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INTRODUCTION
Muscle contraction is the basis for body movements of animals.
Tension is developed as a result of muscle stretch, motoneuron (MN)
activation and the simultaneous effects of both. The tension of
contractile element T has been modeled as a function of the MN
impulse frequency f, muscle strain (or length) x and its time derivative
(velocity) vx. Sliding filament theory (Huxley, 1957; Huxley and
Simmons, 1971; Huxley, 1971; Huxley, 1974) suggests that muscle
activation scales the tension–length–velocity properties of maximally
activated (tetanized) muscle (Hatze, 1977; Zajac, 1989), yielding a
multiplicative model structure T(f,x,v)a(f)h(x,v), where 0<a(f)<1 is
the muscle activation level and h(x,v) is the tension of tetanized muscle
at length x and velocity v. The tetanic tension is often described by
Hill’s equation (Hill, 1938) or its variations of the form h(x,v)p(x)q(v),
where the length–tension curve p(x) and velocity–tension curve q(v)
are typically determined from tetanic isometric and isovelocity
experiments, respectively. The model for the muscle activation a(f)
is found from the isometric contraction experiments where the
activation level a is proportional to the measured tension because the
length and velocity are fixed constants in isometric experiments; the
function a(f) can thus be derived using the data at different activation
levels (Lloyd and Besier, 2003; Brown et al., 1999).

Although the multiplicative models have been successful in
explaining the data from standard isometric and isovelocity
experiments under the tetanic condition, their predictive capability
remains debatable under conditions different from those used for
modeling. Muscle activation dynamics can be too complex to be
captured by the simple multiplicative structure; for example, rapid
shortening can deactivate the thin filaments, and strongly bound cross
bridges can activate skinned fibers in the absence of calcium ions

(Gordon et al., 2000). In fact, a number of studies have demonstrated
that multiplicative models can fail to predict tensions accurately when
the MN stimulation rate is low and/or there are continuous changes
in muscle velocity (Perreault et al., 2003; Camilleri and Hull, 2005;
Julian and Moss, 1981; Gordon et al., 2000). A common cause of the
failure is the assumption that the activation, length and velocity factors
in the multiplicative structure are independent of each other. In reality,
the activation factor may depend on the velocity (Williams, 2010),
and the velocity factor may depend on the activation level (Otten,
1987; Winters and Stark, 1985). The tension developed under such
coupling effects may not be well explained by a model with the
decoupled multiplicative structure.

In contrast, if a model is developed directly from experimental
data under functionally relevant conditions, rather than the standard
tetanic isometric/isovelocity conditions, the model may accurately
capture the behavior of interest with the simple, decoupled
multiplicative terms because the activation level may not have to span
the whole range from low to tetanic, and the velocity may be confined
in a relatively small range. Indeed, this expectation has been met in
the case of periodic movements mimicking lamprey swimming
(McMillen et al., 2008). Thus, direct modeling under functionally
relevant conditions can be important for accurately characterizing the
targeted behavior with least model complexity. However, no
systematic methods are currently available for such modeling
processes and one has to rely on brute-force parametric optimizations
that could suffer from computational difficulties. Moreover, such
parametric optimizations have to a priori assume a model structure
(multiplicative decoupling, in particular) without verification.

In this paper, we focus on rhythmic movements where MN
activation and length change are both periodic, sharing the same
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SUMMARY
We have studied the dynamical properties of tension development in leech longitudinal muscle during swimming. A new method
is proposed for modeling muscle properties under functionally relevant conditions where the muscle is subjected to both periodic
activation and rhythmic length changes. The ‘dual-sinusoid’ experiments were conducted on preparations of leech nerve cord and
body wall. The longitudinal muscle was activated periodically by injection of sinusoidal currents into an identified motoneuron.
Simultaneously, sinusoidal length changes were imposed on the body wall with prescribed phase differences (12 values equally
spaced over 2 radians) with respect to the current injection. Through the singular value decomposition of appropriately
constructed tension data matrices, the leech muscle was found to have a multiplicative structure in which the tension was
expressed as the product of activation and length factors. The time courses of activation and length factors were determined from
the tension data and were used to develop component models. The proposed modeling method is a general one and is applicable
to contractile elements for which the effects of series elasticity are negligible.
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frequency with a particular phase relationship between the two. We
propose a systematic method for testing the (decoupled)
multiplicative structure, i.e. T(f,x,v)a(f)h(x,v), based on the singular
value decomposition of an appropriately constructed tension data
matrix. With decoupling confirmed, dynamical models for the
activation function a(f) and tension–length–velocity function h(x,v)
can then be derived. The method is applied to the longitudinal muscle
of leeches that are used for undulatory swimming. The input–output
data (f,x,v) and T were collected from novel ‘dual-sinusoid’
experiments on nerve-cord and body-wall preparations where the
body wall was activated by rhythmic MN impulse bursts and at the
same time subjected to the sinusoidal length changes. The
experimental approach and the theoretical method for testing the
multiplicative structure are general, and can be employed to model
the active tension of the contractile element under periodic (but not
necessarily sinusoidal) movements of vertebrate skeletal muscles,
provided the series elasticity effect can be neglected as discussed
elsewhere (Zajac, 1989).

This study is part of our larger effort to develop an integrated
analytical model of the leech swimming system. We have developed
mathematical models of the central pattern generator (CPG) (Zheng
et al., 2007; Zheng, 2007), impulse adaptation in MNs (Tian et al.,
2010), passive properties of longitudinal muscles of the body wall
(Tian et al., 2007; Tian, 2008) and body-fluid interactions during
undulatory swimming (Chen et al., 2011). The muscle model with
MN activation developed here will be integrated with these
component models later to study the feedback control mechanisms
underlying animal locomotion. Our focus is therefore more on
systems-level modeling for accurately describing the rhythmic
muscle contraction behavior than on uncovering physiological
mechanisms underlying tension development.

MATERIALS AND METHODS
Dual-sinusoid experiments on leech preparations

Preparation
Medicinal leeches (Hirudo verbana Carena 1820) were obtained
from Leeches USA (Westbury, NY, USA) and maintained in aquaria
at ~20°C in a light-controlled room on a 12 h:12 h light:dark cycle.
Experiments were performed on preparations of nerve cord and body
wall excised from medium-sized leeches, ~11 cm long when gently
stretched. The dissected body wall consisted of a 6-annuli-long
(~6 mm) rectangle, the width of which was half of dorsal sector
excised from the mid-body. The length was one annulus longer than
one segment, to reflect the innervation pattern of the MN, and

xtended from the dorsal to the lateral midline. This dorsal half of
the body wall is innervated by the dorsal posterior (DP) and the
posterior posterior nerves (Stuart, 1970). Two dorsal excitatory MNs,
DE-3 and DE-5, were present as bilateral homologs. Their axons
cross the midline to synapse with muscle fibers contralateral to their
somata. The nerve cord and body wall were pinned dorsal-side up
in a glass-bottomed recording dish. The body wall was suspended
between a tension transducer (Harvard Apparatus, Holliston, MA,
USA) to record body wall tension and a servomotor actuator (model
94757, Airtronics Inc., Anaheim, CA, USA) to rhythmically change
body length (Fig. 1). Serotonin is an important neuromodulator in
leeches, which modulates muscle tension (Tian et al., 2007). Hence,
in this investigation, we utilized a 10 mol l–1 concentration of
serotonin to emulate physiological hormonal conditions.

Procedures
To mimic the dual inputs of MN impulse activation and muscle
length changes contributing to muscle tension during swimming,
we injected sinusoidal current into identified excitatory MNs and
simultaneously imposed sinusoidal length changes to the body wall
(‘dual sinusoid’ experiments; Fig. 1). Because of MN innervation
patterns (Stuart, 1970), preparations were activated by stimulation
of either DE-3 or DE-5. Sinusoidal current was delivered to the
soma of DE-3 or DE-5 through sharp glass capillary microelectrodes.
The evoked impulse frequencies of the stimulated MNs were
estimated from spikes recorded by extracellular suction electrodes
in peripheral nerves that carry the axons of contralateral MNs. It
had previously been shown that, because of electrical coupling
between homologs, impulse frequency in one MN can be estimated
by multiplying the impulse frequency in its homolog by a factor of
3 (Tian, 2008; Tian et al., 2010). The amplitude of the injected
current ranged from 2 to 3 nA to evoke MN impulse bursts with
impulse frequencies similar to those recorded in swimming leeches
(Yu et al., 1999). The sinusoidal length change imposed on the body
wall was ±8% of the nominal body length during swimming in
accordance with measured kinematic data (Chen et al., 2011; Kristan
et al., 1974). Nominal length was measured prior to dissection at
the lateral mid-line of the segment in video frames of the swimming
leech. The cycle frequencies of the two sinusoidal inputs (at 0.5, 1,
2 and 3 Hz) were identical and spanned the range observed in
swimming animals. We varied the phase of sinusoidal length
change with respect to the current injected into MN soma from 0 deg
to 330 deg in 30 deg increments; thus, the phase differences between
two inputs spanned one full cycle of 360 deg. In addition to the
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Fig. 1. Experimental configuration. Preparations comprised a short
chain of nerve cord ganglia (M7–M12), one of which innervated, via
the dorsal posterior (DP) and the posterior posterior nerves, a short
strip of body wall excised from a dorsal half-segment that extended
slightly more than one segment. The contralateral DP nerve was
dissected to monitor motoneuron (MN) impulse frequencies via
suction electrodes. Tension in the body wall, caused by the injection
of sinusoidal current into an excitatory MN (DE-3) and rhythm length
changes imposed by a servomotor (SM), was monitored by a tension
transducer (TT). Two DE-3 cells are indicated (‘3’), with sinusoidal
current injected into the one contralateral to the body wall (BW). The
diagram is not to scale.

THE JOURNAL OF EXPERIMENTAL BIOLOGY



1957Dynamics of muscle activation

dual-sinusoid experiments described above, we also conducted
experiments to measure passive muscle tension. In these
experiments, the length of isolated flaps of body wall was varied
sinusoidally to span ±8% of the nominal length; there was no
activation of MNs. Body wall tension was detected by the tension
transducer. All data collected were amplified, displayed and recorded
with Powerlab hardware and Chart 5 software (ADInstruments Inc.,
Mountain View, CA, USA). Signal sampling rate was 4 kHz.

Development of the model
The modeling method described below may be applicable to
contractile elements in both vertebrate and invertebrate muscles. To
avoid confusion between studies of leech, invertebrate, muscle and
vertebrate skeletal muscle, it should be noted, first, that parallel and
in-series elastic elements are absent in leech muscle. Leech
longitudinal muscle, whose rhythmic relaxation and contractions
cause the body undulations, extends the length of the animal, with
overlapping muscle fibers several millimeters in length (Sawyer,
1986). There are no tendons to generate in-series elasticity. The
leech epidermis is slack within the operating length during
swimming (Miller, 1975; Tian et al., 2007), hence there is no parallel
elasticity either. Consequently, the tension we measured in dual-
sinusoid experiments corresponds to the tension generated by the
contractile element in Hill-type models. Second, leech muscle has
intrinsic tonus tension at rest, in the absence of activation (Miller,
1975; Mason and Kristan, 1982; Tian et al., 2007). Because of the
similarities of the ultrastructure of leech longitudinal muscles and
those of other animals (Lanzavecchia et al., 1985; Paniagua et al.,
1996), and the parallel between resting tonus in the leech and
unstimulated tension in smooth muscle (Fung, 1993), it is reasonable
to assume that the tonus tension results from the resting concentration
of calcium ions. The activation of excitatory MNs would then
increase the calcium ion concentration and thus increase the muscle
tension from this resting tonus value. It appears reasonable to
hypothesize that the tonus tension shares the same mechanisms as
the active tension induced by the MN activations. Hence, the
activation variable described in this paper combines the intrinsic
tonus value and the activation by MNs. The intrinsic tonus tension
is also called the ‘passive tension’ because it is generated without
MN activation. This should not be confused with the passive tension
in vertebrate muscles arising from parallel elastic elements. When
applied to contractile elements of skeletal muscles, for which series
elasticity can be neglected, our method would simply yield a model
with no tonus effect.

Test of the multiplicative structure in tension development
We will consider a general situation where the time course data of
tension T, strain x, and stimulation f have been generated from N
experiments as follows. In the first experiment, x(t) and f(t) are varied
periodically (with cycle period p) and the resulting tension T1(t) is
measured. In the second experiment, the tension T2(t) is measured
when the stimulation f(t) remains the same but the strain is time-
shifted from x(t) to x(t+) where p/N. Repeating this procedure
N times using x(t+k) for the (k+1)th experiment, N sets of tension
data Tk+1(t) (k0,...,N–1) are collected. In our dual-sinusoid
experiments, x(t) is a sinusoid and f(t) is the MN frequency resulting
from sinusoidal current injection into the identified MN DE-3. The
number of experiments is N12, corresponding to the experimental
procedure wherein the phase of strain with respect to the current
injection was increased by k�30 deg in the (k+1)th experiment.

The muscle is viewed as a dynamical system with strain x and
stimulation f as inputs and tension T as output. If the effects of x

and f on T are multiplicative, the tension can be expressed as
T(x,f)a(f)h(x), where h(x) is the length factor, and a(f) is the
activation factor due to stimulation. The functions h(x) and a(f) are
possibly dynamic; this means that, if the outputs of functions h(x)
and a(f) are denoted by h(t) and a(t) with a slight abuse of notation,
h(t) may depend on x(t) as well as its derivatives (velocity,
acceleration, etc.) and its past history, and similarly for the
relationship between a(t) and f(t). Note that this h(x) represents the
same quantity as h(x,v) in the introduction section, without indicating
its dependence on v explicitly.

A method is described below to test whether the measured
tension data can be explained as the product of length and
activation factors. The basic idea is to divide the time courses of
h(t) and a(t) for one cycle of the first experiment (i.e. k0) into
N equal intervals (corresponding to N shifts of strain with respect
to current injection to MN). Then, if the multiplicative structure
is correct, tension data from the remaining N–1 experiments can
be reproduced by circulating N intervals of h(t) with respect to
a(t), one interval at a time, and multiplying the circulated sets of
h(t) by a(t). The validation of the multiplicative model structure
is thereby transformed into checking whether the computed
values of tension for the remaining N–1 experiments replicate the
measured data.

With the multiplicative structure, tension data recorded in the
(k+1)th (k0,...,N–1) experiment is described by Tk+1(t)h(t+k)a(t).

Replacing the time variable t by t+j and defining ij+k, we
have:

Tl (t + j)  h (t + i) a (t + j) , (1)

where li–j+1 when 0≤j≤i≤n with n defined as N–1. When 0≤i≤j≤n,
Eqn 1 holds for li–j+1+N because i can be replaced by i+N without
changing the value due to the periodicity h(t+p)h(t). Assembling
Eqn 1 into a matrix form:

where (·)T is the transpose of (·). Let us denote this relationship by
T(t)h(t)a(t)T, where T(t) is an N�N tension data matrix, and h(t)
and a(t) are unknown N-dimensional vectors. Note that each column
of T(t) is a ‘circulated’ version of the adjacent column on the left,
obtained by moving the last entry to the top and by shifting the time
by .

The matrix T(t) admits a factorization of the form h(t)a(t)T if,
and only if, T(t) has rank one. Therefore, the tension T(t) can be
expressed as the product of strain factor h(t) and activation factor
a(t) if, and only if, the tension data matrix T(t), defined by Eqn 2,
has rank one for all time t. By periodicity, it suffices to check the
rank of T(t) for the interval 0≤t≤. Suppose the tension
measurements are made at discrete time instants ti for i1,...,m in
this interval, and are repeated with the same time spacing in the
subsequent intervals k≤t≤(k+1) for k≥1. Then, the multiplicative
effect can be tested by calculating the rank of m tension data matrices
T(ti). Because the measured data always contain some noise, the
rank will never be exactly one. In practice, one can compute the
singular values of T(ti), and if the second largest singular value is
substantially smaller than the first, T(ti) can be regarded as
effectively rank one. In that case, we conclude that the effects of
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the strain and MN impulse frequency on the tension generation are
multiplicative.

Factorization of the tension into the length and activation factors
Assuming that the largest singular value of the matrices T(ti)
(i1,...,m) is much larger than the other values, the time courses of
a(t) and h(t) can be constructed from the singular vectors of T(ti).
Let the singular value decomposition of T(ti) be given by:

where ri is the rank of T(ti), ij(j1,...,ri) are the nonzero singular
values with associated singular vectors uij and vij and i is the largest
singular value with singular vectors ui and vi. The length and
activation factors can be found as h(ti)ciiui and a(ti)vi/ci, where
ci is an arbitrary scaling parameter. The time courses of h(t) and
a(t) can then be obtained by appending the rows of matrices
[h(t1)...h(tm)] and [a(t1)...a(tm)], respectively, in a sequence. The
scaling parameters ci for i1,...,m can be chosen so that the resulting
h(t) is as smooth as possible, by minimizing:

where c is the m-dimensional vector with its ith entry ci, and
h(tNm+1)h(t1) holds because of periodicity. Since h(ti) linearly
depends on c for all i, the objective function can be expressed as
J(c)cTMc for a constant positive semi-definite matrix M. With the
normalization cTc2, the minimum of J(c) is attained when c is the
eigenvector of M associated with its smallest eigenvalue. The freedom
in the sign of c should be used to ensure that h(t) is positive over
time. The freedom  in the magnitude of c is rather arbitrary as it
only scales the magnitudes of the multiplicative factors by
h(t)a(t)[h(t)][a(t)/], but can be used to enforce consistency of the
muscle model over different cycle frequencies as explained below.

Modeling the activation dynamics and length–tension relationship
Upon completion of the factorization process for each cycle
frequency, we had a data set of time course (f,a) for muscle activation
and (x,h) for the length–tension relationship. The next step was to
find system models that relate the input–output data.

For the pair (x,h), one can first determine if the length–tension
relationship is static by plotting the data on the (x,h) plane. If the
data points lie on a single curve, then the relationship is static (i.e.
the output h at time t is determined by the input x at time t, and is
independent of the past history of x). In this case, a model can be
simply obtained by expressing h as a linear combination of some
basis functions of x (such as polynomials and exponentials) and
calculating the coefficients through least square optimization. If the
data plot on the (x,h) plane makes a loop, the relationship is dynamic.
In this case, one may plot h as a function of (x,v), which can be
visualized as a surface in the three-dimensional space (x,v,h), where
vx is the velocity. The surface can then be modeled by a least
square fit to some basis functions, such as Hill’s equation. The length
and velocity factors would be decoupled if the cross sections of the
surface along each axis direction have the same shape after a
normalization by some scalar.

The relationship between a and f is typically a dynamic mapping.
One approach to finding a model is to assume an analytical structure
for the relationship such as the calcium ion kinetic model (Williams
et al., 1998) and to determine the parameter values by data fit.
Another approach, taken here, is to assume linearity and fit the data
by a transfer function. The transfer function is a description of the

,  (3)T(ti ) = σijuijvij
T

j=1

ri

∑ ≅ σiuivi
T

,  (4)J (c) = h(ti+1) − h(ti )( )2

i=1

Nm

∑

linear dynamical system that converts the time-domain integration
and differentiation operations of the system on the input signal (e.g.
f) to the division and multiplication of the Laplace transform of the
input signal by the Laplace variable s. The output of the system is
obtained by the inverse Laplace transform of the product of the
transfer function and the Laplace transform of the input signal. By
replacing the Laplace variable s with j, where j is the imaginary
unit and  is the frequency of the sinusoidal input signal, the transfer
function becomes a complex number, the magnitude of which is
the amplification (gain) from input to output and the angle is the
phase lag of the output from the input.

As mentioned earlier, the tonus tension is assumed to share the
same mechanisms as the active tension induced by MN activation.
Thus the activation factor in our model contains the combined effect
of the tonus and MN activation. Assuming linearity, this gives the
activation model structure aP(s)f+b, where P(s) is a transfer
function and b is a constant. Here, P(s)f should be interpreted as
the output signal of the system P(s) in response to the input f(t),
that is, P(s)f is the time-domain signal obtained by the inverse
Laplace transform of the product of P(s) and the Laplace transform
of f(t). Note that P(s)f captures the direct effect of MN impulses
and equals zero when the MN activation is off. We chose b1 so
that h represents the passive tonus tension. For the contractile
element of striated muscles having no passive tension, b should be
set to zero.

Four data sets of a(t) and f(t) were obtained at 0.5, 1, 2 and
3 Hz, where f(t) at each cycle frequency was the average of the
measured MN impulse frequencies over the 12 phase-shifted
experiments. Using these data, we estimated the gain and phase of
P(j) (denoted by |P(j)| and �P(j), respectively) at the specified
cycle frequencies. Neither a(t) nor f(t) were sinusoids, and we
expanded them into Fourier series. Ideally, each harmonic pair of
the Fourier series of a(t) and f(t) gives data points |P(j)| and �P(j)
at every integer-multiple of the cycle frequency, generating a
discretized frequency response plot. However, the Fourier analysis
showed that the amplitude of the fundamental harmonic was much
larger than those of the higher order harmonics. This suggested that
the |P(j)| and �P(j) determined by the fundamental harmonics
were more reliable than the ones by the higher order harmonics
when the recording noise in a(t) and f(t) were considered. Hence,
we only used the fundamental harmonics of a(t) and f(t) to calculate
|P(j)| and �P(j).

The data sets of a(t) and f(t) at the four cycle frequencies gave
rise to four points on each of the gain and phase frequency response
plots. An additional datum point is the static gain P(j0)(a0–b)/f0
at zero frequency, where a0 and f0 are the average values of a(t)
and f(t) over the cycle. The static gain value should be the same for
the four data sets (f,a) from different cycle frequencies. The four
scaling parameters  in the factorization process were chosen to
satisfy this constraint while minimizing the difference between the
length factor h(t) and the observed passive tension data. The structure
and parameters of P(s) were determined from the data points P(j)
at 0, 0.5, 1, 2 and 3 Hz. In addition to the frequency response
plot of P(s), the shape of the time courses of a(t) and f(t) assisted
in determining the structure of P(s), as explained later in the Results
section.

RESULTS
Validation of the multiplicative model structure

Construction and evaluation of the tension model is based on the
data set derived from one leech and illustrated in Fig. 2. This figure
shows the body wall strain, the current injected into the MN soma,
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the MN impulse trains and the MN impulse frequency and tension
data, from one dual-sinusoid experiment. Muscle strain oscillated
between plus and minus 8% of nominal swim length (top trace).
The injected sinusoidal current had an amplitude of 2 nA (second
trace from top). Impulse trains in a DE-3 MN, electrically coupled
with the penetrated DE-3 MN, were recorded from the DP nerve
contralateral to the body wall nerve (middle trace). Impulse
frequency was calculated as the reciprocal of interspike intervals.
The impulse frequency of the target MN DE-3 was estimated to be
three times that computed from extracellular recordings of impulses
generated by the contralateral MN (Tian et al., 2010). The bottom
trace is the tension resulting from the strain and MN input to the
longitudinal muscles; maximum tension is ~3 gram force
(0.02958 N). In additional experiments on the same leech
preparation, the sinusoidal strain advanced current injection by
phases spanning from 0 deg to 330 deg in 30 deg increments,
generating 12 time series of tension data. The complete data set for
all 12 experiments, performed at four cycle frequencies (0.5, 1,
2 and 3 Hz), are plotted in Fig. 3, left column. One conclusion is
that peak tension varies with the phase difference between muscle
strain and MN activation impulses. This relationship is most obvious
at low cycle frequencies.

For each cycle frequency, the tension data were used to construct
the tension data matrices T(ti) (i1,...,m) defined at each sampling
time instant ti according to the left hand side of Eqn 2. The largest
singular value of T(ti) was substantially larger than the second largest
(the ratio of the two was more than 10 at all time instants ti for all
four cycle frequencies). This means, roughly speaking, that the
modeling error due to the multiplicative structure assumption is less
than 10% of the measured tension. Thus, the effects of muscle strain
and MN impulse frequency on tension are experimentally verified
to be multiplicative.

Following the modeling procedure, we factored the length factor
h(t) and activation factor a(t) from T(ti) (i1,...,m). The products of
a(t) and the time-shifted h(t+k) (k0,...,11) are plotted in Fig. 3,
middle column. The measured tension data (Fig. 3, left column) are
reproduced accurately by the product of h(t+k) and a(t). Thus, the
multiplicative model structure T(x,f)h(x)a(f) is validated.

The length–tension relationship and the muscle activation
model

The activation factor a(t) and the length factor h(t) for the cycle
frequency 1 Hz, as an example, are plotted in Fig. 4A,B (black

curves). We see that h(t) has the magnitude of ~1 gram force, which
is in the range of recorded passive tension value, and a(t) oscillates
above 1 with peak value near 3  gram force, indicating that the
passive tension h(t) can be increased up to threefold through MN
activation. Twelve time courses of the MN impulse frequency at
1 Hz are shown in Fig. 4C, and those at the other three cycle
frequencies are similar. The maximum firing frequency is ~100 Hz,
which is consistent with the MN activity during intact swimming
(Yu et al., 1999). The data f(t) are defined as the average of the
measured twelve time courses.

The MN activation model is determined from the fundamental
harmonic components of a(t) and f(t), indicated by the red dashed
curves in Fig. 4A,C. Calculating the amplification factor and phase
shift, data points of the frequency response were obtained as shown
in Fig. 5A. The oscillation amplitude of a(t) reduced as the cycle
frequency increased, which is reflected in the gain plot. The phase
lag between the MN impulse frequency and the activation variable
a(t) increased as the cycle frequency increased. These properties
indicate that the muscle activation dynamics have a low pass filter
characteristic, which can also be inferred from the time courses of
a and f in Fig. 4A,C, where the activation variable a decays
exponentially soon after the MN impulse frequency f is turned off.
Adding a time delay to the first-order low pass filter to account for
the large phase lag, we fitted the data points in Fig. 5A by the
following transfer function:

P(s)   [e–ds / (1 + cs)] , (5)

where a1/45 s is the static gain of the transfer function, c0.23 s
and d0.13 s are the time constants for the decay and delay,
respectively. The frequency response P(j) is plotted in Fig. 5A (blue
curves), illustrating a relatively good fit to the data.

The data for x(t) and h(t) are plotted parametrically on the
strain–tension plane (x,h) in Fig. 5B. Although time is not shown
explicitly, the data points progress around the narrow loops in the
clockwise direction, once each cycle. Note that the tension curve
obtained during body wall stretching is not exactly replicated during
the contraction portion of the cycle. The implication is that the tension
h is a dynamic function of the strain x, that is, h(t) depends not only
on x(t) but also possibly on its derivative v(t). We could thus attempt
to characterize h as a static function of x and v as in the Hill’s equation
h(x,v)p(x)q(v). However, the area enclosed by each of the four loops
is relatively small, with loops generated by the different cycle
frequencies overlapping. Hence, it is reasonable to model the tension
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Fig. 2. Data obtained from ‘dual-sinusoid’
experiments. Sinusoidal length changes (top
trace) centered at ‘nominal swim length’ were
imposed onto the body wall strip, with an
amplitude of 8% of the nominal length.
Sinusoidal current (second from top) was
injected into the soma of the DE-3 MN that
innervated the body wall. The amplitude of
current ranged from 2 to 3 nA. The driving cycle
frequencies (0.5, 1, 2 or 3 Hz) that controlled
body-wall length and MN membrane potential
were always identical, but their phases were
varied systematically, to span 360 deg in 30 deg
increments. Impulse frequencies (the reciprocal
of interspike intervals; fourth trace) of MNs
electrically coupled to the penetrated neuron
were obtained from the contralateral DP nerve
(third trace). Body wall tension is shown in the
fifth trace (1 gram force0.00986 N).
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h as a static function of x, ignoring the small dynamic effects. Under
this simplification, the tension can be modeled as h(x)ex/, a simple
exponential curve, where the constant parameters  and  are tuned
to provide a good fit to the loops of all four cycle frequencies. The
resulting values are 0.135 gram force and 1/29; the model
tension–strain curve is plotted in Fig. 5B (thick blue curve). Finally,
the data from the dual-sinusoid experiments (Fig. 5B) are compared
with the tension data obtained from the passive sinusoidal stretching
experiments (Fig. 5C). The passive (tonus) tension h(t) extracted from
the active tension data is remarkably close to the directly measured
passive tension, consistently with our hypothesis that the tonus tension
shares the same mechanisms as the tension induced by the MN

activation, and the active tension is obtained by scaling the passive
tonus tension.

The tension model and parameters are summarized as:

T  h(x) [P(s) f + 1], h(x)  ex/, P(s)   [e–ds / (1 + cs)] , (6)

where 0.135 gram force, 1/29, 1/45 s, d0.13 s, c0.23 s.
Note that the units of P(s) are seconds.

The tensions predicted by Eqn 6 are plotted in Fig. 3 (right
column), where the inputs are the recorded data of MN impulse
frequency f(t) and muscle strain x(t). The predicted tensions are
reasonably close to the measured data, capturing the peak amplitudes
and their modulations via the phase shift between f(t) and x(t).

J. Chen and others
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Fig. 3. Tension measured in dual-sinusoid experiments and predicted by the model. Data for four cycle frequencies are given: 0.5 Hz, top row; 1.0 Hz second
row; 2.0 Hz, third row, and 3 Hz, bottom row. Left column: tension recorded from the dual-sinusoid experiments. At each cycle frequency there are 12
tension curves corresponding to 12 experiments in which the sinusoidal length change of muscle advances the sinusoidal current injection to the MN by
k/12 (k0,...,11) cycle period. Middle column: the product of the factorized muscle activation variable a(t) and the length-dependent variable h(t). The phase
of h(t) is shifted to advance a(t) in time by k/12 (k0,...,11) cycle period, giving 12 tension curves. The tension data in the left column are reproduced well by
the product of a(t) and h(t), which demonstrates the multiplicative effect of activation and muscle strain on tension. Right column: the tension predicted by
tension model (Eqn 6) in response to the recorded data of MN impulse frequency f and muscle strain x. The three sets of curves are very similar,
supporting the validity of the overall model.
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DISCUSSION
When does the multiplicative structure hold or fail?

Many models assume a multiplicative structure T(f,x,v)a(f)p(x)q(v)
for the independent contributions of activation, length and velocity
factors to tension development. The structure and parameters of each
component function are then determined based on the observed muscle
properties and the tension data from isometric and isovelocity
experiments. Because of the complexity of muscle dynamics (Gordon
et al., 2000; Julian and Moss, 1981; Balnave and Allen, 1996) such
models can fail to predict the tension under functionally relevant
conditions that are remote from the condition under which the model
is developed. Perreault and colleagues modeled the cat soleus muscle
and found that the error between the model prediction and data was
consistently large for a variety of length change and stimulation
patterns; sometimes greater than 50% during large length changes
(Perreault et al., 2003). Based on their analysis, they concluded that
the error could be attributed to the absence of coupling between the
activation factor a(f) and the velocity–tension function q(v) in Hill-
type models. Camilleri and Hull determined the parameter values of
a Hill-type model to fit the data of rapid front-arm release movements
at low muscle activation levels, and found that the model parameter
vmax (shortening velocity at zero load) in function q(v) deviated
considerably from the value determined from the tetanic isovelocity
experiments (Camilleri and Hull, 2005). The dependence of vmax on
the calcium ion concentration was also discussed in the earlier literature

(Julian and Moss, 1981; Gordon et al., 2000). To compensate for this
model error, vmax was parameterized by the muscle activation level
in some applications (Otten, 1987; Winters and Stark, 1985), and the
resulting models no longer had the decoupled multiplicative structure.

Our results indicate that the multiplicative structure holds for the
longitudinal muscle of leeches under rhythmic movements that
emulate the undulatory swimming condition. The reason that the
length and activation factors are decoupled can be understood if we
hypothesize that the rate of change of muscle length v during normal
swimming is much smaller than vmax under no load. Recall that Hill’s
equation for the velocity–tension relationship is given by
q(v)(vmax–v)/(vmax+rv), where r is the ‘shape parameter’. The
dependence of vmax on the activation level has been identified as a
major factor that destroys the decoupled multiplicative structure, as
discussed above. However, if the magnitude of v is much smaller
than that of vmax, the velocity–tension function can be approximated
as q(v)�1, regardless of the value of vmax, which may depend on the
activation level. In this case, the tension can be modeled as the product
of the independent activation and length factors. In our study, the
dependence of the tension on the velocity was indeed found to be
small; the relationship between the length factor h and strain x was
almost static (Fig. 5B). Further isovelocity experiments on leech
muscle are needed to test the hypothesis that the muscle length change
during swimming is much slower than the maximum shortening
velocity.
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Modeling in the context of rhythmic movements
Our study, like those of others, was motivated by the desire to
understand the mechanisms that underlie animal locomotion
through modeling of muscle properties under periodic stimulation
and rhythmic movements. In pursuit of such understanding,
Williams and colleagues addressed the fundamental question of
whether a muscle model developed from isometric/isovelocity
experiments could predict the forces generated during swimming
(Williams et al., 1998). They answered the question in the
affirmative by using an activation model that describes the kinetics
of calcium ions with ordinary differential equations (ODEs). Some
coefficients of the ODEs were dependent on the length, and the
tension was modeled as the product of two factors: a length-
dependent activation factor and a velocity factor.

A Hill-type multiplicative model was developed (McMillen et
al., 2008) by removing the length dependence of the ODE
coefficients and multiplying a separate length factor in the
previous model (Williams et al., 1998). With the parameters of
this model determined from isometric/isovelocity experiments,
the multiplicative model was able to predict the tension under
rhythmic activation or movements with a reasonable accuracy.
This model was further refined to improve its accuracy (Williams,
2010) by incorporating the effect of work-dependent deactivation,
which reduces tension following shortening more than would
otherwise be expected. By having some of the calcium-ion-
binding constants dependent on the velocity of muscle shortening,
the refined model successfully predicted the tension observed
during sinusoidal changes in length. The refined model had
independent length and velocity factors, but the activation factor
was dependent on the work done by the contractile element (the
integral of the force–velocity product). It is interesting to note
that the accuracy of the multiplicative model in McMillen et al.
was greatly improved when model parameters were fit directly
to experimental data during sinusoidal movements, without
increasing the model complexity (McMillen et al., 2008). We
encountered a similar situation when modeling the passive (tonus)
tension of leech muscles (Tian, 2008; Tian et al., 2007). In those
studies, the tonus tension model developed from step-stretch
experiments was not able to accurately predict the tension induced
by sinusoidal length change. Directly fitting the tension data
derived from sinusoidal length changes to a simpler, static model
gave a much better fit and greater predictive capability. This
simple model predicted periodic tension changes for a range of
cycle frequencies much better than the model based on step-stretch
experiments. These previous findings demonstrated the
importance of modeling data derived from functionally relevant
conditions, and motivated the work reported here.

Method for modeling multiplicative rhythmicity
There are no systematic methods for modeling dynamics of tension
development that are specifically tuned for rhythmic movements such
as those observed in animal locomotion. The modeling work described
above (Williams et al., 1998; Williams, 2010) was based on tetanic
isometric/isovelocity experiments, and experimental tension data
under sinusoidal movements and intermittent tetanic activation were
used for validation purpose only. McMillen et al. are among the few
researchers who have performed modeling directly based on tension
data under sinusoidal movements (although this part of their modeling
was not the focus of this reference) (McMillen et al., 2008). A model
structure was fixed a priori, and least-square curve-fitting software
was used to determine the model parameters. Although this particular
case was successful, such a gray-box approach, when it fails, suffers

from the inability to identify the crucial elements that limit model
accuracy. For instance, if a muscle model fails to explain the data, it
may be difficult to determine whether the failure is due to the
multiplicative assumption or oversimplified calcium kinetics.

In this paper, we have proposed a systematic method for modeling
muscle tension resulting from periodic activation and length change.
The method first validates the multiplicative model structure, and
then determines the time courses of activation and length factors
from tension data for developing component models. The novel dual-
sinusoid experiments were conducted on nerve-cord and body-wall
preparations, where the muscle was activated through sinusoidal
current injection into a MN to induce rhythmic bursts at realistic
impulse frequencies, rather than tetanic electrical stimulation directly
applied to muscle intermittently (Williams et al., 1998; Williams,
2010). The experiments were designed for the physiological
conditions during swimming – rhythmicity and the phase
relationship between muscle strain and activation – thus were
specifically tuned for locomotion study. Periodic time-course data
for the tension, length and MN impulse frequency were obtained
for 48 cases (four cycle frequencies and 12 phase shifts between
the length and MN frequency). Given such data, we have shown
that the singular value decomposition of appropriately constructed
tension data matrices can determine whether the tension is generated
through multiplicative effects of the length and MN frequency (and
their derivatives), without making any a priori assumptions. This
method applies to the general problem of determining if a given
output resulted from two independent inputs in a multiplicative
manner, and is analogous to the well-established theory of linear
system identification through factorization of Hankel matrices
(Akaike, 1974; Van Overschee and De Moor, 1993).

Our study predicts that the tension developed within leech
longitudinal muscle during swimming is highly dependent on muscle
length, but much less on shortening and lengthening velocity. In
contrast, for vertebrate muscles, dependence of tension on velocity
tends to be more significant than on length as muscles normally
operate within the plateau of the length–tension curve. The
multiplicative structure could be destroyed under large dependence
on velocity as discussed above, especially when the activation level
varies over a wide range. In such cases it is important to test the
accuracy of the structural assumption on the model, and our modeling
method may be found useful in the context of rhythmic movements.
However, care must be taken when the method is applied to muscle
fibers with significant series elasticity, for then measured fiber length
does not directly correspond to the length of the contractile element.
Although Zajac made reasonable arguments for neglecting the series
elasticity in muscle fibers, the problem remains of how to isolate the
effect of series elasticity, when significant, on muscle tension
developed under rhythmic movements (Zajac, 1989).

Length–tension relationship and MN activation dynamics
We have found that the length–tension relationship can be
approximated by a static function (Fig. 5B), leading to a constant
velocity factor in our model when viewed as a Hill-type model.
This result is consistent with our previous study of passive (tonus)
tension in leech longitudinal muscle (Tian et al., 2007); step-stretch
experiments revealed that the relaxation time constants were larger
than the swim cycle period and hence the muscle would act as a
nonlinear spring with almost no damping (velocity-dependent) effect
during swimming. The length–tension relationship in our model is
an exponential function h(x)ex/. It should be noted that this h(x)
represents the tonus tension, rather than the tetanic length–tension
relationship in the standard Hill-type models for vertebrate muscles.

J. Chen and others
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The isometric tetanic length-tension relationship and the passive
properties of leech longitudinal muscle were studied previously
(Miller, 1975). Similar to skeletal muscle, the active length–tension
curve had a �-shape, and the passive length–tension relationship
was exponential. The difference between the shapes of the tetanic
length–tension curve and h(x) identified in this paper suggests that
the leech muscle property during swimming cannot be modeled
accurately by scaling the tetanic tension from isometric/isovelocity
experiments by the activation level.

Muscle activation in response to MN impulses was modeled by
a first-order low pass filter (time constant 230 ms) and a time delay
structure (time constant 130 ms). This time decay and delay should
account for the processes of conduction of MN impulses to the end
plate of muscle cells, calcium diffusion and the attachment and
detachment of cross bridges (Huxley and Simmons, 1971). The large
time decay and delay are not explained by impulse travel time in
MN axons, which extend ~5–10 mm from the soma to the longitudinal
muscle fibers. Based on impulse-conduction velocities in leech
interneurons, the impulse travel time should be no more than 30 ms,
most likely considerably less. Synaptic delays in the leech are ~5 ms
(Granzow et al., 1985). So the time decay and delay mainly come
from the muscle activation process, which includes calcium diffusion
and the attachment and detachment of cross bridges.

LIST OF SYMBOLS AND ABBREVIATIONS
a(f) activation factor in muscle tension
a(t) time course of activation factor in muscle tension
a(t) vector related to a(t) defined by Eqn 2
a0 constant term of Fourier series of a(t)
c vector with its ith entry ci

ci scaling parameter for relative magnitude
CPG central pattern generator
DE-3 dorsal excitatory motoneuron 3
DE-5 dorsal excitatory motoneuron 5
f motoneuron impulse frequency
f0 constant term of Fourier series of f(t)
h(t) time course of length factor in muscle tension
h(t) vector related to h(t) defined by Eqn 2
h(x) abbreviated notation for h(x,v) when the velocity effect is

negligible
h(x,v) length–velocity-dependent factor of muscle tension
j imaginary unit
J(c) quadratic cost function in terms of c to optimize the continuity

of h(t)
M positive semi-definite matrix such that J(c)cTMc
MN motoneuron
N number of experiments
p period of dual-sinusoid experiments
P(s) transfer function of muscle activation dynamics
p(x) length–tension curve of tetanic isometric muscle contraction
q(v) velocity–tension curve of tetanic isovelocity muscle contraction
r shape parameter of q(v)
s Laplace variable
T(f,x,v) tension function
T(t) tension data matrix defined by Eqn 2
Tk(t) time course of tension data in the kth recording
ui left singular vector of T(ti) corresponding to i

uij left singular vector of T(ti) corresponding to ij

v muscle strain rate (time derivative of x)
vi right singular vector of T(ti) corresponding to i

vij right singular vector of T(ti) corresponding to ij

vmax shortening velocity at zero load of tetanized muscle
x muscle strain
 static gain of the transfer function for muscle activation
 length constant of tension model
 passive (tonus) tension at nominal swim length (i.e. x0)
 magnitude scaling parameter

i largest singular value of T(ti)
ij jth singular value of T(ti)
 time shifting of sinusoidal strain change in the consecutive

experiments
c time constant in muscle activation
d time delay in muscle activation
 cycle frequency of dual-sinusoid experiments
�P(j) phase response of P(s) at frequency 
|P(j)| magnitude response of P(s) at frequency 
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