ix,b, Iy,b, Iz,b moments of inertia of the body about the center of mass of the

body
Ix,w, Iy,w, Iz,w moments of inertia of a wing about the wing root
Ixz,b product of inertia of the body
Ixz,w product of inertia of a wing
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Fig.A3. Differences between the measured and imposed wing and body
kinematic parameters (measured value minus imposed value; ‘’ denotes
difference). (A)Right wing angles: , positional angle; , elevation angle; 
pitch angle. (B)Body angles: b, yaw angle; b, pitch angle; b, roll angle.
(C)Position of body center of mass: xb, yb and zb, horizontal, sidewise and
vertical displacements of the body center of mass, respectively.
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J advance ratio
L lift of a wing
l1 distance from wing-root axis to body center of mass
l2 distance from anterior end of body to center of mass
lb body length
lr distance between two wing roots
m mass of an insect
M total aerodynamic pitching moment about center of mass
Ma aerodynamic moment of wing around wing root
Mi inertial moment of wing around wing root
Mq derivative of M with respect to q
Mu derivative of M with respect to u
Mw derivative of M with respect to w
mwg mass of one wing
P* body-mass-specific power
Pa aerodynamic power
Pi inertial power
q pitching angular velocity about the center of mass
R wing length
r2 radius of the second moment of wing area
S area of one wing
t time
tc wingbeat period
t non-dimensional time (t 0 and 1 at the start and end of a

cycle, respectively)
u component of velocity along the x-axis
U reference velocity (mean flapping velocity at r2)
V vertical force of a wing
w component of velocity along the z-axis
X x-component of the total aerodynamic force
x, y, z coordinates in the body-fixed frame of reference (with origin

at center of mass)
Xq derivative of X with respect to q
Xu derivative of X with respect to u
Xw derivative of X with respect to w
Z z-component of the total aerodynamic force
Zq derivative of Z with respect to q
Zu derivative of Z with respect to u
Zw derivative of Z with respect to w
+ non-dimensional quantity
 angle of attack of wing
 stroke plane angle
 deviation angle of wing
l generic notation for an eigenvalue
 density of fluid
 positional angle of wing
� mean positional angle
� stroke amplitude
 body angle
 pitch angle of wing
� wing rotation velocity vector
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