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SUMMARY
For a small flying insect, correcting unplanned course perturbations is essential for navigating through the world. Visual course
control relies on estimating optic flow patterns which, in flies, are encoded by interneurons of the third optic ganglion. However,
the rules that translate optic flow into flight motor commands remain poorly understood. Here, we measured the temporal
dynamics of optomotor responses in tethered flies to optic flow fields about three cardinal axes. For each condition, we used
white noise analysis to determine the optimal linear filters linking optic flow to the sum and difference of left and right wing beat
amplitudes. The estimated filters indicate that flies react very quickly to perturbations of the motion field, with pure delays in the
order of ~20 ms and time-to-peak of ~100 ms. By convolution the filters also predict responses to arbitrary stimulus sequences,
accounting for over half the variance in 5 of our 6 stimulus types, demonstrating the approximate linearity of the system with
respect to optic flow variables. In the remaining case of yaw optic flow we improved predictability by measuring individual flies,
which also allowed us to analyze the variability of optomotor responses within a population. Finally, the linear filters at least partly

explain the optomotor responses to superimposed and decomposed compound flow fields.

Supplementary material available online at http://jeb.biologists.org/cgi/content/full/213/8/1366/DC1
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INTRODUCTION

Animals use optic flow fields generated in a stationary environment
to estimate self-motion (Longuet-Higgins and Prazdny, 1980), and
in the aerobatic fly this is a crucial source of feedback (Egelhaaf
and Borst, 1993). This bears out in evidence that the third optic
ganglion in the fly visual system encodes specific patterns of optic
flow (Longuet-Higgins and Prazdny, 1980; Krapp and
Hengstenberg, 1996). Although a fly’s visual system captures coarse
images, it is extremely fast and sensitive, and ideally suited to
analyze rapidly changing image motion (Autrum, 1958; Kirschfeld,
1967; Kirschfeld, 1976; Braitenberg, 1967; Hardie and Raghu,
2001).

Like gaze stabilization in humans (Miles and Wallman, 1993),
a fly subjected to unplanned apparent self-motion moves to
minimize the resultant optic flow across the retina. For example,
in a rotating striped drum a tethered fly steers to follow the
pattern (Collett, 1980a; Collett, 1980b; Mronz and Lehmann,
2008). This classical optomotor response is a central feature of
a fly’s flight control system, using visual motion to correct
involuntary deviations from course (Poggio and Reichardt, 1976).
However, animals moving through the natural world cope with
compound patterns of optic flow, and for flying insects in
particular the challenge is heightened by buffeting winds which
in principle can elicit forces in any direction and torque around
any axis.

Several models account quite well for neuronal responses and
flight behavior with feedback mechanisms (Collett and Land,
1975; Goétz, 1975; Poggio and Reichardt, 1976; Dickson et al.,
2008). It has been shown that models that account well for these
responses are insensitive to wide variations in spatial textures,

but instead are largely influenced by the dynamics of naturalistic
optic flow (Lindemann et al., 2005). Additionally, studies in the
blowfly have revealed that linear sums of the output from HS
(horizontal system) and VS (vertical system) neurons can encode
translational and rotational components of self motion from
naturalistic optic flow (Karmier et al., 2006). However, the
dynamical behavioral responses to optic flow and the linearity of
these responses have not been studied in detail. Here we describe
the temporal dynamics of optomotor responses of flies to
perturbations in the optic flow field. As a reference to the optic
flow, we describe motion relative to three perpendicular axes
aligned with the fly’s body (Fig. 1A). Translational motion along
each axis is usually referred to as lift, thrust and slip; rotational
motion around each axis is conventionally called yaw, roll and
pitch. These axes are a basis for general translation and rotation,
such that superimposing them can represent arbitrarily complex
motion of the fly’s body.

Our approach consisted of treating the fly as a lumped control
system, and measuring wing kinematics in response to visual
perturbations, created by stimulating displacements through a
cloud of points (see supplementary material Movie 1). The wing
beat responses were then used to estimate the best linear filter
(or impulse response, A()) linking changes in the optic flow field
to motor control of wing kinematics. We find that the dynamics
of stabilization are different for different perturbations.
Additionally, despite great differences between individual
measurement trials, the filters are highly predictive of the
mean wing beat responses to novel random stimuli, usually
accounting for half or more of the variance in stabilization
responses.
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MATERIALS AND METHODS
Subjects and preparation

The experimental subjects were female Drosophila melanogaster
(Meigen) collected 4-6 days after adult eclosion. The colony was
maintained on a 16h:8h light:dark cycle and fed on standard medium.
We cold-anesthetized and tethered flies, then allowed them to
recover for approximately 1h. The dorsal thorax of each anesthetized
fly was glued to a 0.1 mm diameter rigid tungsten rod which, after
recovery, fixed their position in the center of the flight arena without
interfering with wing beats (Fig. 1B). We used each fly for only a
single experiment, with multiple conditions presented in random
order. In other words, no fly saw the same pattern twice, and only
rarely did two flies view patterns in the same order. The only criterion
for including data in the analysis was that a fly beat its wings
continuously for the duration of the test.

Stimuli and response measurements

The flight arena was a cylinder arrangement of 88X32 light emitting
diodes (LEDs), which subtended 330 horizontal and 120 vertical
degrees of the visual field (Duistermars et al., 2007a). The LED
display was computer-controlled by serial interface with Matlab
(Mathworks, Natick, MA, USA) (Reiser and Dickinson, 2008). From
the vantage point of the fly individual LEDs were spaced 3.75 deg.
apart, closer than their approximately 5 deg. interommatidial angles
(Heisenberg and Wolf, 1984). The LEDs displayed a simulated cloud
of luminous dots with a uniform random distribution (Fig. 1B), then
rendered apparent movement by coherent, perspective-corrected
changes in dot locations. We generated five different random dot
fields each experiment day, then chose one randomly for each trial.
We then animated the dots to simulate flow fields representing
translations and rotations around the cardinal axes for a total of six
different stimulus types (see supplementary material Movie 1 for
examples). The openings in the arena at the top, bottom, and the
30deg. strip in the rear, leave some gaps in the visual coverage, but
of the 4 pi steradians in a sphere, the arena geometrically covers
9.97 steradians, or 79% of the complete visual field. The refresh
rate of LED panels was of the order of MHz, well above the flicker-
fusion rate for flies. Between open loop trials with the dot patterns,
flies viewed a bright vertical stripe (15 deg.X120 deg. at full
contrast) for 5s, which they could fixate with closed loop feedback.
This kept each fly performing active flight control between trials
(Reichardt and Wenking, 1969; Heisenberg and Wolf, 1979), and
reasonably ensured they entered each trial in a similar behavioral
state.

During visual stimulation we tracked resultant open loop wing
kinematics with an opto-electronic system that tracked two variables
in real time — the difference and sum of bilateral wing beat
amplitude. For the left and right wing, two time-varying voltages
encoded maximum wing beat amplitude (WBA) for each stroke
cycle. Offline, we then calculated the difference (left minus right
amplitude, AWBA) and sum (left plus right amplitude, ZWBA) for
each wing beat. We used AWBA as a proxy for bilaterally
asymmetric yaw, roll and sideslip kinematics. We used XWBA as
a proxy for bilaterally symmetric pitch, thrust and lift kinematics.

The wing beat analyzer captures only a projection of three-
dimensional wing stroke, the top down infrared shadow filtered
through an optical mask, and thus could potentially sacrifice
resolution, or introduce distorting effects, including nonlinearities
such as saturation. But although wing kinematics are far more
complex than the projections, there are several justifications for
measuring the sum and difference of wing beat amplitudes. First,
we carefully focus the wing traces before experiments, confirming
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that flies can fixate a vertical bar in closed loop, and that the
responses do not saturate during normal flight. Second, AWBA
and XWBA have been shown to be proportional to yaw torque
and axial thrust, respectively (Go6tz, 1987; Frye and Dickinson,
2004; Tammero et al., 2004). Third, lift and thrust are coupled
during flight (Gotz and Wandel, 1984), implying ZWBA is
relevant for both. Fourth, in response to a laterally expanding
flow field, flies produce roll and yaw torques of similar magnitude
in addition to pure sideslip axial force (Sugiura and Dickinson,
2009). The apparent cross-talk between sideslip and yaw is
evidenced by a powerful active feedback loop between AWBA
kinematics and visual sideslip (Tammero et al., 2004). Fifth and
finally, we make the assumption that XWBA kinematics vary
systematically with pitch torque, which is not unreasonable if the
optomotor stabilization of nose-up pitch and a upward lift
produces ZWBA of similar sign. Left and right wing stroke
amplitudes and visual pattern position were digitized at 500 Hz
and stored on a computer.

RESULTS

We began with a simple test of linearity by measuring responses to
instantaneous pattern rotations (impulse functions of angular
velocity). The test began when the closed loop fixation stripe
disappeared and the fly viewed a static random dot pattern in open
loop. Then the pattern rotated to the right at either at 1000 ms (8 o)
or 1100ms (8 19o; Fig. 1Ci). The first condition, to characterize the
impulse response, was rotation by a single pixel (3.75 degrees) at
8¢ o (Fig. 1Cii). The second condition, to test time invariance, was
the same rotation, but at & oo (Fig. 1Ciii). The third condition, to
test homogeneity, was rotation at d; ¢, but doubled in amplitude to
two pixels (Fig. 1Civ). The fourth and final condition, to test
additivity, was two serial rotations, one pixel at ; ¢, and one more
at ¢ 100 (Fig. 1Cv). In Fig. 1C, black traces show the mean AWBA
responses, and red traces show linear predictions obtained by:
shifting the first black trace by 100 ms (iii), doubling the first black
trace (iv), and summing the first two black traces (v). These simple
tests of time-invariance, homogeneity, and additivity represent the
complete requirements of a linear time-invariant (LTI) system
(Oppenheim et al., 1997). The general agreement of the black and
red traces suggests that within certain limits, this formulation may
approximate the translation of optic flow velocity to torque steering
responses. The advantage of an LTI approximation is that the
impulse response is a complete and predictive description of the
system. However, a disadvantage of this measurement technique is
that the traces (as in Fig. 1C) are the means of individual trials (from
364 flies), a laborious method that generates a still noisy estimate
of the impulse response.

To increase efficiency and more rigorously determine the optimal
linear filters, we used a variation of white noise analysis (Golomb,
1981; Ringach and Shapley, 2004) in which a binary pseudo-random
sequence (a 10th order m-sequence, total 1023 values at 50 Hz)
controlled the instantaneous velocity of optic flow. Cross correlating
the m-sequence with the wing beat responses (after subtracting the
mean and dividing by the standard deviation) produces an efficient
estimate of the impulse response. Fig. 1D shows a partial m-sequence
controlling yaw optic flow (i), the corresponding AWBA response
(i), and the resulting estimate of the impulse response (iii). In
contrast to 364 flies required in Fig. 1C, this estimate required just
a single trial on a single fly. At 50 Hz, the m-sequence took just
over 20s to play out. We set this rate (not to be confused with the
flicker rate, which was much higher) to a value known to produce
robust optomotor responses in flies (Duistermars et al., 2007a).
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Fig. 1. The generation and modulation of optic flow fields. (A) We simulated translational and rotational motions along each cardinal axis aligned along the
fly’s body. (B) The stimulus was generated by simulating the perturbation of the fly’s position within a cloud of randomly distributed dots (i). As the pattern

velocity of any point based on its location in the field, however, arrow lengths are approximate for the translational velocity, since ‘nearer’ virtual points
produce faster angular speeds. (C) An impulse function modulated yaw by advancing the pattern one pixel (3.75deg.) to the right. The top plot (i) illustrates
impulses at 0 and 100 ms. (ii) The black trace below shows the difference in left and right wing beat amplitudes, the attempted turning response, to the 0 ms
impulse. (ii) The response to the same increment at 100 ms, overlaid in red by the top 0 ms response shifted by 100 ms. (iv) Response to a 2 pixel
increment (7.5 deg.), overlaid in red by the double top 0 ms response. (v) The response to a pattern incremented at both 0 and 100 ms, overlaid in red by
the sum of the responses to 0 and 100 ms independent increments. Scale bars, 100 ms horizontally and 0.02 V vertically; each trace is the mean of
responses from 364 flies. (D) The top plot (i) shows a partial m-sequence that modulated visual yaw by advancing and reversing rightward motion. (ii) The
response of a single fly while viewing this yaw sequence. Scale bars, 100 ms horizontally and 0.1V vertically. (iii) The impulse response estimated from this
single fly after the full 20 s m-sequence. Scale bars, 100 ms horizontally and a correlation of 0.01 vertically. (E) Impulse response estimates obtained with m-
sequences at different frame rates. The frame rate varied at 30, 40, 50, 60 and 70 Hz, and the results were averaged for 56 flies. Scale bars, 100 ms

horizontally and a correlation of 0.01 vertically.

Although this parameter could influence the temporal resolution of
the filter estimates, experiments indicated wide variation in frame
rate had little effect (Fig. 1E, average of 56 flies).

Flight optomotor responses depend on the pattern of optic
flow

Flies responded to perturbations of each of the six canonical types
of optic flow and the dynamical responses to each were unique
(Fig. 2, average of 68 flies). The compensating responses to
translating stimuli (Fig. 2A—C) were uniformly stronger than the
responses to rotating stimuli (Fig. 2D—F). Each type of optic flow
with left-right symmetry (as produced by lift, thrust, and pitch)
elicited strong XZWBA modulation (Fig.2A,B,F, column ii) but no
correlated AWBA modulation (Fig.2A,B,F, column i). By contrast,
the flow fields containing a left—right asymmetry (as produced by
yaw, slip and roll) induced substantial AWBA (Fig.2C-E, column i)
modulation but no correlated XWBA modulation (Fig. 2A,B,F,
column ii). This does not necessarily mean that optic flow such as
roll had no effect on XWBA, just that any such effect was
uncorrelated with the direction of roll optic flow.

Some responses were very fast, such as for lift, thrust, slip and
pitch, in which the response delay times (estimated as the time at

which the signal reaches 2 standard errors above baseline) were 21,
18, 25 and 26 ms, and the times to peak response were 60, 62, 72,
and 52 ms (Fig. 2Aii,Bii,Ci,Fii, green markers). These quick
responses occur approximately 10ms after the photoreceptors have
begun responding to the light (Juusola and Hardie, 2001). Other
responses were much slower: delay times for yaw and roll were 44
and 30 ms, and times to peak were 122 and 116 ms respectively
(Fig.2Di,Ei green markers). A third distinguishing characteristic of
each response is relaxation time. The response to thrust, for
example, returns to baseline (comes within two standard errors) after
389 ms (Fig. 2Bii), whereas for roll the response persists well after
one second (Fig. 2Ei).

Impulse responses predict most of the explainable WBA
variation
If optomotor responses are well characterized by the linear filter,
then it should be possible to predict responses to a new random
stimulus sequence. Therefore, we next tested whether the estimated
linear filters could predict responses to novel perturbation sequences.
We generated a new m-sequence and convolved it with each of the
estimated impulse responses to compute predictions of wing beat
responses. Then we presented randomly shifted versions of this novel
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Fig. 2. Mean impulse responses to optic
flow across a population of flies. The
measured AWBA and SWBA impulse
responses from 68 flies to each of six
types of optic flow. Flies responded to left
and right symmetrical stimuli, lift, thrust
and pitch (A,B,F), by modulating the sum
of wing stroke amplitude (SWBA, column
ii), and asymmetrical stimuli, slip, yaw,
and roll (C,D,E), by modulating the

ot difference in wing stroke amplitude

(AWBA, column i), relative to the velocity
pattern. In each trace, the mean
estimated h(t) is shown in black, with one
standard deviation above and below it in
gray. The direction considered ‘positive’
for each stimulus was chosen to produce
a positive impulse response. The green
markers below each response trace
indicate the time of initial response, and
the time of peak response. Scale bars,
100 ms horizontally and 0.01 units of

E Roll

correlation vertically.

sequence to a new group of 68 flies and averaged the temporally
aligned responses. Therefore the flies and sequences used to
compute the linear filters were entirely different from the flies and
m-sequences used to generate comparison data. Convolving the
impulse responses with each novel stimulus sequence produced the
most stringent estimate possible of the deterministic component of
the optomotor response.

Fig. 3A-F reproduces the responsive linear filter for each type
of optic flow (Fig. 3A-Fi). The mean response to a novel 20s m-
sequence is shown in black (Fig. 3A—Fii), with one standard
deviation in gray. The standard deviations of the ZWBA responses
are noticeably higher than the AWBA, a result of variations in
focusing of wing shadows on the photodiodes. This affects the total
amplitudes by shifting traces up and down, but does not reflect a
less reliable metric. The dynamical model predictions, overlaid in
red, are normalized to the same maximum as the black traces for
graphical comparison (which does not affect the correlation
coefficients). Scatter plots show the model-predicted values against
measured values at each time point (Fig. 3A-Fiii, sampled at
500Hz) of the response traces. Above this are the correlation
coefficients (r), the square of which yields the coefficient of
determination, or the proportion of variability accounted for by the
linear filters. The correlation of all but one of the fits was above 0.7,
so accounting for over half the explainable variability (the response
to yaw in Fig. 3Dii was the weakest correlation and is discussed
below). In the strongest case of response to sideslip, the filters
accounted for over 75% (0.87%) of the variability. Examining the
scatter plots also allowed us to determine if static nonlinearities might
explain even more of the variation—static because each predicted and
measured pair were from the same time point, and nonlinear if we

saw biases off a straight line that crossed the origin. The plots
(Fig. 3iii), however, show no systematic bias away from straight lines.

As a further test of the uniqueness of the linear filters, we
crosschecked each possible combination of prediction and result by
calculating the coefficient of correlation. For example, do the linear
filters for slip and yaw predict different wing beat responses, and
might the strongly predictive slip /(2) better estimate yaw response
than the weakly predictive yaw /(7)? We stress that the predicted
and measured responses were generated by different flies viewing
different m-sequences, so the results of this test were not a foregone
conclusion. In every case, however, the strongest correlation (the
best predictor of behavior) was from the correct linear filter (not
shown). Surprisingly, this was true even in the case of yaw, where
the linear model accounts for only about 28% (0.532) of the
variability.

Single flies show individual impulse response variation
We were intrigued by the relatively poor predictive power of the
yaw linear filter. A weak filter could be due to a noisier signal (flies
may turn frequently in yaw for causes unrelated to optic flow),
dynamic nonlinearities (which might be more important in the yaw
plane), or because our technique of pooling the analysis over many
flies masks substantial individual variability. To check for individual
variability, we estimated linear filters and mean response data as
above (separately collected data sets to estimate the filter and the
response), but with repeated measurements on individual flies.

In order to estimate the particular () of a single fly, we needed
each animal to perform with a robust optomotor response for at least
20min continuously while viewing repeated stimuli, as shorter times
yielded noisy estimates (not shown). Because of this constraint, we
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focused these experiments on the apparently weak yaw optic flow
stimulus rather than testing other flow fields. We presented twenty
randomly shifted m-sequences, alternated with twenty identical m-
sequences, each modulating yaw optic flow. We used the randomly
shifted presentations to generate estimates of individual /(), then used
the repeated presentations to calculate the visually evoked variation
of individual responses. As before, the sequences for generating the
predictions and measuring the responses were different, although in
this case, of course, the tested flies were the same.

The linear model for each of four individual flies produced a
better fit than the grouped data. The individual yaw A(z) estimates
(Fig.4A-Di) were similar to the mean estimate, but visibly unique.
As a test of similarity, we calculated the correlation coefficients of
these filters to the pooled yaw A(?) in Fig.2Di, and found that they
ranged between 0.55 and 0.95. Consistent with this, each fly
responded somewhat differently to the same m-sequence (Fig.
4A-Dii). The correlations between measured and predicted
responses ranged from 0.69 to 0.85 (Fig.4A—Diii), much higher than
the 0.53 correlation based on the group estimates.

To confirm that these measured differences resulted from
individual variability, not estimation error, we crosschecked linear
filter predictions to responses of other flies. In this case the same
flies produced the predicted and measured responses, but they were
still from separate data sets collected over multiple trials. In every
case again, a fly’s own linear filter was the best predictor of its own
response (Fig.4E). For example, when the impulse response from
the first fly was used to generate a response prediction for the second

Fig. 3. Measured and
predicted fly behavior. For
each type of motion (A-F),
the responsive linear filter,
either AWBA or SWBA,
appears in column i, and was
used to make a prediction of
the measured behavior. The
mean measured responses
appear in column ii in black,
flanked by one standard
deviation in gray. The
convolution of the m-
sequence and h(t), the
dynamical linear prediction, is
traced in red. Column iii plots
the predicted against
observed values from
corresponding time points in
ii, and shows the correlation
coefficient above. The scale
bars by the upper left trace
shows 100 ms horizontally
and 0.01 units of correlation
vertically. The response
traces in the center are each
20s long, and normalized to
their own maximal values.

fly, the coefficient was only 0.49, rather than 0.85 obtained using
the second fly’s proper /(). This analysis supports the interpretation
that the variation between linear filter estimates and response
estimates follow directly from systematic variation in the optomotor
integration of individual flies.

We tested the hypothesis that the variation between filter estimates
could be explained as the superposition of a small number of
components by performing a singular value decomposition (SVD)
on the individual filter estimates from the four flies illustrated in
Fig.4A-D, and eight additional flies. This analysis produces a set
of vectors which form a linear basis of our filters, and orders them
by relative contribution [the spectrum (see Golub and Van Loan,
1996)]. In other words, we obtain a set of elementary vectors that
can build any filter in our measured population by linear
combination. Examining the dominant vectors can reveal whether
simple components underlie a seemingly complex set of responses.
The spectrum of the SVD analysis (Fig. 4Fi) shows a dominant
eigenvalue, followed by one or two moderate ones. When the
coefficients from the first two components of each response are
plotted, there is no obvious grouping (Fig.4Fii). Examining the shape
of these two factors (Fig. 4Fiii) reveals that the first approximates
a response element that is quick to peak and relaxes in about half
a second (red trace), while the second approximates a response
element that is slow to peak and relaxes over several seconds (blue
trace). Thus, the first two components of the SVD may reflect
underlying mechanisms and describe most of the variation between
individual yaw filters.
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Fig. 4. Yaw h(t) estimates for individual flies. (A-D) Each h(t) in column i is the mean of twenty measurements from a single fly, produced with randomly
shifted m-sequences cross correlated with the fly's AWBA response. Each response in column ii is the mean of twenty AWBA responses to aligned m-
sequences, a black line flanked by one standard deviation in gray. The prediction of the linear dynamical model is superimposed on the response trace in
red. Column iii plots the predicted against observed values from corresponding time points in ii, and shows the correlation coefficient above. (E) Behavioral
predictions using other impulse responses of other flies produce weaker correlations. Each column represents the responses of an individual fly, and the
point shapes and colors represent behavioral predictions calculated with impulse responses measured from other individuals (for example, green square is
fly 2), plotted by their correlation value on the vertical axis. (F) Singular value decomposition analysis of a group of impulse responses from 12 individuals
shows (i) the spectrum of the components ordered by the fraction of total variance accounted for (VAF) by each subsequent eigenvector, (i) the family of

impulse responses plotted by their first two component coefficients, and (iii) the first two principle components themselves in blue and red. The colored
points in (ii) represent the individual flies from E. Scale bars, (in a and f) 100 ms horizontally and 0.01 units of correlation vertically.

Flow fields can be superimposed or decomposed

A flying insect might encounter any one of the six cardinal flow
fields alone, but would more commonly experience compound optic
flows, generated from simultaneous motion on multiple axes. There
are 64 combinations of the basic flows and an exhaustive parameter
analysis was simply beyond our means. Rather, here we focused
our analysis on the effect of superimposed flow fields for a simple
case that might be commonly experienced during free flight —
simultaneous lift and thrust motions. From the previous experiments
we knew that these motions both affect ZWBA, and superimposed
they correspond to arbitrary translation through the sagittal plane.
We created a new stimulus in which two novel m-sequences
modulated lift and thrust simultaneously and independently. Since
the m-sequences are uncorrelated, they do not confound each other
for the purpose of prediction. This produces a fairly complex
stimulus, but the motion is tractable and we estimated the mean
response from 75 individual flies.

We predicted the superimposed responses by convolving these
sequences with the separate lift and thrust linear filters measured
carlier, then adding the results. We compared the predictions to
average responses of flies that viewed this compound stimulus. In
at least this single case the linear model continues to provide a good
fit to the data, with a correlation of 0.79 (Fig. 5). Nevertheless, static
and dynamic nonlinear effects may be significant when viewing
general complex flow fields and the scatter plot of predicted and
observed values shows signs of static nonlinearities affecting the
distribution of points (a deviation from a straight line passing through
the origin).

Another question of interest was whether different parts of the
motion field affect the optomotor responses. In other words, can we
explain wing kinematics by the sum of responses to motion in different
parts of the visual field? One difficulty is that as the size of the moving
visual field is reduced, the optomotor response drops, so it becomes
difficult to get a good estimate of /(?). To confront this issue and
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Fig. 5. Predictions for motion along two axes simultaneously. The dot stimulus simulated two orthogonal motions, lift and thrust, simultaneously modulated
with different m-sequences. The kernels from Fig. 3 are reproduced here in i, and they were used to make two independent predictions of behavior. The
black trace in ii shows the mean SWBA from 75 flies responding to the simultaneous motions, and the red trace shows the sum of the individual predictions.
The scatter plot in iii shows the measured and predicted values from ii taken from simultaneous time points. Scale bars, 100 ms horizontally and 0.01 units

of correlation vertically.

determine whether different parts of the visual field have unique
dynamical effects on the wing beat response, we divided the visual
field into right and left halves, modulated the yaw of each half-field
with novel independent m-sequences, then determined the optimal
linear filters linking the flow with the amplitude response of each wing.

We found that visual motion has different effects on the
ipsilateral and contralateral wings (Fig. 6A, 45 flies). In response
to frontward (back to front) motion in either hemisphere, both
wings show impulse responses with quick peaks at 58 ms.
However, the effect on the contralateral wing diminishes in just
295 ms, whereas the effect on the ipsilateral wing reverses sign
after 106 ms, to become inhibitory, and remains negative for over
a second. Because these are linear filters, these individual wing
effects are reversed compared to patterns moving in the opposite
direction. Decomposing the optic field has an additional effect of
reducing the magnitude of visual responses, thus reducing the
correlations to a peak of roughly 0.003.

Nevertheless, the response shapes go some way towards
explaining two of the full impulse responses in Fig. 2. When both
visual fields moved forward and backward together, the stimulus
was similar to thrust optic flow (though not perspective-corrected).
The ipsilateral and contralateral impulse responses in this case have
the same sign, and, therefore, when they are added, the result is
noticeably similar to the A(#) for thrust (Fig. 6C, black and gray
traces). Likewise when each visual field moved differently, one
forward and the other backward, the stimulus was yaw optic flow.
In this case the impulse responses have opposite signs, and when
one is therefore subtracted from the other, the result is similar to
the A(?) for yaw (Fig. 6C, black and gray traces). Importantly, for
this experiment, flies never viewed thrust or yaw stimuli (except
randomly and transiently), but rather saw uncorrelated motion to
the left and right. Also, since the correlations for this stimulus were
much smaller, the full responses (Fig. 6B,C) were scaled down for
comparison. And noticeably, the matches are imperfect, as the sum
of the two in Fig. 6B has an inhibitory phase not found in the earlier
thrust A(?) estimate, and neither Fig. 6B nor C settles with the same
time course as those estimated with coordinated stimuli. This
indicates the full responses are more than a linear combination of
the independent ipsilateral and contralateral visual contributions to
wing beat amplitude, and that nonadditive effects become important
when left and right side motion are correlated.

DISCUSSION
We used a system identification approach to characterize the
dynamics of optomotor responses in flies presented with simulated
visual perturbations to their natural three-dimensional flight

trajectories. We found that (1) flies responded to each of the six
fundamental optic flow fields by modulating their wing beat
kinematics with a distinctive dynamical time course (Fig.2); (2)
linear predictions from these impulse responses were often highly
predictive (accounting for over half the variance) of optomotor
responses, both for the population mean in every case but yaw optic
flow (Fig.3) and for individual flies in the case of the yaw (Fig.4);
(3) in some cases, responses continued to occur in a largely linear
fashion even when input flow fields were superimposed (Fig. 5) or
decomposed into subfields (Fig. 6).

White noise analysis has been successful for both linear and
nonlinear analyses in biological systems (De Boer and Kuyper, 1968;

A

Contralateral :

Contra + ipsi
Thrust

Cc

Contra — ipsi
Yaw :

Fig. 6. Impulse responses for each wing generated from a split yaw flow
field. The inset illustrates the experiment, in which random yaw patterns
were modulated on the left and right with independent m-sequences.

(A) The impulse responses for the ipsilateral and contralateral effect of optic
flow on wing motion, estimated from 45 flies. Scale bars, 100 ms
horizontally and 0.001 units of correlation vertically. (B) The sum of the
ipsilateral and contralateral kernels from A, the situation expected when
both hemispheres move backwards and forwards together, roughly
equivalent to the thrust stimulus in the previous experiments. The thrust
impulse response estimated in Fig. 3 (in gray) is shown for comparison.

(C) The difference of the ipsilateral and contralateral kernels from A,
expected when the fields move opposite (one forward, one backwards) and
equivalent to the yaw stimulus in the other experiments. The yaw impulse
response from Fig. 3 (in gray) is shown for comparison. In B and C the
gray and black curves are normalized to their own maxima.
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Marmarelis and Naka, 1972; Naka et al., 1979; Dickinson, 1990).
It is often used to characterize responses of sensory neurons, and
more rarely the behavioral output of a whole organism. But by
comparison with visual processing in early motion circuits, much
less is known about quantitative algorithms that transform the natural
spatiotemporal patterns into the motor control of wing kinematics.
However, a fundamental model supposes that insects turn in the
yaw plane to equalize motion between the eyes, in other words, the
inter-ocular difference in optic flow is a feedback signal to stabilize
yaw (Gotz, 1975; Srinivasan and Zhang, 2000; Egelhaaf and Kern,
2002). A parameterless model allowed us to measure the precise
temporal dynamics of these compensating responses, and resolve
even subtle differences that varied with flow fields.

Impulse response estimates for optomotor behavior

A key finding here is that each flow field produced a unique impulse
response in flies, and the estimated linear filters explained up to
~75% (in the case of the sideslip flow field) of the total response
variance in subsequent experiments (Fig. 3). This of course does
not imply that motion detection (with pattern brightness as the input)
is linear, as it is known to require a nonlinear interaction (Borst
and Egelhaaf, 1989), rather that motion responses (with optic flow
perturbations as the input) are linear over a substantial range of
operation. Furthermore, these results do not imply linearity within
the entire cascade of sensory processing and motor control, but
rather that the fully integrated behavioral system is well
approximated by linear filters, as over half the variance is accounted
for in most cases. Within some stages, the normal operating range
of the fly might mitigate underlying nonlinearities. For example,
elementary motion detection shows strong nonlinearities over
pattern velocity (Hausen, 1982). However, recordings from wide-
field integration neurons of the lobula plate have shown that the
image speeds imposing the strongest nonlinearities generally occur
above those encountered during flight (Warzecha and Egelhaaf,
1996). By modulating image motion with white noise at 50 Hz such
that each time step shifted the pattern in a random direction, we
present multistep velocities from —188 to 188 deg.s™'. It is important
to keep in mind that pattern velocities outside the normal operating
range of any element of the processing cascade will not evoke
correlated behavioral steering responses and thus will not appear
in the linear kernel estimates.

Several other aspects of our experimental method impose
limitations while also providing exciting avenues for future research.
Nonlinearities contained in natural scenes composed of compound
patterns of flow may be asymmetrical and include motion that is
independent of the fly’s locomotion. It will be important to expand
the present analysis to more complex optic flow regimes. Next,
although the optical wingbeat analyzer takes very reliable measures
in real time, it measures only a two-dimensional projection of a
complicated multi-dimensional wing stroke (Fry et al., 2005). It
cannot fully capture out-of-plane kinematics. Nevertheless, our
results suggest that the projections themselves are consistent for a
given optic flow stimulus. Our analyses were performed entirely
under open-loop conditions in which the flies had no control over
image motion. Closed-loop experiments with this method are more
challenging but might alter the response dynamics by putting the
fly in an alternative behavioral state. Finally, our experimental
conditions were designed specifically to isolate optomotor responses
from other important sensory inputs such as mechanosensory
feedback from the halteres and odor signals from the antennae, which
strongly influence the dynamics of wing-beat-mediated equilibrium
responses (Sherman and Dickinson, 2004; Duistermars and Frye,
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2008). During free flight these additional inputs certainly interact
with the visual dynamical wing beat response.

Given these caveats, our measurements are nevertheless highly
repeatable, indicating remarkable robustness in the underlying
sensory-motor control algorithms. Furthermore, the potential
nonlinearities imposed by the wing beat analyzer may mean our
results underestimated the predictability of steering responses from
linear filters. These methods and results provide a powerful
analytical tool for assaying the results of genetic manipulations of
underlying neural circuits.

Inter-individual variation in optomotor performance

For the yaw stimulus, our pooled estimate of the impulse response
accounted for only about 28% of response variance, a poor fit by
linear filters. At first glance, this low value might be expected since
during sensory independent active search, flies exhibit apparently
spontaneous changes in yaw (Wolf and Heisenberg, 1990; Reynolds
and Frye, 2007; Chow and Frye, 2008). As repeatable as flight
optomotor responses are, they show variation, and determining an
underlying visual response requires averaging of multiple trials.
Does this variation reflect purely random sensory-independent
spontaneity or quantitative individual variation in the optomotor
control system? Landing trajectories in honeybees show systematic
inter-individual variation such that the angular velocity of the ground
image is held constant upon approach, but the specific velocity value
varies between individuals (Srinivasan et al., 1996). Flight responses
in individual tethered flies are grossly similar, but show substantial
differences linked to prior flight experience (Hesselberg and
Lehmann, 2009).

The original experiments tested each fly only once, and it was
impossible from individual trials to determine if responses between
individuals varied substantially (Fig. 1D). However, when we
estimated /(z) for individual flies by presenting a repeated yaw
stimulus, we found a remarkable amount of the variation still
attributable to purely linear dynamical interactions (Fig.4A). It was
a surprise to us that the correlations ranged between 0.69 and 0.85,
indicating that a linear model accounts for about 49-72% of the
explainable variation (as opposed to the 28% seen for the mean /(z)
estimate), suggesting that the relatively low correlation coefficients
in the population data might have resulted simply from variation
between individuals. Furthermore, a fly’s own unique yaw kernel
produced the best prediction of its own behavioral response to a
novel m-sequence (Fig.4B). SVD analysis suggests that this
variability in optomotor responses is well described by the additive
contribution of a small number of underlying mechanisms (Fig.3C).
The source of this variation is unknown, but there are at least three
distinct possibilities. First, there is variation in the adult phenotypes
of even genetically identical animals, such as a range of masses in
adult flies. The circuits that respond to yaw stimuli may exhibit this
variability to a greater degree than those that respond to other stimuli.
Second, flies are known to shift between different behavioral states,
such as high and low activity (Rosner et al., 2009). Although the
closed loop bar tracking our flies performed between trials was for
the purpose of aligning their behavioral states, there are likely
behavioral modes outside of those induced by recent tracking
behavior. Furthermore, these could affect yaw responses
disproportionately, as yaw is integral to different search strategies.
Third, individual genetic differences might underlie these variations.
If this is the case, the speed with which these linear estimates can
be gathered on individual flies provides an entry point into analyses
of the genetic and neural circuit level determinants of individual
variation in optomotor performance.
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Parallel subsystems for decomposing optic flow

The maximal cross-correlation between optomotor responses and
the visual input stimulus was higher for translational cues than for
rotational cues. This result is reminiscent of previous reports of
rotational cues evoking a comparatively weak optomotor response
(Duistermars et al., 2007b). An important consideration is that,
although extensive, the arenas do not completely cover the flies’
visual fields. Except at the poles, self rotation produces visual motion
wherever there is contrast. During translation, however, visual
motion also depends on object distance, and some high contrast
features, such as the sun and horizon, do not appear to move. Thus
the openings in the arenas may compromise the rotational
simulations more than the translational ones, as these static visual
areas are only plausible for translational motion.

However, the different responses may also suggest separate
pathways for rotational and translational motion processing (Katsov
and Clandinin, 2008). We now show two additional lines of
evidence supporting this idea. First, optomotor response dynamics
are strongly dependent on the perspective corrected optic-flow
pattern. Second, approximate linearity extends to conditions where
two types of motion field are superimposed, at least in the case of
lift and thrust. Such results could most easily be attained by
decomposition of the motion field into basic components, then
linearly combining the responses to generate a motor command —
the very method by which we generated the prediction. This is
important because optic flow fields contain an enormous amount
of information for an animal in nature steering its course by vision
(Gibson, 1998) but only sometimes orienting to the cardinal axes,
as our experiments did. Yet by showing that two superimposed
translational fields moving independently generate a response that
is largely the sum of each shown individually, we demonstrate a
simple method for how a fly might analyze and respond to an
arbitrarily complex flow field.

Individual interneurons of the third optic ganglion, which
compute global features of optic flow, contain large receptive fields
that locally match the retinal patterns generated during body
maneuvers such as pitch and roll (Krapp and Hengstenberg, 1996;
Frye and Dickinson, 2001). However, reconstructions of free flight
optic flow ‘played back’ during electrophysiological recordings
have demonstrated that individual cells respond vigorously to both
translational and rotational flow fields (Kern et al., 2005). The
apparent ambiguity in encoding the true instantaneous optic flow
field may be computationally resolved downstream by integrating
the ensemble output of cells with differing sensitivity to the
compound flow fields (Karmeier et al., 2006). Whereas research
on the lobula plate has provided by far the most mechanistic depth
of understanding for the functional organization of optomotor
behavior, there are high-order visual behaviors that cannot be easily
assigned to lobula plate circuits (Theobald et al., 2008) and
recently identified visual glomeruli that remain functionally
unsolved (Strausfeld and Okamura, 2007). Our results complement
physiological analyses of motion processing circuits by providing
further quantitative evidence that optic flow fields are separately
encoded and decomposed while also providing a rapid quantitative
method for assessing structure—function relationships within the
visual system.

The white noise analysis described here yields a precise linear
dynamical profile of optomotor responses in Drosophila. Coupled
with genetic tools, white noise analysis could help determine the
role that different neural circuits contribute to the response. Both
the current methods and results can be applied in a reverse-genetic
screen for the putative constituent neural circuits. For example,

circuit breaking techniques such as reversibly inactivating
genetically targeted neural microcircuits by way of the Gal4-UAS
system (Olson and Wilson, 2008) will probably uncover novel visual
pathways for decomposing the retinal flow field. Further
characterization of nonlinear dynamical response components could
make this approach stronger still. It is important to note that the
quantitative measures provided here, including the impulse responses
and input-output variance functions, are not well understood at the
neural circuit level. Therefore we have provided, in a genetic model
organism, both a formalization of the operational algorithms and
the basis by which to assay whether they are distorted.
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