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SUMMARY
Recent studies suggest that fruit flies use subtle changes to their wing motion to actively generate forces during aerial
maneuvers. In addition, it has been estimated that the passive rotational damping caused by the flapping wings of an insect is
around two orders of magnitude greater than that for the body alone. At present, however, the relationships between the active
regulation of wing kinematics, passive damping produced by the flapping wings and the overall trajectory of the animal are still
poorly understood. In this study, we use a dynamically scaled robotic model equipped with a torque feedback mechanism to
study the dynamics of yaw turns in the fruit fly Drosophila melanogaster. Four plausible mechanisms for the active generation of
yaw torque are examined. The mechanisms deform the wing kinematics of hovering in order to introduce asymmetry that results
in the active production of yaw torque by the flapping wings. The results demonstrate that the stroke-averaged yaw torque is well
approximated by a model that is linear with respect to both the yaw velocity and the magnitude of the kinematic deformations.
Dynamic measurements, in which the yaw torque produced by the flapping wings was used in real-time to determine the rotation
of the robot, suggest that a first-order linear model with stroke-average coefficients accurately captures the yaw dynamics of the
system. Finally, an analysis of the stroke-average dynamics suggests that both damping and inertia will be important factors

during rapid body saccades of a fruit fly.
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INTRODUCTION

Flying insects use a variety of mechanisms (Sane, 2003) in order
to control forces and moments during flight, many of which are
likely to involve subtle changes in wing kinematics. While our
understanding of the basic mechanisms behind aecrodynamic force
production has increased considerably in recent years (Weis-Fogh,
1973; Ellington et al., 1996; Dickinson and Gétz, 1996; Dickinson
etal., 1999; Sane and Dickinson, 2001), there still exists a substantial
gap in our understanding of how changes in wing kinematics
translate into changes in forces and moments. In addition,
understanding the relationship between wing kinematics and the
production of forces and moments is only a first step, as ideally we
would like to know how animals actively regulate wing motion in
order to control their overall trajectory through space. This problem
is complicated by the fact that the forces and moments produced
by flapping wings in turn depend upon the motion of the animal,
i.e. upon its rotational and translational velocities. Thus, in order to
tackle this problem, we require a detailed understanding of how
forces and moments depend upon changes in both wing kinematics
and body motion.

Dynamically scaled robotic models have been a useful tool in
the investigation of flapping flight aerodynamics (Usherwood and
Ellington, 2002a; Usherwood and Ellington, 2002b; Dickinson et
al., 1999; Sane and Dickinson, 2001). They have allowed researchers
to examine many of the aerodynamic mechanisms involved in force
production such as the leading edge vortex, wake-capture and clap-
and-fling (Maxworthy, 1979; Ellington et al., 1996; Birch and
Dickinson, 2003). In addition, robotic models have enabled
researchers to systematically examine the effects of kinematic
variables such as the timing of wing rotation, stroke amplitude or
wing—wing interactions (Sane and Dickinson, 2001; Sane and
Dickinson, 2002; Lehmann et al., 2005). In all these prior examples,

the robot is used as a simple feed-forward device, in which
kinematics are prescribed and the resulting forces and flows are
measured. Another class of robotic systems, called ‘captive trajectory
systems’, is used by aerodynamics researchers to investigate the
free-flight dynamics of vehicles and to determine the trajectory of
objects separated from a vehicle during flight (Woods et al., 2001;
Ahmadi et al., 2005; Guigue et al., 2006; Guigue et al., 2007). A
captive trajectory system consists of a robotic mechanism for moving
the model, sensors for measuring acrodynamic forces and moments
acting on the model, and a feedback mechanism for moving the
model via the robotic mechanism. The motion of the model is
determined in real-time, based on its mass and moments of inertia,
using the measured forces and moments.

The wing and body kinematics of free-flying fruit flies performing
rapid stereotyped turns called body saccades — during which flies
change orientation by 90deg in less than 50ms — have been measured
using high-speed videography (Fry et al., 2003; Fry et al., 2005).
These prior studies suggest that changes in yaw torque were
produced mainly by subtle changes in wing stroke amplitude and
adjustments of the stroke plane. Recently, automated methods of
extracting wing and body kinematics from multi-camera high-speed
video sequences have been developed (Fontaine et al., 2009;
Ristroph et al., 2009), which should enable researchers to process
much larger data sets and provide further insight into exactly how
fruit flies modulate their wing kinematics to control forces and
moments. Such methods have recently been used to study how flies
modulate the pitch of their wings in order to induce sharp turns
(Bergou et al., 2009). However, at present, the complete repertoire
of kinematic changes used to control forces and moments during
body saccades or other maneuvers is not known.

Early studies of yaw turns in Drosophila (Reichardt and Poggio,
1976) suggested that dynamics of the turns were dominated by friction.
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However, a subsequent study of free-flight saccadic turns in
Drosophila (Fry et al., 2003) came to a different conclusion,
suggesting that inertia played a dominant role during rapid flight
maneuvers. This conclusion was based on an analysis using a yaw
damping coefficient estimated by integration of Stoke’s law for the
fly body only. Also, the additional damping caused by the flapping
wings themselves was ignored due to the fact that the aerodynamic
forces were measured using wing motion in body-centered
coordinates. Recently, studies using computational fluid dynamics to
examine the time course of torque production during free-flight
saccades (Ramamurti and Sandberg, 2007) have raised questions in
regard to this conclusion. An estimate of the yaw damping due to the
flapping wings, based on a quasi-steady analysis (Hesselberg and
Lehmann, 2007), suggested that the damping due to the flapping wings
was approximately two orders of magnitude larger than that for the
body, implying that yaw turn dynamics are dominated by damping
rather than inertia. A later, but similar, quasi-steady estimate (Hedrick
et al., 2009) also suggested that the yaw damping due to the flapping
wings is significantly larger than that for the body. In both these quasi-
steady estimates, it was shown that the yaw damping due to the
flapping wings should be proportional to the yaw velocity, rather than
being proportional to the square of the yaw velocity as might be
expected by a simpler model. The rotational damping due to the
flapping wings was recently investigated experimentally (Cheng et
al., 2009) using a dynamically scaled robotic wing. The authors found
a substantial difference in the yaw torque produced by the flapping
wing in the presence and absence of body rotation. In addition, these
authors used a quasi-steady model to estimate the damping coefficients
about the roll, pitch and yaw axes as well as cross coupling between
the axes. The results suggested that the damping torque is most
prominent about the turning axis upon which the angular velocity is
specified and that the damping coefficients for the roll and yaw axes
are roughly twice as large as that for the pitch axis.

In the present study, we examine the dynamics of yaw turns during
hovering conditions using a dynamically scaled robotic model that
utilizes active feedback linking torque production to body motion.
We consider four biologically plausible mechanisms for actively
generating yaw torque that take the form of deformation modes that
introduce kinematic asymmetry into a set of baseline wing
kinematics. The magnitude of the kinematic asymmetry for each
mode is controllable via a single deformation parameter. The yaw
torque, for each mode, is measured as a function of yaw velocity
and the magnitude of the deformation parameter. In addition, the
robotic model is equipped with a torque feedback mechanism that
is essentially a single degree-of-freedom captive trajectory system
for motion about the yaw axis. The torque feedback mechanism
enables the yaw torque produced by the robotic model to be
measured and used in real time to set the yaw velocity of the model
by simulating the inertial dynamics of the fly. Using the torque
feedback system, the yaw turn dynamics of a fruit fly were estimated
by examining input—output behavior of the system in response to
sinusoidal and square-wave inputs.

Our measurements show that the stroke-averaged yaw torque
produced by the flapping wings is about 68 times larger than that
for the body, in agreement with the quasi-steady estimates in
previous studies (Hesselberg and Lehmann, 2007; Hedrick et al.,
2009; Cheng et al., 2009). The stroke-averaged torque is found to
be linear with respect to yaw velocity, and the slope of this
dependence is found to be independent of the choice of mechanism
for active torque generation. In addition, the active stroke-averaged
yaw torque generated by the four deformation modes is found to
depend linearly on both the deformation parameters and the yaw

velocity. The dynamic measurements, using the torque feedback
mechanism, demonstrate that a first-order linear stroke-averaged
model captures the yaw turn dynamics of a fruit fly with reasonable
accuracy. Finally, the dynamic tests suggest that, despite the
relatively higher damping coefficient due to the flapping wings, both
inertia and damping play a significant role in the dynamics of
saccadic turns.

MATERIALS AND METHODS
Robotic fly apparatus

We designed a flapping two-winged robotic apparatus, similar to that
described previously (Dickinson et al., 1999), in which the entire wing
assembly was capable of rotation about the yaw axis (Fig.1). The
mechanism was designed to enable quantitative measurements of the
yaw torque produced by wings that were simultaneously flapping and
rotating about the yaw axis. In addition, the robotic mechanism
provided real-time feedback capability in which the torque produced
by the wings was used to actuate the robot via a torque-feedback
mechanism. When operated in this mode, the torque produced by the
wings, measured using a torque sensor, was used to specify the yaw
rotation rate in real time using a dynamic model. The torque-feedback
mechanism provides several key advantages over allowing the system
to freely rotate about the yaw axis on bearings. First, it enables us to
match the dimensionless yaw moment of inertia of the fly without
resorting to a large external mass. Second, it allows the yaw moment
of inertia to be easily changed in software. Third, it makes it possible
to emulate a truly frictionless bearing for motions about the yaw axis.
Finally, it enables the use of the same mechanism for both prescribed
yaw motions and for torque feedback.

The robotic mechanism consisted of a wing assembly connected
to a yaw rotation stage by a 0.21 m shaft. The shaft was mounted in
a pillow block bearing on the yaw rotation stage and connected to
the wing assembly through a torque sensor mounted on the base plate
of the assembly. The motion of the yaw rotation stage was controlled
by a stepper motor (M-2218-3.0S; Schneider Electric Motion,
Marlborough, CT, USA) that was connected to the shaft via a timing
belt. The wing assembly contained two wing mechanisms, each of
which consisted of an array of three motors mounted on the base
plate of the assembly. The degrees of freedom for each wing were
controlled independently by one motor of the array and are illustrated
in Fig. 1. The stroke position of each wing was controlled by a stepper

Fig. 1. Dynamically scaled, flapping, two-winged robotic model with yaw
axis torque feedback mechanism. Wing kinematics angle: (A) yaw rotation,
(B) stroke position, (C) stroke deviation, (D) wing rotation.
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motor (M-1715-1.5D; Schneider Electric Motion) whereas the rotation
and deviation of each wing were controlled by RC servo motors (HSC-
5996TG; Hitec RCD, Poway, CA, USA).

The wings were immersed in a 1 mX2.4mX1.2m tank filled with
mineral oil (Cheveron Superla white oil; Chevron Texaco Corp.,
San Ramon, CA, USA) of density 880kgm™ and kinematic
viscosity 115 ¢St at room temperature. Custom software written in
Python and C enabled control of the robot from a PC. A torque
sensor (TQ202-25Z; Omega Engineering, Stamford, CT, USA)
mounted on the base plate of the wing assembly measured the yaw
torque produced by the rotating and flapping wings. The torque
sensor had a full scale range of 0.175Nm and an accuracy of 0.2%
full-scale output. The isometrically enlarged wings of the robotic
model were based on the planform of a Drosophila melanogaster
wing. The wings of the robotic model were cut from an acrylic sheet
and had the following dimensions: length (R)=0.23 m, mean chord
(©)=0.065m, width=0.0023 m. The rotation axes of the two wings
were parallel and separated by 0.11m.

Baseline wing kinematics
The baseline wing kinematics used in this study are based on the
treatment given previously (Berman and Wang, 2007) and were
chosen to be an idealized representation of the wing kinematics of
D. melanogaster. The stroke position (¢p), deviation (8,) and
rotation angle (o) for the baseline kinematics are given as follows:

0n(1) = — 2 in" [y cos(2r )] )
sin”' &

Op(1)=0, 2)
tanh[/, sin(2x /)], 3)

(1) = tar(lxlfka

where f'is the flapping frequency, ¢ is the stroke amplitude, oy is
the rotation amplitude, and the parameters &, and k, control the
shape of the kinematics. The parameter &, provides an experimental
variable that can distort the shape of the stroke position waveform
from a sinusoid to a triangle waveform as k, varies from 0 to 1.
Similarly, the parameter k, provides an experimental variable that
can distort the rotation waveform from a sinusoid to a step function
as ky, varies from 0 to . Values of k4=0.01 and k,=1.5 were selected
to produce waveforms that resemble an idealized version of the wing
kinematics of D. melanogaster. Similarly, a value of ¢o=70 deg was
used to give a peak-to-peak stroke amplitude of 140 deg, and a value
of 0y=45 deg was used to give a 45 deg angle of attack at midstroke.

Kinematic deformation modes

The kinematic deformation modes modify the baseline wing
kinematics by introducing asymmetry between the left and right
wings. The deformation modes were selected as plausible
mechanisms for generating yaw torque during flapping flight. Four
deformation modes were considered: differential angle of attack,
differential deviation, differential stroke plane rotation and
differential stroke velocity.

The differential angle of attack deformation mode modifies the
baseline wing kinematics by introducing a difference in the angle
of attack between the right and left wings that reverses on the
upstroke and downstroke. This deformation mode only affects the
rotation angle of the baseline wing kinematics; the stroke position
and deviation angles are unaffected. The modified rotation angles
for the left and right wings are given as follows:

oL Rr(?) = 0p(?) £ pa, 4)
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Fig. 2. Two-dimensional projection illustrating the wing kinematics produced
by the four deformation modes: (A) differential angle of attack, (B)
differential deviation, (C) differential stroke-plane rotation and (D)
differential velocity. The wing chord, represented by a line, with the rotation
axis shown as a dark circle, is shown at equal time steps over a single
flapping cycle. The horizontal axis represents the stroke position angle, the
vertical axis represents the stroke deviation angle, and the angle of the
chord with respect to vertical represents the rotation angle.

where p, is the deformation parameter. When p, is equal to zero,
the wing kinematics are symmetric; a non-zero value for p,
introduces asymmetry into the wing kinematics. Example left and
right wing tip trajectories for kinematics deformed via the differential
angle of attack deformation mode are shown in Fig.2A.

The differential deviation deformation mode modifies the baseline
wing kinematics by adding a sinusoidal variation to deviation angles
of the left and right wings. In addition, the phase of sinusoid added
to the deviation of the left wing is 180deg out of phase with the
sinusoid added to the deviation of the right wing. This deformation
mode only affects the deviation angle; the stroke position and
rotation angles are unaffected. The modified deviation angles for
left and right wings are given as follows:

OLRr(0) = Op(1) F pa cos (27 fi), ®)

where pgq is the deformation parameter. Example left and right wing
tip trajectories for kinematics deformed by the differential deviation
deformation mode are shown in Fig.2B.

The differential rotation deformation mode modifies the wing
kinematics by differentially rotating the baseline kinematics of each
wing about the lateral axis running through the two wing joints.
This rotation effectively changes the stroke planes of the wings by
tilting them in opposite directions. The deformation affects all three
kinematic angles. First-order approximations of the modified angles
for the left and right wings are given as follows:

OLR(?) = Op(t) T pr cos Gu(?) tan By(7), (6)

BLR(0) = Bu(1) £ pr sin P(2), (7
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where p; is the deformation parameter. Example left and right wing
tip trajectories for kinematics deformed by the differential rotation
deformation mode are shown in Fig.2C. The exact expressions for
the modified kinematic angles are fairly complicated (see Appendix
A). The approximations given in Eqns 6, 7 and 8 are accurate to
within a degree for p, within £1t/12 (£15 deg).

The differential velocity deformation mode modifies the wing
kinematics by differentially varying the velocity of the left and right
wing kinematics. This deformation mode only varies the stroke
position angle. The modified stroke position angle is given as
follows:

OLR(D) = b ° fLR(L Py) s )

where
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and py is the deformation parameter. Example left and right wing
tip trajectories for kinematics deformed by the differential velocity
deformation mode are shown in Fig.2D. When p, is equal to zero,
the wing kinematics are symmetric. When p, is greater(less) than
zero, the left wing moves faster(slower) on the downstroke and
slower(faster) on the upstroke whereas the right wing moves
slower(faster) on the downstroke and faster(slower) on the upstroke.

In experiments in which the four kinematics deformation modes
were combined, the differential angle of attack, deviation and
velocity modes were applied first, followed by the differential
rotation mode. Complete expressions for the wing kinematics
deformed using the combinations of the deformation modes are
given in Appendix B.

Measurements of stroke-averaged yaw torque
Measurements of the stroke-averaged yaw torque for each kinematic
deformation mode were made as a function of the yaw velocity and
deformation parameter. During these measurements, the robotic
mechanism was set to rotate at a constant yaw velocity, and the
value of the deformation parameter was held constant throughout
the trial. Each trial consisted of five flapping cycles, and the yaw
torque was averaged over the middle three cycles, as shown in Fig. 3.
The trials were conducted at yaw velocities of —7 to 7degs™" in
steps of ldegs™' for the values of deformation parameters
summarized in Table 1.

Two dimensionless parameters are required in order to achieve
an accurate dynamic scaling of the torques obtained via the robotic
model: the Reynolds number (Re) and the dimensionless yaw
velocity (0*). The Reynolds number is given by:

_ 2ROfC

Re . (In
%

and the dimensionless yaw velocity is given by:

()
ok =—, 12

where R is the wing length, @ is the (peak-to-peak) stroke amplitude,
fis the flapping frequency, ¢ is the mean wing chord, and ® is the
yaw velocity. A flapping frequency of 0.167Hz was selected for
the wing kinematics to give a Re of approximately 100, matching
the value appropriate for D. melanogaster (Lehmann and Dickinson,
1997). The range of yaw velocities of the trials corresponds to yaw
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Fig. 3. Sample data illustrating a single experimental trial of the stroke-
averaged yaw torque measurements. The wing kinematics in this example
have been modified using the differential deviation deformation mode.

(A) Yaw torque. (B,C) Wing kinematics; stroke position angle (red), stroke
deviation angle (green), wing rotation angle (blue). (D) Heading angle. The
analysis region used for calculating the stroke-averaged yaw torque is
illustrated in gray.

velocities of —8400 to 8400degs™! for a fruit fly and spans the
average yaw velocity for a saccade of approximately 2000 degs™'
(Tammero and Dickinson, 2002; Fry et al., 2003).

The measured yaw torque can be written in dimensionless form
as:

T — ,
pcf?
where p is density. Using the fact that the dimensionless yaw torque
for the robotic model and for the fruit fly must be the same, the
yaw torque measured by the robotic model is related to that acting

on a fly according to:

N N2
Tay =[&J(fij ﬂ) L (14)
probo Crobo fmbo
where the subscript ‘fly” and ‘robo’ refer to variables corresponding

to a fruit fly or the robotic apparatus, respectively. The scaling factor,
in Eqn 14, relating the torque measured by the robotic model to those

(13)

Table 1. Values of deformation parameters used for measurements
of the stroke-averaged yaw torque

Pa Pd Pr Pv
Minimum -0.26 -0.26 -0.26 -0.1
Maximum 0.26 0.26 0.26 0.1

See List of symbols and abbreviations for definitions.
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acting on a fruit fly is estimated to be 4.54X 107", Note, the torque
relationship given in Eqn14 does not rely on any assumptions
regarding the magnitude of Re.

Dynamic measurements using torque-feedback
Measurements using the robotic model’s torque-feedback
mechanism were made to measure the dynamic response of a fly
to the torque produced via asymmetry in the wing kinematics. When
in torque-feedback mode, the robotic model uses the instantaneous
measured yaw torque to determine the heading and yaw velocity in
real time by integrating a dynamic model of the fly’s inertial
dynamics. The model of the fly’s inertial dynamics is given by:

=0, (15)
o= Tmeas(t) - bwa (16)

where {s is the heading angle, 7 is the moment of inertia about the
yaw axis, @ is the yaw velocity, Tieas 1S the yaw torque measured
by the sensor, and b is an optional damping term. This equation
was integrated using the classical Runge-Kutta method (Butcher,
2003) to set the yaw velocity and heading angle of the system at
each time step of the real-time loop, which was updated at 3 kHz.
For all of the experiments described in this manuscript, the optional
damping term, b, was set to zero, so that all of the damping came
from the aerodynamic forces acting on the wings and body of the
robotic model.

Two dimensionless parameters are required in order to obtain an
accurate dynamic scaling of the torque and yaw velocity for the
dynamic measurements: Re, as defined in Eqnll, and the
dimensionless moment of inertia about the yaw axis, /*. The
dimensionless moment of inertia is given by:

rL (7
pc?
where p is the density of the fluid.

As with the stroke-averaged torque measurements, all experiments
were performed with a flapping frequency of 0.167 Hz to give a Re
of 100. Similar to Fry et al. (Fry et al., 2003), the moment of inertia
of a fly about the yaw axis was modeled as a cylinder with length
2.44%x107m, radius 4.28X10%m, and a mass of 1.1X107° kg
(Lehmann and Dickinson, 1997). The body posture of a Drosophila
in hovering flight was mimicked by orienting the axis of the cylinder
at an angle of 35 degrees with respect to vertical. The moment of
inertia about a vertical axis running through the center of mass of
the cylinder was calculated to be 2.77X107kgm™, and the
dimensionless moment of inertia is given by 1.97Xx10%.

The yaw torque measured by the robotic model can be related to
the yaw torque acting on a fruit fly using Eqn 14. The relationship
between the yaw velocity of the robotic model and the yaw velocity
of a fruit fly is given by:

oy

(Dﬂy(t): [ f N

Similarly, the relationship between time for the robotic model and
time for the fruit fly is given by:

oy = [ﬂ)rmbo . (19)

] Orobo (frobo /fay) - (18)

frcbo

The scaling factor in Eqns 18 and 19 (fi.u0/fn1y) is equal to 1200.
Two types of measurements were made to determine the dynamic

response of the fly to yaw torque produced by asymmetry in the wing

kinematics. In the first type of measurement, for each deformation

Yaw dynamics 3051

Table 2. Values for the scaling factors determined from the results
of the stroke-averaged torque measurements using a linear
regression

Sa Sdq Sr Sy

1.0 2.38 2.33 0.93

See List of symbols and abbreviations for definitions.

mode, the deformation parameter was varied in a sinusoidal fashion
as a function of time at a fixed amplitude and frequency. The
amplitudes of the sinusoidal variations were scaled so that each
deformation mode produced approximately the same stroke-averaged
yaw torque as a function of time and yaw velocity as follows:

D) = 8y Ueos(t) (20)

where x indicates the deformation mode, s, is the scaling factor for
deformation mode x, and u.os(?) is the sinusoidal variation. The
function u(¢) is given by:

Ueos(f) = ug oS 2T f 1, (21)

where u is the amplitude of the waveform, and f, is the frequency
of the waveform. The appropriate values for the scaling factors were
determined from the results of the stroke-averaged torque
measurements using a linear regression and are summarized in Table?2.

The sinusoidal trials were performed with an amplitude 1(=0.12
at 25 frequencies, ranging from f,=f/2 to f,=f/60 with logarithmic
spacing. Thus, in dimensionless form:

JE=1al 1 (22)

where the frequencies ranged from 1/2 to 1/60. Trials consisted of
five cycles of the sinusoidal waveform. Example data for a single
cycle of a representative trial are shown in Fig.4.

In the second type of measurement, for each deformation mode,
the deformation parameter was a square-wave with a fixed amplitude
and frequency. As with the sinusoidal measurements, the amplitudes
of the square-waves (usq) were scaled so that each deformation mode
produced approximately the same stroke-averaged torque as a
function of time and yaw velocity:

JZOEE® qur(t) > (23)

where s, represents the scaling factors given in Table2, and uq(?)
is the square-wave function. In order to avoid discontinuities in the
wing kinematics, an approximation of a square-wave, which
transitions linearly from high-to-low and low-to-high over a short
time period, was used. A complete expression of the approximate
square-wave function is given in AppendixC. Square-wave
amplitudes of 0.05 and 0.1 were selected to produce turns with
approximately 1 and 2 times the average velocity of a saccade, i.e.
the first amplitude produces a roughly 90 deg turn in 10 wing strokes
whereas the second produces a roughly 180deg turn in 10 wing
strokes. By the same reasoning, the frequency of the square-wave
was set to 120 s or 20 wing strokes. Thus, the robotic model produced
positive torque for 10 wing strokes and negative torque for another
10 wing strokes. Trials consisted of five cycles of the square-wave.
Example data for a single cycle of a representative trial are shown
in Fig.5.

For both types of dynamic measurements, sinusoidal and square-
wave, the time course of the resulting yaw velocities was used to
access the dynamic response of the fly to torque produced by
asymmetries in the wing kinematics. For the sinusoidal variations
in the deformation parameters, the resulting yaw velocities were
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Fig.4. Sample data illustrating a single experimental trial of the input/output
testing using sinusoids. The wing kinematics in this example have been
modified using the differential rotation deformation mode. (A) Yaw rate.

(B) Yaw torque. (C,D) Wing kinematics; stroke position angle (red), stroke
deviation angle (green), wing rotation angle (blue). (E) Scaled kinematic
deformation parameter.

approximately sine waves. For each input frequency, the amplitude
and phase (relative to the input sine wave) of the resulting yaw
velocities were estimated using a least-squares fit. Using the
amplitudes, the gain (in dB) of the system as a function of frequency
was calculated as:

t3
G- 201og10(@J ; (24)
Up

where ®F is the amplitude of the dimensionless yaw velocity m*.

For the square-wave measurements, the resulting yaw velocities
are compared with the predictions of a first-order linear dynamic
model of the system dynamics based on stroke-average coefficients:

I* o* = -Co* + C¥ usqr(t*)9 (25)

where C§ and C;f are the stroke-averaged dimensionless damping
and actuation coefficients, respectively. The dimensionless damping
coefficient is given by:

Ch =Co/ pe°f, (26)
and the dimensionless actuation coefficient is given by:

C¥=C,/pe f2. 27

Measurement of body damping
In order to determine the relative magnitude of the rotational
damping (counter-torque) due to the fly’s body compared to that
produced by the flapping wings, measurements were made of the
rotational damping on a model fly body (Fig.6) and on the robotic
model with the wings removed. The body model was constructed
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Fig.5. Sample data illustrating a single experimental trial of the input/output
testing using square-waves. The wing kinematics in this example have
been modified using the differential angle of attack deformation mode.

(A) Yaw rate. (B) Yaw torque. (C,D) Wing kinematics; stroke position angle
(red), stroke deviation angle (green), wing rotation angle (blue). (E) Scaled
kinematic deformation parameter.

using SolidWorks (Dassault Systémes SolidWorks Corp., Concord,
MA, USA), from images of female Drosophila melanogaster, and
was fabricated in ABS plastic using fused deposition modelling.
The length of the model, measured along the long body axis, was
0.27m.

The counter-torque produced by the body model and the robotic
model (without wings) was much smaller than that due to the
flapping wings, and a higher viscosity oil was required in order to
obtain large enough torques for accurate measurements. The
experiments were performed in mineral oil (Cheveron Superla white
oil; Chevron Texaco Corp.) with a kinematic viscosity of 1.87 St
and a density of 860kgm™. For the experiments using the body
model, the wing assembly was removed from the rotation stage and
replaced with the body model. In each trial, the body or robotic
model (without wings) was set to rotate at a constant yaw velocity
from a heading of 0 to 360deg. The yaw torque was then averaged
from the segment of data from 180deg to 325deg. Trials were
conducted at yaw velocities of 0 to 40.7degs™! in steps of
4.07degs ™.

A single dimensionless parameter, Rey, is required in order to
obtain an accurate dynamic scaling of the torques obtained via the
model fly body and the robotic model (without wings) in the higher
viscosity oil. Rey, is the Reynolds number of the body for rotations
about the yaw axis and is given by:

2
Rey = 22 (28)
v

where Ry, is the length of the body, and v is the kinematic velocity.
The relationship between the yaw velocities for experiments
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Fig.6. Three dimensional rendering of model fly body.

performed at two different length scales and kinematic viscosities

is given by:
2
R
o =| 2t [V—Zj o, 29)
Rb,z N

where the subscripts 1 and 2 refer to experimental setup 1 and 2,
respectively. The scaling factor in Eqn 29 relating the yaw velocities
performed in the high viscosity oil to those in the low viscosity oil,
is 0.073. Thus, yaw velocities for the body damping experiments,
performed in the high viscosity oil, correspond with yaw velocities
of 0-3degs™! in the low viscosity oil with a step size of 0.3 degs .
The scaling factor in Eqn29 relating the yaw velocities performed
in the high viscosity oil to those of a fruit fly is 100. Thus, the yaw
velocities for the body damping experiments, performed in the high
viscosity oil, correspond with yaw velocities of 0-4070 degs™! with
a step-size of 407 degs™! for a fruit fly.

The relationship between torques for experiments performed at
two different length scales and kinematic viscosities is given by:

2
R
P :(&] 2 (V_ZJ T . (30)
P1 Ry A\
The scaling factor in Eqn30 relating the torques measured in the
high viscosity oil to those in the low viscosity oil is 0.0035. Similarly,
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the scaling factor relating torques measured in the high viscosity
oil with those acting on a fruit fly is 8.1x107'?. Note, the torque
relationship given in Eqn30 does not rely on any assumptions
regarding the magnitude of Re.

RESULTS
Stroke-averaged yaw torque

The stroke-averaged yaw torques as a function of the yaw rate are
shown, in dimensionless form, for the four deformation modes in
Fig.7. Note, for each deformation mode, the yaw torque is shown
for five values of the deformation parameter for that mode. The
stroke-averaged yaw torque exhibits a clear linear dependence
upon the yaw rate. For each deformation mode, the offset of the
linear relationship clearly depends upon the value of the
deformation parameter whereas the slope of the relationship
appears the same regardless of deformation mode or of the
specific value of the deformation parameter. The slope of the
relationship gives the stroke-averaged damping coefficient (Cg).
The mean value of the stroke-averaged damping coefficient over
all trials, estimated using a least-squares fit, was —6.4X 102, and
the maximum variation in the slope over all trials was less than
5%. Thus, it is clear that stroke-averaged yaw torque, for a given
deformation mode x, may be approximated as a linear function of
the yaw velocity, o*, plus an unknown function, F,, of the
deformation parameter, p,, as follows:

T (0%, py) = CEO* + Fi(py). 3D

Fig. 8 shows the stroke-averaged yaw torque, for each deformation
mode, as a function of the deformation parameter for that mode.
Note, for each mode, the stroke-averaged yaw torque is shown for
five values of yaw velocity. The stroke-averaged yaw torque
exhibits a clear linear dependence with respect to each of the four
deformation parameters, and the slope of the linear relationship does
not appear to depend upon the yaw velocity for any of the
deformation modes considered. The slope of this relationship gives
the dimensionless stroke-averaged actuation coefficient (C¥) for

Fig. 7. Dimensionless yaw torque as a function of
dimensionless yaw velocity for the four kinematic
deformation modes: (A) differential angle of attack,
(B) differential stroke deviation, (C) differential
stroke-plane rotation, (D) differential velocity.
Linear regressions (red) are shown for comparison.
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Dimensionless yaw velocity

THE JOURNAL OF EXPERIMENTAL BIOLOGY



3054 W. B. Dickson and others

151

1.0
05

of
0.5

1.0

1.5

Fig. 8. Dimensionless yaw torque as a function of the
deformation parameter for the four kinematic deformation
modes: (A) differential angle of attack, (B) differential stroke
deviation, (C) differential stroke-plane rotation, (D) differential
velocity. In each panel, traces for five dimensionless yaw
velocities are shown. In each panel, from the top trace to the
bottom trace, the dimensionless yaw velocities are given by
—0.73, —0.37, 0, 0.37 and 0.73. Linear regressions (red) are
shown for comparison.
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each deformation mode x, such that the dimensionless torque
produced by that mode at yaw velocity equal to zero is given by
C¥py. The mean values of the slopes for each deformation mode
are summarized in Table 3. Note, the maximum variation of the slope
for each mode over all trials was less than 5%. From this, it is clear
that the approximate expressions for the stroke-averaged yaw
torque given in Eqn31 may be simplified to:

T (0%, py) = CE o™ + CEpx. (32

The expressions in Eqn32 give us an approximation for the stroke-
averaged torque produced by each deformation mode as a function
of deformation parameter and yaw velocity. What is not clear,
however, is whether or not these expressions can be combined to
give an approximation for the torque produced by kinematics that
are deformed by two or more of the deformation modes
simultaneously. Using Eqn32, the expression for torque produced
by the combination of two deformation modes, x and y, is given
by:

(0%, py) = CE0* + Cipe + Cipy. (33)

Fig.9 shows the torque as a function of yaw velocity for all pairs
of deformation modes for selected values of the deformation
parameters, as well as the torque predicted by Eqn33 for each of
the combined pairs. The predicted torques are seen to agree
extremely well with the actual torques produced by kinematics
combining the different deformation modes. Thus, the stroke-

Table 3. Mean values of the slopes of the relationship between
dimensionless yaw torque and each deformation mode parameter

Pa Pd Pr Pv
3.1x10° 1.3x103 1.3x103 3.4x10°

Slope

See List of symbols and abbreviations for definitions.

1
0.05 0.1

averaged torque may be approximated as a linear function of the
yaw velocity and deformation parameters as:

T ((D*,Pa,pd,Pr,Pv) = CU";(D* + Cé: 2 T C(Tpd + C:'k r t C\? v (34)

The torque produced by kinematics that were deformed by three or
four deformation modes simultaneously is not shown, but was also
well predicted by Eqn34.

Body damping
The expression for the stroke-averaged yaw torque given in Eqn34
includes the yaw torque produced by the body of the robotic
mechanism, which may be different from that produced by a fly
body. In addition, it is of interest to be able to separate and compare
the torques produced by the flapping wings from those produced
by the body of a fly. For these reasons, measurements were made
of the yaw torque produced by the body of the robotic mechanism
and of a scale model fly body. Fig. 10 shows the dimensionless
yaw torque produced by both the body of the robotic mechanism
(without wings) and the model fly body as a function of yaw
velocity. The yaw torque produced by both the model fly body
and the body of the robotic mechanism shows a clear linear
dependence upon yaw velocity. The slope of this relationship gives
the damping coefficient for the body. The dimensionless damping
coefficients, estimated via least-squares fit, for the model fly body
and the body of the robotic mechanism are —9.3 and —4.6,
respectively. Thus, we see that the yaw torque produced by the
model fly body is approximately twice that produced by the body
of the robotic model. However, the yaw torque produced by both
the model fly body and the body of the robotic mechanism is nearly
two orders of magnitude smaller than that produced by the
flapping wings. The inclusion or exclusion of the yaw torque
produced by either body model represents a change of less than
two percent in the value of the stroke-averaged damping
coefficient, Cg§. Thus, it is clear that the torque produced by the
body damping is quite small compared to that produced by the
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Fig. 9. Dimensionless yaw torque as a function of
dimensionless yaw velocity for the six pair-wise combinations
of the four kinematic deformation modes: (A) differential angle
of attack combined with differential stroke-plane rotation, (B)
differential angle of attack combined with differential deviation,
(C) differential angle of attack combined with differential
velocity, (D) differential stroke-plane rotation combined with
differential deviation, (E) differential stroke-plane rotation
combined with differential velocity and (F) differential deviation
combined with differential velocity. Dimensionless yaw torque
predicted using coefficients derived from each mode in
isolation (red).

1
-1.0 -05 0 0.5 10 -1.0 -05 0
Dimensionless yaw velocity

flapping wings and that the effect of the body can be safely ignored
in Eqn34.

Sine-wave response
The results of the previous section demonstrate that the steady-state,
stroke-averaged yaw torque is well approximated by a function that
is linear with respect to both yaw velocity and the deformation
parameters. This suggests that the turning dynamics of a fruit fly
about the yaw axis could be modeled in the stroke-averaged sense
as:

I* % = CE* + Cp, + Clpa + Cip, + Cépy. (35

We tested this hypothesis by performing a sinusoidal input/output
analysis using the torque-feedback mechanism of the robotic model.
During these tests, for each deformation mode, the input
(deformation parameter) was a cosine and the output was the
resulting yaw velocity of the system. Note, as described in the
Materials and methods, the deformation parameters were scaled,
using Eqn20, so that each mode would produce the same stroke-
averaged torque, according to Eqn34, as a function of time. Trials
were performed over a range of input frequencies in order to measure
the dynamic response of the system.

Fig. 11 shows the resulting yaw velocity for all four deformation
modes for a single cycle of the deformation parameter. The
resulting yaw velocities show a clear sinusoidal response at the
same frequency as the sinusoidal variation of the deformation
parameters, which is characteristic of a linear system. The
amplitude and phase of this sinusoidal component of the resulting
yaw velocities depends upon the frequency of the deformation
parameter sinusoid. As would be expected for a damped linear
system, the amplitude decreases with increasing input frequency.
Similarly, the phase shift is small for low-frequency inputs and
increases to around 90deg as the frequency of the input is
increased. The changes in amplitude as a function of frequency
are summarized in Fig. 12, which shows the gain of the system
in dB, calculated using Eqn24, as a function of frequency for

each deformation mode. Also shown are the predicted gains for
the linear system given by Eqn35, with coefficients determined
from the stroke-averaged measurement.

For all four deformation modes, the measured gains agree quite
closely with the gains predicted by the stroke-averaged linear model
when the input frequency is below approximately one-fifth of the
flapping frequency. At higher input frequencies, the differential
deviation and differential stroke-plane rotation modes show slightly
higher and lower gains, respectively, than predicted by the linear
model. The changes in phase as a function of frequency are
summarized in Fig. 13, which shows the relative phase of the output
(yaw velocity) to the input (deformation parameter) signals. Also
shown are the predicted phases of the linear system, given by Eqn 35,
with coefficients determined from the stroke-averaged measurements.
Again, the agreement of the measurements with the linear model is

-35r
S 30t
=3
~§ 25}
S ool >
(2}
3
c -1.5F ®
S
2 1.0t
£
8 05
O L

0 0.05 0.10 0.15 020 025 0.30 0.3
Dimensionless yaw velocity

Fig. 10. Dimensionless yaw torque produced by dynamically scaled model
fly body (@) and body of the robotic mechanism (A) as a function of
dimensionless yaw velocity. Linear regressions (red) are shown for
comparison.
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0.8

Dimensionless yaw velocity

Fig. 11. Dimensionless yaw velocity as a function of the
phase angle of the deformation parameter for the four
kinematic deformation modes: (A) differential angle of attack,
(B) differential deviation, (C) differential stroke-plane rotation,
(D) differential velocity. The dimensionless input frequency of
the deformation parameter ranges from 1/60 (blue) to 1/2
(red).

400 600 800 O 200

Control signal phase (deg)

quite good. However, there are some differences in the behavior of
the systems as compared with the linear model at higher frequencies.
When using the differential angle of attack and differential rotation
deformation modes, the system shows slightly less phase shift than
predicted by the stroke-averaged linear model at higher frequencies.
By contrast, when using the differential rotation and differential
velocity deformation modes, the system shows slightly greater phase
shift than predicted by the stroke-averaged linear model at higher
frequencies. Overall, the results suggest that the stroke-averaged linear
model provides a very reasonable approximation for the yaw turning
dynamics of a fruit fly.

As evident in Fig. 11, the yaw velocity, for all four modes, shows
evidence of a signal component at around twice the wing beat

600

800

frequency, which is due to the unsteady modulation of the torque
produced by the flapping wings. This effect is more noticeable at
higher frequencies and particularly noticeable for the differential
velocity deformation mode. This is due to the fact that, for this mode,
the wings have unequal velocities during portions of the stroke,
resulting in unsteady torques whose peak magnitude is larger than
that of the other modes. Note, however, that the stroke-averaged
values of the torques for this mode are approximately equal to those
of the other three modes. It is interesting to investigate the origin
of these higher frequency components of the resulting yaw velocities.
The stroke-averaged model assumes that, at a given yaw velocity,
the flapping wings will produce a constant yaw torque for a given
value of the deformation parameter. This is not strictly true, as the

Fig. 12. Amplitude gain as a function of dimensionless input
frequency for the four kinematic deformation modes: (A) differential

angle of attack, (B) differential deviation, (C) differential stroke-
plane rotation, (D) differential velocity. Predictions of the amplitude
gain made using a linear model with stroke-averaged coefficients
are shown for comparison (red).
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Fig. 13. Phase lag of the yaw velocity relative to the input

O

sinusoid deformation parameter as a function of frequency for
the four kinematic deformation modes: (A) differential angle of
attack, (B) differential deviation, (C) differential stroke-plane
rotation, (D) differential velocity. Predictions of the phase lag
made using a linear model with stroke-averaged coefficients
are shown for comparison (red).

Phase (deg)

1.0
Dimensionless frequency

flapping wings do not produce a steady yaw torque but rather a
torque that increases and decreases throughout the stroke cycle, i.e.
the torque is modulated by a function that is periodic with respect
to the flapping frequency. This may be written as:

IFo*=CFo*+Cru(t*)g(r*) , (36)
where g(#*) is a function that is periodic with respect to the

dimensionless flapping frequency f*. The periodic function g(#*)
may be written as a Fourier series:

B  ~ .
g(t*):70+2a,,c0327cnf*t*+b,7s1n21tnf*t*, 37
n=1
where a, and b, are unknown coefficients. If C is a stroke-averaged
actuation coefficient then we must have ay=2 to recover the stroke-
averaged yaw torques. When the input function is a sinusoid,
u(t*)=ucos(t*), then:

u(t*)g(t*) = upcos2mnf,* t*
+Za,, COS2m fX t* cos2mnf * t*

n=1

+b,cos2m £ t*sin2mnf*t* . (38)

The products of sinusoids in Eqn38 may be written as the sum of
sinusoids as follows:

a, Cos2m f¥ t* cos2mnf *t* =
%[cosZn(nf*—ﬁ,*)t*+ cos2m (nf* + £5)t*], (39)
and
b, cos2m f¥* t*sin2mnf* t* =
%[sin2n(nf*— T +Sin 2 (nf* + £F)e*] . (40)

Thus, we see that the frequencies of the sinusoids in our
modulated input signal are f* and nf*+f*, where n=1,2,...,. If the
underlying yaw turning dynamics are linear, we would expect these
frequency components to be present in our output signal, the yaw

velocities. Fig. 14 shows the power spectral density (PSD) of the
yaw velocities for a representative trial with the differential velocity
deformation mode. Clear peaks are seen in the PSD at the
frequencies f*, f*£f* and 2f*+f;*. The higher frequencies, nf *+f*,
are not shown, but the PSD also shows clear peaks at these values.
The PSDs for the other deformation modes show similar peaks at
these frequencies. Thus, it is clear that the additional frequencies
seen in the yaw velocities are due to the modulation of the yaw
torque by the flapping wings. Also, as the actuation frequency (f;*)
is increased, the frequency f*—f* is decreased and becomes more
prominent in the output, a result that is expected for first-order
damped linear system as the gain of the system increases with
decreasing frequency. Therefore, we expect the effect of the torque
modulation on the output to be more pronounced for higher input
frequencies, f;.

£ f* 2f*
' Feofr ©Frefr 2f*—fF i 2f*+fF

PSD of yaw velocity (dB)

1 1 1 1
0 0.5 1.0 1.5 2.0 2.5
Dimensionless frequency

Fig. 14. Sample power spectral density (PSD) for a single sinusoidal
input/output trial with the differential velocity mode. Clear peaks (dotted
lines) are apparent at the frequency of the input sinusoid f; and at f*+f;
and 2f*£fj.
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Fig. 15. Time course of the dimensionless yaw velocity for a
single cycle of the square-wave deformation parameter input
for the four kinematic deformation modes: (A) differential
angle of attack, (B) differential deviation, (C) differential
stroke-plane rotation, (D) differential velocity. Predictions of
the time course of yaw velocity made using a linear model
with stroke-averaged coefficients are shown for comparison
(red).
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Square-wave response

As a second test of the yaw turning dynamics we performed an
input/output analysis using square waves. During these tests, the
deformation parameter or input for each deformation mode was an
approximate square-wave and the output was again the yaw velocity
of'the system. The trials were performed with square-wave amplitudes
that produced turns of approximately 1 and 2 times the average
velocity of a saccade. Note that both the amplitude and frequency of
the square-wave affect the average turn velocity. As with the
sinusoidal input/output analysis, the deformation parameters were
scaled, according to Eqn20, so that each mode produced the same
stroke-averaged torque. Fig. 15 shows the yaw velocities for all four
deformation modes for a single cycle of the square-wave input in the
trials that produced turns at approximately twice the average velocity
of a saccade.

We also show the predictions of the square-wave response made
using the stroke-averaged model given by Eqn35. The time course
of yaw velocities is characteristic of a first-order damped linear system,
and the linear stroke-averaged model with coefficients derived from
the stroke-averaged measurements predicts the time course of the yaw
velocities quite closely. Higher frequency oscillations, at frequencies
near the flapping frequency, are apparent on the yaw velocities for
all four deformation modes, reflecting the underlying modulation of
the yaw torque by the flapping wings. Again, these oscillations are
more prominent for the differential velocity deformation, reflecting
the greater amplitude of torque modulation for this mode.

DISCUSSION
There are several possible strategies for studying how insects might
modulate their wing kinematics in order to actively control forces
and moments and ultimately their flight dynamics. One approach
(Willmott and Ellington, 1997; Fry et al., 2003; Card and Dickinson,
2008; Liu and Sun, 2008) is to carefully record and measure the
wing and body kinematics of free-flying animals. The forces and
moments produced can then be analysed using simulations or
dynamically scaled models. This approach yields valuable direct
insight into what the animals actually do in flight to modulate the
forces and moments produced. A second approach (Sane and

15 20

Dickinson, 2001; Usherwood and Ellington, 2002a; Usherwood and
Ellington, 2002b; Dickson and Dickinson, 2004), and the one taken
in this paper, is to consider more broadly the possible changes in
wing kinematics that might be used to produce a particular
combination of forces or moments. This latter approach makes it
possible to study the relationship between kinematics, forces and
moments in a systematic manner. In the present study, we have
explored four possible mechanisms for active yaw torque generation.
These mechanisms, called deformation modes, function by
introducing kinematic asymmetry between the left and right wings.
One relatively surprising finding of this study is that, with respect
to stroke-averaged yaw torque production, all of the mechanisms
examined could be modeled as simple linear functions of the
deformation parameters. We found that it is possible to combine
the deformations, i.e. apply more than one deformation to the
baseline wing kinematics, and very accurately predict the yaw torque
of the combined deformation given the measurements of the yaw
torque for each deformation mode in isolation. In addition, the
stroke-averaged dynamics of the system, up to a scaling of the
actuation coefficient, did not depend upon our choice of mechanism
for yaw torque generation. Scaling the actuation coefficient will scale
the gain but will not affect the phase lag of the system. These two
results imply that, at least with respect to yaw torque production,
all of the actuation modes are essentially equivalent and, when scaled
appropriately, result in equivalent stroke-averaged yaw dynamics.
These findings offer insight into the control strategies used by
hovering birds and insects as well as potential design principles for
the control of flapping micro air vehicles.

Stroke-averaged models
The results of this study suggest that, at least when restricted to
motion about the yaw axis, a stroke-averaged model is sufficient to
accurately capture the yaw turn dynamics of a fruit fly. In addition,
the stroke-averaged model provides a framework for determining
how much the instantaneous yaw velocity might be expected to
deviate from the stroke-averaged prediction due to the fact that
actively generated yaw torque is not constant but rather modulated
by the flapping frequency. Differences between the prediction of
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the linear stroke-averaged model and the system response start to
increase for control inputs with frequency greater than approximately
one-tenth of the flapping frequency. These differences may be
important during extreme maneuvers, such as escape take-off, where
the wing kinematics change on a stroke-by-stroke basis (Fontaine
et al., 2009). It is not known whether such an approach can be
extended to less restrictive motion that includes roll, pitch or
translation. However, if a stroke-averaged model can be applied
with sufficient accuracy to a reasonable portion of the flight
envelope then this will greatly simplify the mathematical description
of the motion and make questions concerning flight dynamics and
control more tractable. Recent results (Bergou et al., 2009) suggest
that linear stroke-averaged models can successfully capture the
trends seen during turning maneuvers of free-flying insects. For
flapping flight in general, the conditions under which it is reasonable
to assume that a stroke-averaged model will provide an acceptable
model of the flight dynamics are still unclear. Further study will be
required to determine when this is the case; however, the results of
the present study suggest that, at least under some conditions, the
stroke-averaged approach may prove successful.

Inertia and damping

Recent studies (Hesselberg and Lehmann, 2007; Hedrick et al., 2009;
Cheng et al., 2009) have suggested that the counter torque produced
by the flapping wings of a fruit fly in response to rotation about the
yaw axis is approximately two orders of magnitude greater than the
torque produced by the body of the fly. The stroke-averaged
measurements of the yaw torque produced by wings and body in
the present study provide further evidence that this is indeed the
case; the damping coefficient due to flapping was found to be about
68 times greater than that for the body of the fly. It has been further
suggested (Hesselberg and Lehmann, 2007) that damping (or
friction) is the dominant factor in the dynamics of rapid yaw turns
in fruit flies. As we have shown that the turning dynamics, when
restricted to motions about the yaw axis, are well modeled by a
first-order linear system, we can re-examine the roles of damping
and inertia with respect to the yaw dynamics of fruit flies.

In order to examine the relative importance of damping and inertia
for a first-order linear system it is necessary to specify the input
frequencies of interest. That this is the case can be seen by looking
at the expressions for the gain and phase lag of the system as a function
of the frequency of the input sinusoid. The gain of the system — the
output amplitude over the input amplitude — is given by:

y* Cr

= ) (41)
o QR AF I+ G
and the phase lag of the system is given by:
— k Ik
0= tan~! M . (42)
(&

A system will be dominated by damping when the term 27wf;*/* is
negligibly small relative to C&. When this is the case, the gain of the
system is approximately constant and given by C#/C§. In addition,
the phase lag of the system is approximately zero. A system will be
dominated by inertia when the damping coefficient Cg is negligibly
small relative to 27t/ I*. In this case, the gain of the system is given
by Ci#/2mf*I and has a strong dependence upon the frequency of the
input sinusoid. The phase lag of the system, in this case, will be 90 deg.
In both cases, it is the magnitude of the product of the input frequency
and the moment of inertia relative to the magnitude of the damping
coefficient that matters. Thus, we see that any damped first-order linear
system can be considered to be dominated by damping or inertia for
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a suitable choice of input frequency. In order to assess the importance
of damping and inertia in the yaw turning dynamics of a fruit fly, it
is necessary to select a representative frequency or range of frequencies
at which to examine the system’s dynamics.

The free-flight trajectories of fruit flies are characterized by
straight flight segments interspersed with rapid changes in heading
called body saccades (Tammero and Dickinson, 2002). During a
saccade, a fruit fly rotates by approximately 90 deg in approximately
10 wing strokes (Fry et al., 2003). As an idealized representation
of a saccade, we consider a sinusoid with an amplitude of 45 deg
and a period of approximately 20 wing strokes. Such a sinusoid
represents a continuous sequence of saccades, in which the fly turns
90deg in one direction for 10 wing strokes and then 90 deg in the
other direction for 10 wing strokes and so on. An estimate of the
phase lag for a representative fruit fly in response to an input sinusoid
with dimensionless frequency of 1/20 can be made using values of
1.97% 103 for the dimensionless moment of inertia, /*, and —6.4 X 10?
for the dimensionless damping coefficient, C§. The phase lag,
calculated using Eqn42, is found to approximately 44 deg. Thus,
the phase lag of the system is almost exactly midway between a
system dominated by damping and one dominated by inertia. In
addition, the gain of the system is reduced by 3 dB from that for a
system that is dominated by damping. Note, a 3 dB reduction in the
gain implies that the ratio of output amplitude to input amplitude
is reduced to 71% of the value it would be for a system that is
dominated by damping. From this, we can conclude that neither
damping nor inertia dominate the dynamic response of the system
to a sinusoid representative of a saccade but rather that both inertia
and damping play an important role in the response.

Fruit flies exhibit considerable variation in body mass, wing size,
wing shape and other morphological parameters. In addition, the
mass of an individual fruit fly might vary to a large extent depending
on age, hunger status, gravidity and other factors. For this reason,
it is interesting to consider how sensitive our assessment of the
relative importance of inertia and damping is to changes in the
moment of inertia and damping coefficient, which we can do by
examining how the phase lag varies in response to changes in these
parameters. The phase lag depends upon the ratio of the
dimensionless moment of inertia and the dimensionless damping
coefficient. This ratio is equivalent to the dimensionless time
constant of the linear system. Lowering the time constant will
decrease the phase lag for a given input frequency, and increasing
the time constant will increase the phase lag. When the dimensionless
moment of inertia and damping coefficient are as given in the
previous paragraph, then the time constant is equal to 3. This can
be interpreted to mean that in response to a step change in the control
input u, the fly will require 3.0 wing strokes in order to reach 63%
of its new terminal velocity. Varying the time constant by a factor
of two in either direction gives phase lags equal to 26 deg and 63 deg,
respectively, in response to a sinusoid of dimensionless frequency
equal to 1/20. Both of these values for phase lag clearly fall in the
intermediate regime where neither damping nor inertia dominate.
We might ask at what value of time constant will the phase lag for
this frequency be within 5% of the value expected of a damping or
inertia dominated system, i.e. within 5% of Odeg or 90deg,
respectively. For the phase lag to be within 5% of 0deg, the time
constant must be less than 0.25, which is approximately 8% of the
value of our estimate for the time constant for a representative fruit
fly. For the phase lag to be within 5% of 90deg, the time constant
must be greater than 40, which is about 1350% greater than our
representative time constant. Again, it seems clear that both damping
and inertia will be important factors with regard to yaw turn
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dynamics over a fairly wide variation in both the moment of inertia
and damping coefficient.

Roll and pitch

In the present study, we measured the yaw torque produced by each
deformation mode as a function of deformation parameter and yaw
velocity. We did not measure the roll or pitch moments produced by
the different modes and how they changed with yaw velocity. While
these measurements were beyond the scope of this study, it would
be very interesting to compare the roll and pitch moments for the
different deformation modes. In particular, one might try and identify
deformation modes that produce essentially equivalent yaw torque
but different roll and/or pitch moments. Given that, with regard to
yaw torque, the deformation modes could be linearly combined, modes
that produce different roll/pitch moments might be combined to give
independent control of yaw and roll/pitch. We are currently conducting
experiments to examine this important issue of coupling.

APPENDIX A. EXACT EXPRESSION FOR THE DIFFERENTIAL
ROTATION DEFORMATION MODE

The exact expressions for wing kinematics modified using the

differential rotation deformation mode, which differentially rotates

the baseline kinematics of the two wings about the lateral axis

running through the wing joints by angle p,, are given as:

OLr =tan™ (41/4,), (A1)
OLr =sin! (43), (A2)
LR = —sin‘l[ﬁ] , (A3)
where
A =7F sin p; sin 0}, + cos p; cos Oy sin Oy, (A4)
Ay = cos Oy, cos Oy, (AS)
A3 =— cos p; sin By, F cos 0y, sin p; sin ¢y, (A6)

A4 =TF cos 0y cos Oy sin p; — cos p; cos Oy sin O
+ sin oy, sin p; sin O sin 6. (A7)

APPENDIX B. WING ANGLES FOR COMBINED
DEFORMATION MODES

In experiments in which the four kinematics deformation modes
were combined, the differential angle of attack, deviation and
velocity modes were applied first followed by the differential
rotation mode. Note, that the differential angle of attack, deviation
and velocity modes only affect a single wing angle each, and these
angles are all distinct. Thus, these three modes are independent and
their application order is irrelevant. The stroke position, deviation
and rotation angles for the combined kinematics are given as:

OLR() = b ° fLR(E pv) F pr €08 [ © fLr(2, py)] tan Bp(2),  (BI)
BLR(D) = 06(1) F pr cos (2mft) £ pr sin [ ° fLr(L V)], (B2)

cos0,(7) (B3)

OﬂL‘R(l)=0€b(1)iPr{

APPENDIX C. APPROXIMATE SQUARE-WAVE
In order to avoid discontinuities in the wing kinematics, an
approximate square-wave function, uq,, was used in the dynamic

measurements. The approximate square-wave avoids discontinuities
by transitioning linearly from low-to-high and from high-to-low.
The approximate square-wave function is given by:

[ 2w fit 1 if rmodl/ £, €[0,8/2f),
" if rmodl/ f,e[8/2f,,
1/2£-8/2f1,
it tmodl/ f,e(1/2f, -
812/, 1/2£,+8/2f),
- if tmodl/ £, e[l/2f,
+8/2£, 1/ £,-8/2£1],
Qu0fit 18 —2uy /& if tmodl/ £, e(1/ f,
—8/2£, 11 1),

uy /& —2uy fiit /0

usqr(t) =

(CH

where 1 is the amplitude, f; is the frequency and & is the fraction
of the period (1/f,) spent in a given low-to-high or high-to-low
transition.

LIST OF SYMBOLS AND ABBREVIATIONS

b optional damping term

c mean chord

C¥ dimensionless stroke-averaged actuation coefficient for the differential
angle of attack deformation mode

C¥ dimensionless stroke-averaged actuation coefficient for the differential
deviation deformation mode

C¥ dimensionless stroke-averaged actuation coefficient for the differential
rotation deformation mode

C¥ dimensionless stroke-averaged actuation coefficient for the differential
velocity deformation mode

C¥ dimensionless stroke-averaged actuation coefficient for deformation
mode x

C§ stroke-averaged dimensionless damping coefficient

f flapping frequency

f* dimensionless flapping frequency

Ju waveform frequency

o dimensionless waveform frequency
F, unknown function of the deformation mode parameter p,
g periodic function
G gain
1 moment of inertia about the yaw axis
I* dimensionless moment of inertia about the yaw axis
ko, rotation angle shape parameter
ky stroke position shape parameter
Pa deformation parameter for the differential angle of attack deformation
mode
Pd deformation parameter for the differential deviation deformation mode
Dr deformation parameter for the differential rotation deformation mode
Dy deformation parameter for the differential velocity deformation mode

PS power spectral density

R wing length

Ry body length

Re Reynolds number

Re,  Reynolds number of the body for rotations about the yaw axis

Sy scaling factor for deformation mode x
t time

T wing beat period 1/f

uo waveform amplitude

Usqr  square-wave amplitude

v kinematic velocity

o rotation angle

0 rotation amplitude

Oy rotation angle of baseline kinematics
orr modified rotation angle for the left and right wings
Oy stroke deviation of baseline kinematics

O6Lr  modified stroke deviation for the left and right wings
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p fluid density

T yaw torque

T* dimensionless yaw torque

Tmeas yaw torque measured by the sensor
®o stroke amplitude

Op stroke position of baseline kinematics

OLr  modified stroke position angle for the left and right wings
[} (peak-to-peak) stroke amplitude

1 heading angle

(0] yaw velocity

o* dimensionless yaw velocity

of amplitude of dimensionless yaw velocity
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