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INTRODUCTION
The genus Cassiopea of the phylum Cnidaria contains jellyfish found
throughout the world in shallow, often stagnant marine environments
(Templeman and Kingsford, 2010; Welsh et al., 2009). Although
capable of locomotion, these organisms spend the majority of their
time on the seafloor with the aboral portion of their bell resting
against the substrate. Cnidarians such as Cassiopea, which harbor
symbiotic zooxanthellae, have been shown to be sources of oxygen
and removers of nitrogen and other inorganic nutrients, especially
in lighted areas (Welsh et al., 2009; West et al., 2009). Recent studies
have shown that members of Cassiopea themselves may be used
as indicators of ecosystem health and to detect the presence of certain
pollutants due to the incorporation of trace elements during particle
transfer (Templeman and Kingsford, 2010). The sedentary lifestyle
of Cassiopea spp. makes them more dependent than other foraging
medusae on the nutrient exchange in their immediate surrounding
environment. These organisms typically live in shallow inshore bays,
near seagrass beds and in mangrove swamps that are characterized
by low flow velocities. For example, flow velocities near and within
seagrass beds can be on the order of 1cms–1 or lower (Bartleson,
2004). Although there are little data on flow rates through mangrove
swamps, maximum velocities may reach up to 0.7ms–1, but flow
rates within densely packed swamps near the seafloor are likely
significantly lower (Wolanski, 1992). Given their sedentary lifestyle
and the slow surrounding flow rates, Cassiopea spp. rely on bell

pulsations to generate flows necessary for particle exchange
including food capture, oxygen exchange, temperature regulation,
incorporation of zooxanthallae, waste elimination and gamete
distribution (Arai, 1996; Welsh et al., 2009).

The mechanism of the bell contraction and expansion that
generates flow seems relatively simple, but is the result of a
coordinated system of muscles and viscoelastic tissue. Contractions
are driven by coronal muscles and pinnate radial muscles (Arai,
1996). These muscles are surrounded by an organic matrix called
the mesoglea that stores elastic energy generated during contraction.
As the bell relaxes, the energy is released from the bell, resulting
in passive expansion. Like other members of the order Rhizostomae,
Cassiopea spp. lack tentacles and the four oral lobes are fused over
the central mouth, forming a canal-like system of tiny suctioning
mouth-like structures opening along eight branching oral arms
(Fig.1) (Brusca and Brusca, 2003; Hyman, 1940). Unlike many other
medusae that serve as models for locomotion studies, the oral arm
structure comprises a large part of the overall body of the organism
(Arai, 1996; Dabiri et al., 2010; Daniel, 1985; Demont and Gosline,
1988; Lipinski and Mohseni, 2009). Sampling and capture of
zooplankton prey occurs when water is driven over and across the
oral arms.

Jellyfish have been the subject of vigorous biomechanical and
fluid dynamic research aimed at understanding the nature of
unsteady propulsion (Dabiri, 2005; Dabiri et al., 2007; Daniel, 1985;
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SUMMARY
Mathematical and experimental studies of the flows generated by jellyfish have focused primarily on mechanisms of swimming.
More recent work has also considered the fluid dynamics of feeding from currents generated during swimming. Here we capitalize
on the benthic lifestyle of the upside-down jellyfish (Cassiopea xamachana) to explore the fluid dynamics of feeding uncoupled
from swimming. A two-dimensional mathematical model is developed to capture the fundamental characteristics of the motion of
the unique concave bell shape. Given the prominence of the oral arms, this structure is included and modeled as a porous layer
that perturbs the flow generated by bell contractions. The immersed boundary method is used to solve the fluid–structure
interaction problem. Velocity fields obtained from live organisms using digital particle image velocimetry were used to validate the
numerical simulations. Parameter sweeps were used to numerically explore the effects of changes in pulse dynamics and the
properties of the oral arms independently. Numerical experiments allow the opportunity to examine physical effects and limits
within and beyond the biologically relevant range to develop a better understanding of the system. The presence of the prominent
oral arm structures in the field of flow increased the flux of new fluid from along the substrate to the bell. The numerical
simulations also showed that the presence of pauses between bell expansion and the next contraction alters the flow of the fluid
over the bell and through the oral arms.
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Daniel, 1995; Demont and Gosline, 1988; Lipinski and Mohseni,
2009; Rudolf, 2007; Sahin et al., 2009). Demont and Gosline
(Demont and Gosline, 1988) and Daniel (Daniel, 1985) showed that
the bell is driven at its resonant frequency, which increases the
efficiency of this form of unsteady locomotion. More recent studies
have used digital particle image velocimetry (dPIV) and Lagrangian
coherent structures to characterize the vortex shedding, mixing and
particle capture associated with jellyfish locomotion (Dabiri, 2008;
Dabiri et al., 2010; Peng and Dabiri, 2008a; Peng and Dabiri, 2008b;
Peng and Dabiri, 2009; Sahin et al., 2009). Rudolf used immersed
boundary methods to develop animations of swimming jellyfish
(Rudolf, 2007). Lipinski and Mohseni showed through
computational studies that the vortex patterns generated by the bell
motion of Aequora victoria, an oblate medusa, draws fluid through
the organism’s tentacles, enhancing its chances for nutrient sampling,
whereas the vortex shedding by the prolate Sarsia tubulosa ejects
fluid far from the bell, presenting little opportunity for localized
foraging (Lipinski and Mohseni, 2009). Lipinski and Mohseni
conjecture that the difference in the prominence and positioning of
tentacles and oral arms in each organism is influenced by the
swimming mechanisms employed to enhance foraging success.

The present study capitalizes upon the unique properties of
Cassiopea in order to examine the pulse-driven flow of water over
the oral arms uncoupled from swimming. Because feeding and other
types of particle exchange rely on fluid flow around the prominent
oral arms, it is important to include the oral arms in any sort of
examination of flow around the bell of Cassiopea. A mathematical
model of an idealized Cassiopea bell and oral arms is constructed
and used in immersed boundary simulations to examine the effects
of bell motion and secondary structures on the bulk flow. This model
differs from that of previous studies in that it takes into account the
oral arms as a separate and prominent structure of the organism.

This computational study allows for the exploration of how the
bulk flows generated by Cassiopea vary with scale, pulse frequency
and porosity of the oral arms within and beyond the biological range.
For instance, the flow structures in the absence of the oral arms can
be captured without altering the pulsing mechanism through invasive
procedures necessary when using real organisms. This is useful for
understanding how the presence of the oral arms as an obstruction
to the flow can alter the bulk flow and affect rates of particle transfer
between an organism and its surroundings. Exploration of a wide
parameter space can be used to test the physical limits of transport
mechanisms and to identify cooperative or complementary feeding
and exchange mechanisms. In this study, the contraction kinematics,

the presence and porosity of the oral arms and the Reynolds number
are varied across and beyond the range of biologically relevant
parameters. The effect on flow across the oral arms and across the
bell is examined by calculating net flow rates going towards and
away from the bell.

MATERIALS AND METHODS
Measurements

Specimens of Cassiopea xamachana Bigelow 1892 were obtained
from Carolina Biological Company (Burlington, NC, USA) and
maintained in the laboratory in standard 29gallon aquaria. Video
footage of the organisms was obtained using a Panasonic Palmcorder
(model no. PV-GS300, 29.97framess–1; Secaucus, NJ, USA). The
timing of the pulse cycle was analyzed over 410s of footage using
iMovie software (Apple, Inc., Cupertino, CA, USA) to obtain a
realistic cycle pattern. The contraction of the bell was defined as
the time during which the sides of the bell move towards the central
axis. The first pause is defined as the time during which the muscles
cease to contract and the bell appears motionless before beginning
its expansion. The expansion is defined as the motion of the bell
out from the central axis of the organism. Finally, the second pause
is defined as the time that the bell appears motionless before the
next contraction begins. This pattern of motion was used as an input
for the mathematical model of the organism.

Construction of the model
An approximate model of the primary bell shape was developed for
use as an input into the simulations. Extending previous models
(Daniel, 1985; Lipinski and Mohseni, 2009; Wilson et al., 2009)
that describe jellyfish using hemiellipsoids or functions fit to
digitized bell shapes, a simple mathematical model was constructed
herein that captures the fundamental features of the organism. The
models presented here also include a representation of the oral arms
as a separate, prominent structure. This addition represents a novel
feature in this paper as previous studies have typically ignored the
effect of oral arms. In such work this simplification is permissible
because the focus organisms are characterized by reduced oral arm
structures. However, the oral arms are an integral part of C.
xamachana and must be included here.

A simplified two-dimensional model of the bell of C. xamachana
was constructed to make multiple parameter sweeps feasible. The
aboral region resting against the substrate is defined as a line of
length L. The choice of a line is justified by the fact that there is
no flow under the aboral side of the jellyfish bell and this area of
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Fig.1. The main structures of Cassiopea xamchana [drawn after Hyman (Hyman, 1940)]. The most salient features for the study are the bell and the oral
arm appendages.
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the jellyfish is often lightly suctioned or adhered to the seafloor
(Arai, 1996). This adhered portion only slightly dilates during
pulsation so this section is assumed to be of constant length
throughout the motion. Two reference configurations were defined
as a completely contracted state and a completely expanded state.
The curve of each of these configurations is defined by:

where A(t), B(t) and C(t) change in time in order to contract and
expand the bell margins and  is equal to the angle between the
major axis of the ellipse and the line drawn from the center of the
ellipse to the corresponding point on the boundary. Let t1i be the
time when the ith bell contraction begins, t2i denote the time when
contraction ends, t3i be the time when the subsequent bell expansion
begins and t4i equal the time when bell expansion ends. The length
of the first pause between the end of the bell contraction and the
next expansion is t3i–t2i, and the length of the second pause between
the bell expansion and the next contraction is t1i+1–t4i. The equations
for A(t), B(t) and C(t) are then given as:

A(t), B(t) and C(t) were chosen such that the conformations have
relatively simple geometries and so that the distance traveled by the
tip of the bell margin during each pulse is within the range relevant
to the organism. To determine intermediate conformations between
fully expanded and fully contracted configurations, the equations
were derived such that the position is linearly interpolated using the
calculated motion times from the video footage. These times were
set equal to 0.6s for contraction (t2i–t1i), 0.13s for the first pause
(t3i–t2i), 0.7s for expansion (t4i–t3i) and 2.0s for the second pause
(t1i+1–t1i). The standard deviations of each of these measurements
were 0.17, 0.06, 0.13 and 1.30, respectively, with a sample size of
150. These parameters were considered to be biologically reasonable
but in no way comprised a comprehensive description of the motion
of the organism.

The Reynolds number (Re) is the dimensionless scaling parameter
that reflects the ratio of the effect of inertial forces in a flow to the
effect of viscous forces. For Re�1, viscous forces are dominant in
the system. For Re�1, inertial forces are significant whereas viscous
forces are often negligible. The Re is defined using the equation
ReLU/, where  is the density of the fluid, L is the length of the
aboral region of the bell, U is the mean velocity of the tip of the bell
during contraction and  is the viscosity of the fluid. The Re for adult
C. xamachana is generally in the hundreds. The majority of the
numerical simulations performed were conducted at Re≈450, which
is within the biological range of the organism. Some simulations were
also performed at Re≈45, which is at the scale of the juvenile ephyra
that do not sit on the ocean floor to feed. This Re choice was included
to examine the size limits of pulse-driven fluid transport.
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The effects of pauses between pulses (the so-defined second
pause) on the resulting fluid motion were considered. From the
analysis of video data, the organism transitions between two basic
states of pausing. The representative organism displayed a second
pause between 1.0 and 3.5s, whereas the remainder of the time a
slight delay between 0.13 and 0.4s was observed. It is important to
note that there is significant variation in the pulsing frequencies of
Cassiopea and other jellyfish (Colin and Costello, 2003), and the
values used here were selected from a representative organism. In
the numerical simulations, the pause time was varied to test the effect
of the length of the pause on the bulk flow around the bell. It is
important to note that the computational model allows one parameter
to be varied in a controlled and specified manner, and this is a
significant advantage of numerical simulations.

To examine the effect of the oral arms on the bulk flow, a simple
model of the oral arms was constructed as a porous line placed just
above the top of the bell. A schematic of the bell and oral arm model
is shown in Fig.2. This model is used to provide an obstruction to
the flow while still allowing some fluid transport through the layer.
In reality, the flow through the elaborate oral arms represents a
challenging multiscale problem. It is currently not feasible to
accurately capture both the large-scale flow patterns generated by
the bell while also resolving the fine details of the flow through the
branches of the oral arms. Some of the challenges of even relatively
simple fluid–structure interaction problems are discussed in Beale
and Layton (Beale and Layton, 2009) and Hou and Shi (Hou and
Shi, 2008). The model presented here represents a first step in
understanding the effect of the oral arms on the bulk flow generated
by the jellyfish. The porosity of the oral arm model allows water
to flow through this layer, and this is one of the most obvious features
that should be retained in this study on fluid transport. For a first
approximation of porosity, a homogeneous material is assumed. The
computational methods used to describe the porous layer are given
below.

Immersed boundary method
The immersed boundary (IB) method was originally developed by
Peskin in the 1970s to simulate blood flow through the human heart
(Peskin, 1977; Peskin, 2002). Since its construction, the IB method
and others inspired by it have gained a great deal of popularity as
computational solutions to fluid–structure interaction problems at
low to moderate Re (Mittal and Iaccarino, 2005). The IB method
has been used to simulate biological systems and materials including,
but not limited to, swimming organisms, insect flight, platelet
aggregation, cell motility, biofilms, foams, parachuting and paper
pulp fibers (Dillon et al., 2007; Dillon et al., 2006; Fauci and Peskin,
1988; Fogelson and Guy, 2008; Kim et al., 2010; Kim and Peskin,
2006; Miller and Peskin, 2009; Stockie, 2009; Stockie and Green,
1998; Teran et al., 2010; Teran and Peskin, 2009; West et al., 2009).
For details on the derivation and construction of the IB method see
Peskin (Peskin, 2002).

Porous layer

Seafloor Bell

Fig.2. The general setup of the jellyfish model. The porous layer is shown
in yellow. The seafloor and main part of the jellyfish bell are shown in
green and black.
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The idea of the IB method is based on the definition of the fluid
and the structure in separate frames. A viscous, incompressible fluid
is discretized at node points on a fixed Cartesian grid (the Eulerian
frame) with appropriate boundary conditions. The structure is
defined as an immersed boundary and is discretized in a moving
Lagrangian framework with reference to the Cartesian grid, but
independent of the node points. Defined in this way, the
discretization of the fluid grid can be relatively coarse while still
allowing for complex geometries of the structure. Because the fluid
grid does not need to be redefined as the boundary moves through
it, computational times for simulations are greatly reduced.

The governing equations for the fluid are the two-dimensional
Navier–Stokes equations for a viscous, incompressible fluid given
by:

where  is the fluid density, p(x,t) is the fluid pressure,  is the
dynamic viscosity of the fluid, u(x,t) is the fluid velocity, f(x,t) is
the force per unit area acting on the fluid, x is the position of the
fluid node point and t is the time. Note that Eqn 6 is the momentum
equation and Eqn 7 is the incompressibility condition.

To approximate the force that the boundary applies to the fluid,
moving tether points may be employed. This method is commonly
used when a desired configuration or preferred mode of active
force must be enforced (Fauci and Fogelson, 1993; Fauci and
McDonald, 1995; Watton et al., 2007). Here the preferred
configuration Y(s,t) will be defined by the position of the
constructed mathematical model described by Eqns 1–5 of the bell
at time t. The boundary is tethered to the preferred configuration
by a set of elastic springs. The stiffness of the springs, k, is chosen
such that as the preferred boundary is stepped through time, a force
required to move the actual boundary close to the preferred position
is generated. Thus the structural equation in the Lagrangian
framework is the simple Hookean relationship assuming zero rest-
length springs given by:

F[X(s,t),t]  k[X(s,t) – Y(s,t)]. (8)

This function is a force density defined along the immersed
boundary.

The equations defined in the Lagrangian framework (Eqn 8) and
in the Eulerian framework (Eqns 6, 7) are coupled through the
following fluid–structure interaction equations:

f(x,t)  ∫F[X(s,t),t][x – X(s,t)]ds, (9)

where F(s,t) is the force per unit length acting on the fluid, X(s,t)
gives the Cartesian coordinates of the boundary, s is the arc length
along the boundary and U(s,t) is the local fluid velocity at the
boundary points. Eqn 9 communicates the force exerted by the
boundary on the fluid grid using a smoothed two-dimensional Dirac
delta function (x). Once the Navier–Stokes equations have updated
the fluid information for the time step, Eqn 10 is used to interpolate
the local fluid velocity at each boundary point and move the
boundary at the calculated velocity. This enforces the no-slip
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condition associated with a viscous fluid. The exact numerical
algorithm used in this paper is described in detail in Peskin and
McQueen (Peskin and McQueen, 1996) with the exception of the
discretization of the -function. The choice of -function used here
is detailed in Peskin and Printz (Peskin and Printz, 1993) and given
by the following equations:

where x is the spatial step size in both the x- and y-directions, 
is a function used in the construction of the delta function, r is the
non-dimensional distance from the Eulerian node point and x

denotes the discretized version of the -function.
To summarize, the basic steps of the method are as follows: (1)

a force is imposed on the immersed boundary; (2) the force is
translated on the fluid grid using a smoothed approximation to the
Dirac function; (3) the fluid equations are solved using an appropriate
numerical solver; (4) the boundary is moved at the local fluid
velocity, which is found through interpolation using the smoothed
delta function to enforce the no-slip condition; and (5) the simulation
advances to the next time step.

The complex structure of the eight oral arms is modeled as a
porous layer using the method derived by Kim and Peskin (Kim
and Peskin, 2006) and Stockie (Stockie, 2009). Permeability is
incorporated into the IB method using Darcy’s law, which states
that the relative velocity of a fluid through a porous medium is
proportional to the pressure difference across the boundary:

where q is the Darcy flux (discharge per unit area),  is the
permeability of the layer and [P] is the pressure jump across the
layer.
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Table1. Default values of all parameters in the simulations unless
otherwise noted

Parameter Symbol/equation Units Value

Density  kgm–3 998
Body length L m 0.0508
Porosity coefficient l m2(N s)–1 0.00000072
Total cycle period t1i+1–t1

i s 3.43
Cycle period t4i–t1

i s 1.43
Duty cycle (t2i–t1

i)/(t4i–t1
i) – 0.4196

1st pause t3i–t2i s 0.13
2nd pause t1

i+1–t4i s 2.0
Total period – s 3.43

Table2. Values of all numerical parameters unless otherwise noted

Numerical parameter Symbol Units Value

Time step dt s 0.00006096
Spatial step Cartesian grid x m 0.000396875
Spatial step Lagrangian grid s m 0.000198438
Domain size – m 0.2032
Stiffness coefficient, boundaries k Nm–1 13987028
Stiffness coefficient, arms karm Nm–1 139870.28
Fluid grid size – – 512x512
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Equating the flux to the difference between the local fluid velocity
and the boundary velocity results in an expression for the slip
between the boundary and fluid that is proportional to the
permeability and the pressure jump. This is incorporated into the
immersed boundary method by modifying the velocity of the
boundary. Rather than moving the boundary at the local fluid
velocity, a slip is used that is proportional to the force per unit area
acting normal to the boundary (which is proportional to the pressure
jump) and the porosity. Eqn 10 is modified as follows:

where l is a proportionality constant termed the porosity by Kim
and Peskin (Kim and Peskin, 2006) and n is the outward normal
vector. Note that this has the effect of reducing the drag force applied
to the fluid by the boundary. The physical interpretation of the
porosity coefficient, l, is that it is equal to the number of pores in
an interval multiplied by the conductance of the material per unit
arc length. The relationship between the porosity, l, and the
permeability, , is given by l/(A), where A is the area of the
porous material. Kim and Peskin (Kim and Peskin, 2006) use the
porosity coefficient in the slip term whereas Stockie (Stockie, 2009)
uses the permeability, a value that can be readily found in the
literature for a variety of materials. Estimates for the effective
porosity or permeability of jellyfish oral arms are not known. For
these simulations, several orders of magnitude of values for the
porosity are considered. For the remaining simulations, a value is
selected that produces flow profiles similar to what is observed
experimentally. This value is chosen so that there is significant flow
through the porous layer but the layer clearly alters the resulting
flow patterns.

To model the oral arms in the simulations that follow, a line
is defined of length L (the same length as the aboral region of
the bell) as a reasonable approximation of length based on
qualitative observations. The line is positioned just above the

∂ X
∂t

= U s,t( ) + λ F s,t( ) • n⎡⎣ ⎤⎦n ,             (14)

opening of the bell and is tethered in place using stiff Hookean
springs that resist deformations in this part of the boundary. As
a first approximation, the oral arm model is held in place and
maintains a constant porosity. Physical parameters used for the
simulations are given in Table 1.

Simulations were performed on a 512�512 periodic grid. The
size of the domain was 4L�4L, where L is the length of the jellyfish
bell. A box connected to tether points by stiff springs was added
L/8 inside the edges of the domain to simulate the conditions in the
laboratory tanks used for dPIV. The parameters used in the numerical
simulation are given in Table2. Times for the contraction, pauses
and relaxation were taken from video footage as described
previously. The mathematical model without the addition of the oral
arms structure will be referred to as the base model. The models
incorporating a porous membrane and an impermeable membrane
will be referred to as the porous model and the impermeable model,
respectively. Re was varied by changing the dynamic viscosity of
the system. This method of changing Re has been used previously
as an efficient means of exploring a large parameter space without
having to vary multiple parameters (velocities and length scales)
(Andersen et al., 2005; Wang, 2000).

RESULTS
Changes in Re

Vorticity plots with velocity vectors are shown for Re45 and
Re450 in Fig.3. Snapshots were taken during the second pulse
cycle at the end of contraction (Fig.3A,E) and at the end of expansion
(Fig.3B,F). Snapshots were also taken during the fourth cycle at
the end of contraction (Fig.3C,G) and at the end of expansion
(Fig.3D,H). The target boundary (purple) and the actual boundary
(black) remain indistinguishable to the naked eye. Corresponding
movies are given in supplementary material Movies1 and 2. For
Re45, starting vortices form at the tip of the bell margin during
the beginning of contraction, and oppositely signed stopping vortices
form during the beginning of contraction. At the end of each phase,

Fig.3. Vorticity plots from numerical simulations
with overlaid velocity vector fields. Warm colors
show regions of positive vorticity whereas cool
colors show areas of negative vorticity.
(A–D) Vorticity plots for the porous model at Re
45 after (A) the second contraction, (B) the
second full cycle, (C) the fourth contraction and
(D) the fourth full cycle. (E–H) Corresponding
plots at Re 450.
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vorticity quickly dissipates, and the vortices do not appear to separate
from the tip of the bell. For Re450, starting and stopping vortices
form at the beginning of contraction and expansion, respectively.
In contrast to the low Re case the vortices do separate from the tips
of the bell margins and are advected with the fluid along the porous
layer. The fluid along the floor is pulled towards the bell on average
during the cycle.

To quantify the bulk flow near and across the bell in the
simulations, the volumetric flow rate (VFR) through a region was
calculated. To calculate the VFR, a ‘flow’ line is drawn in a region
so that the line is normal to the flow in the direction of interest. The
instantaneous velocity in the normal direction is integrated along
the flow line and is normalized against the length of the line to
obtain the volume flux per unit length as:

where S is the flow line, u is the velocity along the line, n is the
unit vector normal to the flow line, V is the volume flux and l is
the length of the flow line. In this paper, two flow lines are defined.
The first flow line is drawn vertically near the bottom of the tank
to give a measurement horizontal flow toward the bell (Fig.4). This
flow line is referred to as the horizontal flow line (HFL), and its
length is set equal to the height of the bell at a distance L/4 away
from the outer edge of the relaxed bell. The second line, the vertical
flow line (VFL), was drawn horizontally and overlaid on the center

V

l
= u • ndS

S
∫  ,       (15)

of the porous structure. Its length was set to be L–2s, where s is
the spatial step size on the Lagrangian grid, to ensure the flow line
is in the region of the porous structure throughout the simulations.
Typically s is set to one-half of the spatial step size on the Cartesian
grid, x.

The VFRs at Re45 and Re450 along the HFL for models both
with and without the porous structures are shown in Fig.5 over four
contraction cycles. Positive flow rates represent fluid motion
towards the bell. For each simulation, the maximum VFR was
attained during the contraction period of the cycle. During bell
expansion, the VFR quickly decreased and became negative (flow
moves away from the bell). After the end of the bell expansion, the
VFR quickly approached zero. The minimum VFR (greatest flow
rate away from the bell) decreased after each pulse in the Re450
simulations with the added porous layer. In the other cases,
significant amounts of backflow away from the bell during
expansion persisted for all cycles. The VFR along the VFL is shown
in Fig.6. The maxima and minima of the flow rates occurred during
the contraction and expansion, respectively. The magnitude of the
VFL quickly dropped to zero for Re45 when the jellyfish is at rest.
For Re450 a significant flow persisted through the porous layer
during relaxation.

The effect of porosity
The effect of the oral arms on the flow was examined by comparing
the base model with a model incorporating a permeable structure
for the oral arms as well as with a model incorporating an
impermeable structure. Representative vorticity plots with velocity
vectors of the impermeable layer during the second and fourth cycles
are shown in Fig.7. Note that the way in which the starting and
stopping vortices are advected in the fluid is altered depending upon
the presence or absence of a layer. In the case of the porous layer
in Fig.3E–H, the vortices swirl around the outer edges of the
simplified oral arms. For the case of the impermeable layer, a pair
of oppositely spinning vortices is formed at each bell tip during the
initial stages of contraction (in contrast to the formation of one
starting vortex formed at each bell tip). This pair of vortices is
quickly advected away from the bell. During expansion, another
pair of oppositely signed vortices forms at each bell tip margin that

C. Hamlet, A. Santhanakrishnan and L. A. Miller

Porous layer

SeafloorBell

Vertical flow line
Horizontal
flow line

Bell tip

–2

–1

0

1

2

3

4

5 Base Re 45
Porous Re 45
Base Re 450
Porous Re 450

10 11 12 130 1 2 3 4 5 6 7 8 9

Time (s)

V
ol

um
e 

(m
2  

s–1
)

10–3

Base Re 45
Porous Re 45
Base Re 450
Porous Re 450

10 11 12 130 1 2 3 4 5 6 7 8 9

Time (s)

–8

–6

–4

–2

0

2

4

6

V
ol

um
e 

(m
2  

s–1
)

10–3

Fig.4. The fully expanded model of the bell with the oral arms modeled as
a porous layer. The substrate (floor) has been added to the model as a
straight line one spatial gridpoint away from the model. The green line
shows the positioning of the horizontal flow line (HFL) and the yellow line
shows the position of the vertical flow line (VFL) where volume fluxes are
calculated.

Fig.5. Volumetric flow rates along the HFL describing horizontal flow
moving towards the bell are compared among simulations of four different
models. The base model at Re 45 is shown in orange, almost completely
overlapped by the porous model (green). A base model (red) and a porous
model (blue) at Re450 are also shown. These plots indicate the
normalized horizontal flow from the left of the domain toward the model
organism. Positive flow indicates fluid moving towards the structure
whereas negative flow indicates flow moving away from the structure.

Fig.6. Volumetric flow rates along the VFL describing vertical flow moving
through the porous layer region are compared among simulations of four
different models. The base model at Re45 is shown in orange, almost
completely overlapped by the porous model (green). A base model (red)
and a porous model (blue) at Re450 are also shown. These plots indicate
the normalized vertical flow through the region where the porous structure
(if present) is defined. Positive flow indicates fluid moving up and away
from the structure whereas negative flow indicates flow moving down into
the cavity of the structure.
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remains trapped between the bell and oral arms. In the absence of
the oral arm layer (not shown in figures), starting and stopping
vortices form during each cycle and swirl around the bell tips.

Plots of the VFRs along the HFL vs time for a porous layer model,
an impermeable layer model and the base model at Re450 are
shown in Fig.8. The maximum flow was achieved during contraction
for the base model and the porous model whereas the maximum
VFR for the impermeable model occurred during contraction in some
pulses and during relaxation in others. The minimum VFR for the
impermeable model decreased after each successive pulse cycle.
The VFR along the VFL is shown in Fig.9. The impermeable model
shows much less flow than the porous and the base models, and the

flow that is present is due to small deformations of the layer. The
porous model and the base model show similar flow patterns
throughout all four pulse cycles.

Values of the porosity coefficient l that were 20 and 320% of
the base case were compared for the porous model at Re450 to
determine how small changes in l affected the flow around the
jellyfish. Fig.10 shows the VFR along the HFL. The VFR pattern
is similar, but different in magnitude along the HFL throughout the
pulse cycle. As the porosity of the porous layer increases, the
maximum flow rate increases. As the porosity decreases, the flow
rates approach the impermeable case as expected. The VFR along
the VFL is shown in supplementary material Fig.S1. The pattern

Fig.7. Vorticity plots for the impermeable model
from numerical simulations with overlaid velocity
vectors. Warm colors show regions of positive
vorticity whereas cool colors show areas of
negative vorticity. (A–D) Vorticity plots for the
impermeable model at Re450 after (A) the
second contraction, (B) the second full cycle, (C)
the fourth contraction and (D) the fourth full
cycle.
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Fig.8. Volumetric flow rates along the HFL describing horizontal flow
moving towards the bell are compared among simulations of three different
models. The base model at Re450 is shown in purple. The porous model
(green) and the impermeable model (red) are also shown at the same Re.
These plots indicate the normalized horizontal flow from the left of the
domain towards the model organism. Positive flow indicates fluid moving
towards the structure whereas negative flow indicates flow moving away
from the structure.

Fig.9. Volumetric flow rates along the VFL describing vertical flow moving
through the porous layer (if present) are compared among simulations of
three different models. The base model at Re450 is shown in purple. The
porous model (green) and the impermeable model (red) are also shown at
the same Re. These plots indicate the normalized vertical flow from
through the region where the porous structure (if present) is defined.
Positive flow indicates fluid moving up and away from the structure
whereas negative flow indicates flow moving down into the cavity of the
structure.
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of exchange is similar across the VFL for each value of the porosity
with an increase in the maxima and minima similar to those across
the HFL.

To test the choice of the porosity coefficient used in this in this
paper, l was varied over four orders of magnitude. Volumetric flow
rates along the VFL describing vertical flow moving through the
porous layers are shown in Fig.11. The dashed blue line denotes
the value of the porosity chosen for the base cases. Note that when
l7.2�10–10 the volumetric flow rate at the porous layer is similar
to the case of the solid layer. For values of l between 7.2�10–7

and 7.2�10–6, the difference in the volumetric flow rates are
negligible despite the order of magnitude difference in l. These
results suggest that very small values of porosity will yield results
similar to a solid layer whereas large values of porosity will have
little effect on the flow. Intermediate values of l alter the bulk flow
while allowing some flow through the layer. The result is similar
for a large range of intermediate l.

The effect of the pauses
Vorticity plots with velocity vectors of the flow generated by a
contracting and expanding bell without pauses are shown in Fig.12.
The vorticity during the second cycle is shown immediately after
contraction (Fig.12A) and immediately after expansion (Fig.12B).
The vorticity during the fourth cycle is also shown after contraction
(Fig.12C) and expansion (Fig.12D). Continuous pulsing results in
a train of vortices being advected vertically and away from the
jellyfish. In comparison, when pauses are included (Fig.3E–H) the
vortices move around the porous layer and mostly dissipate before
the next cycle.

Volumetric flow rates along the HFL were compared for a porous
model with different pause times between complete expansion and
the next contraction (Fig.13). The maximum and minimum VFRs
occurred during contraction and expansion, respectively. In general,
the shorter the pause time the greater the magnitude and duration
of backflow during expansion. A net flow towards the bell was also
generated during relaxation; this decreased for pause times greater
than 2s.

Comparison of simulations with dPIV data
The vorticity plots from the simulation with porous arms in Fig.3
were compared with data obtained using dPIV (A.S., M. Dollinger,
C.H., S. P. Colin and L.A.M., submitted) (Fig.14). dPIV is a non-
intrusive experimental technique that can be used to obtain
instantaneous information on a flow field by recording and
processing the single or multiple exposed images of tracer particles
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Fig.11. Volumetric flow rates along the VFL describing vertical flow moving
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Fig.12. Vorticity plots from numerical simulations
with overlaid velocity vector fields for the porous
model without a pause. Warm colors show
regions of positive vorticity whereas cool colors
are areas of negative vorticity. Vorticity fields are
after (A) the second contraction, (B) the second
full cycle, (C) the fourth contraction and (D) the
fourth full cycle.
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suspended in the fluid. The particle images are then processed using
correlation-based techniques to construct the velocity vector field
of the fluid flow (Adrian, 1991; Willert and Gharib, 1991). The
dPIV images in Fig.14 show the velocity vector fields generated
by the pulse cycle of C. xamachana near the end of contraction
(Fig.14A) and near the end of expansion (Fig.14B). Comparing
Fig.13A with Fig. 3G, the presence of a clear starting vortex can
be seen at the end of contraction with strong flow moving along
the floor towards the bell. Flow fields at the end of expansion (shown
in Fig.13B and Fig. 3H) show continued flow towards the bell, with
the strongest flow upwards near the edge of the oral arms, as well
as flow across the top of the oral arms. Neither the base nor the
impermeable models exhibit similar flow structures. This indicates
that both the presence of a porous obstruction (such as the oral arms)
strongly influences the dynamics of the bulk fluid flow.

The velocity fields to the left of the bell in both the dPIV and
the porous model show a constant flow towards the bell. Given the
position of the HFL, a positive VFR indicates net flow toward the

bell in that region whereas a negative value indicates flow away
from the bell. From the dPIV data, constant flow toward the bell
from the area near the floor is seen in the vector field plots. In Fig.6,
almost all of the flow along the substrate moves towards the bell
after the third pulse. This is not the case in the base model or the
impermeable model simulations (see Figs6 and 8), and these results
suggest that the presence of the oral arms play a role in driving the
flow toward the bell.

DISCUSSION
The results presented here suggest that: (1) feeding from flows driven
by bell contractions in a benthic organism may only be effective
for Re on the order of 100 or higher, (2) the porous structure of the
jellyfish oral arms can significantly alter bulk flow properties around
the organism and (3) changes in the duration of the pause between
bell contractions can significantly alter the resulting flow fields.
Furthermore, the results suggest that the role of secondary structures
such as the oral arms should be taken into account when designing
models of some organisms, particularly oblate jellyfish with
prominent feeding structures. In many oblate jellyfish, the oral arms
comprise a significant portion of the body mass of the organism
and often extend past the edges of the bell into the region of vortex
formation (Bigelow, 1900; Hyman, 1940). Previous models of
jellyfish have focused on how flow is driven to these structures, but
the results here indicate that these structures may also alter the larger-
scale flow field. The results support the hypothesis that jellyfish
utilize bell pulsations not only for locomotion but also to actively
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drive food particles to the secondary mouths. Cassiopea in particular
rely on the ability to drive fluid for sampling, but other jellyfish
that slowly cruise may be capitalizing upon this mechanism to
compensate for the high cost of locomotion.

For Re45, which is below the biologically relevant range of
adult C. xamachana, little net flow is brought to the oral arms
via the bell pulsations (see Fig.7). A careful examination of the
flow fields also indicates that little mixing occurs around the
region of the oral arms. This suggests that there is a limit to the
utility of pulsation as a particle transfer mechanism in the
intermediate Re range. It is therefore not surprising that juvenile
Cassiopea do not turn upside down and rest on the ocean floor
until they reach a bell diameter of approximately 2cm or more
(Bigelow, 1900). Fig.3 shows that at higher Re there is a larger
amount of fluid exchanged back and forth across the oral arms,
indicating that the pulsatile motion promotes water sampling in
this range. Added together, the motion toward the bell and the
increased sampling can be interpreted as enhancing the ability of
the bell to bring in fresh materials from the substrate as well as
the ability to sample the incoming fluid. The same sort of
enhancement is not observed at lower Re.

Figs7 and 9 indicate that the presence of an impermeable
obstruction in the path of the flow not only prevents exchange across
the secondary structure where feeding would occur but also directs
flow from the substrate away from the bell, reducing the likelihood
of particle sampling from the floor. This would indicate that a solid
obstruction that inhibits flow through it would be less useful in
enhancing feeding through pulsation. The flow pattern shown in
Fig.10 indicates that, without the secondary structure present, the
fluid in the base model is moved back and forth as it moves towards
the bell. This indicates that the porous layer plays an important role
in bringing new fluid to the bell more quickly.

Laboratory observations show that Cassiopea xamachana exhibit
different lengths of pauses between pulses (Hamlet et al., 2011).
Fig.12 shows the effect of adjusting the length of the pause between
expansion and the subsequent contraction. From Fig.12A it is seen
that without a pause the flow does not move increasingly towards
the bell with each cycle. This indicates a reduction in the amount
of new fluid brought to the bell along the floor with each pulse.
When the pause is introduced, the flow immediately above the oral
arms moves across the layer with net flow at the oral arms moving
downwards and potentially bringing food to the secondary mouths.
Both kinds of cycles are observed in Cassiopea xamachana, and
the results here indicate that slight modifications in the pulsing
dynamics could significantly alter the resulting flow fields. For
example, pauses might allow for the water that is brought into the
bell to be sampled for a longer period of time. Pulsing cycles without
pauses might be used for swimming and to move fluid up and away
from the animal.

Limitations
A model that captures some of the fundamental qualitative patterns
in the bulk flow across the bell of the upside-down jellyfish has
been developed. Comparing this with PIV data it is shown that
the flow field generated by the organism is similar in character to
the results from numerical computations. Rather than trying to
exactly match the morphology of the organism, important aspects
of each structure have been represented by simple mathematical
models that capture the fundamental nature of the mechanism. This
simplification allows for larger parameter sweeps to explore the
effects of morphology, scale and kinematics on bulk fluid flow.
It is important to note, however, that these simplified models are

not intended to replace detailed three-dimensional simulations that
provide valuable insight into the physics of specific cases.
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