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INTRODUCTION
The movements of animals and humans are, in many cases, fast,
complex and continuous. Often such behaviour is segregated into
ordered components (Flash and Hochner, 2005; Jenkins and Mataric,
2003; Mussa-Ivaldi and Bizzi, 2000). For example, in the face-
grooming behaviour of mice, distinct movements were identified
and their ordering analysed (Fentress and Stilwell, 1973). In
computer science movement templates are used to recognise human
sign language (Liang and Ouhyoung, 1998) and to analyse the
movements of players in complex simulation games (Thurau and
Hlavac, 2007). Also in robotics or in developing computer games,
simple movements are sequenced to facilitate the generation of
naturalistic locomotion patterns. The common ground for these
examples, which are taken from behavioural analysis, computer-
based recognition and machine motion planning, is the segregation
of complex and continuous behaviour into simple consecutive
building blocks of movement.

In many species a segregation of flight sequences into reoccurring
rotational and translational flight segments has been described
(Bender and Dickinson, 2006; Boeddeker and Hemmi, 2010;
Boeddeker et al., 2010; Collett and Land, 1975a; Eckmeier et al.,
2008; van Hateren and Schilstra, 1999; Mronz and Lehmann, 2008;
Schilstra and van Hateren, 1999; Wagner, 1986). This finding
motivated us to investigate whether the flight manoeuvres of free-
flying hoverflies (Eristalis tenax, Linnaeus) can be segregated into
more detailed consecutive movement components.

We chose hoverflies for our analysis because of their rich
repertoire of extremely fast and virtuosic flight manoeuvres, even
under spatially constrained conditions. They can move in nearly
every direction and their translational velocities range from 10ms–1

to an almost total lack of movement in mid-air (hovering) (Collett
and Land 1975a). Moreover, its rather small brain with less than a

million neurons makes Eristalis an interesting model organism for
subsequent neurophysiological experiments in motion vision
(Barnett et al., 2007; Nordström et al., 2008; O’Carroll et al., 1996;
O’Carroll et al., 1997).

We used clustering algorithms to identify movement
components within flight trajectories of Eristalis, which we call
prototypical movements (PMs) in this article. Clustering allows
us to segregate behaviour without having to predefine behavioural
components. Instead, this approach relies on the assumption (1)
that the behavioural data can be represented quantitatively in a
suitable way, and (2) that an appropriate distance measure can be
found that attributes small distances to similar behaviours. Merely
identifying PMs is not sufficient for understanding behavioural
control. In the context of visually guided flight behaviour of
Eristalis, one might also wish to know the rules for the arrangement
of PMs into complex flight trajectories. By calculating transition
probabilities between PMs, such rules may be derived, and can
be regarded as the grammar of a formal language (Chomsky and
Schützenberger, 1963) in which the PMs are treated like an
alphabet. In combination, this grammar and alphabet give us a
syntax of movement.

How variable is this syntax in the real world? In monkeys,
prototypical limb movements elicited by prolonged
microstimulation of the motor cortex are not constant, but vary
depending on the starting positions of the joints (Graziano et al.,
2002; Graziano et al., 2005; Stepniewska et al., 2005). This finding
motivated our investigation of whether PMs of Eristalis also vary
with the situational context. We analysed whether this is the case
for PMs that represent fast rotational movements called saccades.
Saccades are sometimes described or modelled as a fixed motion
pattern, as for example in the fruit fly Drosophila (Mronz and
Lehmann, 2008; Tammero and Dickinson, 2002) or as a flexible
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SUMMARY
Hoverflies such as Eristalis tenax Linnaeus are known for their distinctive flight style. They can hover on the same spot for several
seconds and then burst into movement in apparently any possible direction. In order to determine a quantitative and structured
description of complex flight manoeuvres, we searched for a set of repeatedly occurring prototypical movements (PMs) and a set
of rules for their ordering. PMs were identified by applying clustering algorithms to the translational and rotational velocities of
the body of Eristalis during free-flight sequences. This approach led to nine stable and reliable PMs, and thus provided a
tremendous reduction in the complexity of behavioural description. This set of PMs together with the probabilities of transition
between them constitute a syntactical description of flight behaviour. The PMs themselves can be roughly segregated into fast
rotational turns (saccades) and a variety of distinct translational movements (intersaccadic intervals). We interpret this
segregation as reflecting an active sensing strategy which facilitates the extraction of spatial information from retinal image
displacements. Detailed analysis of saccades shows that they are performed around all rotational axes individually and in all
possible combinations. We found the probability of occurrence of a given saccade type to depend on parameters such as the
angle between the long body axis and the direction of flight.
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motion pattern with varying top speed and amplitude, as in other
flies (Collett and Land, 1975a; Schilstra and van Hateren, 1999;
Lindemann et al., 2008). Therefore, we analysed saccades to
discover whether the PMs of Eristalis are influenced by situational
parameters and if they show the same flexibility as the
aforementioned movements of monkeys.

MATERIALS AND METHODS
All calculations presented in this article were done with MatLab
R2008b (The Mathworks Inc., Natick, MA, USA).

Data acquisition
We observed freely flying hoverflies Eristalis tenax Linnaeus
collected close to Bielefeld University. The animals were filmed
with two black-and-white high-speed cameras (Motion Pro,
Redlake, Eningen, Germany) at 500framess–1. The cameras were
orthogonally orientated, so that one camera filmed the arena from
above and one from the side. The camera positions were calibrated
with Jean-Yves Bouguet’s MatLab camera calibration toolbox
(www.vision.caltech.edu/bouguetj/calib_doc/) (Bouguet, 1998) to
derive the 3D position of the animal from the two 2D positions
within the images. We used two differently sized flight arenas, a
small cubic arena (142�242�172mm3) and a large cylindrical
arena (400mm diameter, 700mm height). Both arenas were
wallpapered with red and white random cloud patterns with a 1/f
naturalistic spatial frequency distribution (van der Schaaf and van
Hateren, 1996). The colour red was chosen because it provides a
good contrast against white for the fly, and good contrast between
fly and background for the camera, which simplifies image
processing. In the small arena we used a Perspex ceiling and front
wall to obtain footage from the complete arena. In the large arena
we cut a hole (20cm diameter) in the wallpaper at the side and
used a Perspex ceiling, allowing us to film the flies. We recorded
86,983 frames (ca. 3min) in the small arena from nine flies. The
47 recorded flight sequences had a mean length and standard
deviation of 3.63±0.59s. The 33 flight sequences recorded in the
large arena sum to 50,622 frames (ca. 1min 40s) and have a mean
length of 3.01±1.01s. In the large arena we used eight flies.
Different flies were used for the two arenas.

Determination of position and orientation in space
The fly’s body position as well as its yaw and pitch orientation
in space were calculated by tracking characteristic points of the
fly in each pair of corresponding 2D images and determining the
3D position using the camera calibration information. The chosen
tracking points were the front of the head and the tip of the
abdomen (see Fig.1A). Tracking was done using the custom-made
software package FlyTrace (E.B. and J. P. Lindemann, www.uni-
bielefeld.de/biologie/Neurobiology/). We filtered the 2D
trajectories for each camera with a Butterworth filter (2nd degree;
relative cut-off frequency 0.1), to reduce jitter introduced by auto-
detection. We tested different filter settings by overlaying filtered
trajectories with the original footage until we found a filter setting
that both eliminated jitter from the detection process and matched
the fly’s position. From the eventually derived pair of
corresponding 2D trajectories, the 3D trajectory was calculated
using the stereo-triangulation method in Jean-Yves Bouguet’s
camera calibration toolbox (Bouguet, 1998). Treating the front of
the head and the tip of the abdomen independently allowed us to
determine the body position and the yaw and pitch angles of the
body long axis in space. This method does not deliver the roll
angle of the fly.

There is always a trade-off between the size of the observation
area and spatial resolution. Therefore, head tracking was only
possible in the small flight arena. In a limited number of frames,
we manually fitted a 3D model to the fly’s head, using FlyTrace,
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Fig.1. Image analysis and coordinate system. (A)Method used to derive
the body position from the video frames of two synchronised, orthogonally
oriented video cameras. Single characteristic points on the head and
abdomen, respectively, were used. By triangulation of the two points the
orientation and position of the body length axis was reconstructed. Note
that the roll angle cannot be calculated with this method. (B)Acquiring head
position. A 3D model of the head was adjusted to match the appearance of
its projection in corresponding video frames. The model was adjusted in
position and orientation for all six degrees of freedom. (C)Definition of
velocities used for analysis. Velocity vectors are fly centred. The velocities
are shown in the colours we used throughout this article for the prototypical
movements (PMs).
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in order to track head positions and orientation (see Fig.1B). This
3D model method allowed us to derive all six degrees of freedom.

Describing behaviour by velocities
We assumed the translational and rotational velocities of the fly in
a fly-based coordinate system constitute characteristic parameters
of flight behaviour. Following conventions in computer science, we
call these parameters ‘features’. The forward velocity is defined as
the velocity along the body long axis. The sideways velocity is
orthogonal to this vector in the horizontal plane. Orthogonal to the
plane formed by the two preceding velocity vectors is the upward
velocity vector. In addition, the rotational velocities around these
three axes were taken into account (see Fig.1C). The velocities were
calculated from the difference in position and orientation between
two frames. The roll velocity could only be extracted for the small
set with available head data. We chose these velocities because they
are widely used to characterise insect flight. Although other features
could be used, we wanted to keep our work comparable to other
studies of the field. We also conducted an analysis in a world-based
translational velocity system. The results were very similar and there
was no qualitative difference between conclusions for the two
different velocity sets.

In some parts of the analysis, the ground speed was defined as
the projection of the 3D translation velocity vector into the horizontal
plane. Neither roll velocity nor ground speed was used in the
clustering analysis described below.

Finding prototypical movements by cluster analysis
To characterise flight behaviour, we took the set of rotational and
translational velocity values corresponding to each point of the
trajectory. Repeatedly occurring similar movements lead to similar
velocity data. To quantify similarities we decided to use the squared
Euclidean distance as a measure. The Euclidean distance is in
common use for calculating distances between continuous real
values, as our velocity values are. The squared Euclidean distance
delivers the same results when comparing distances between data
points with each other, as we did here, and is computationally simple.
With this similarity measure, the velocity feature data points
representing different reoccurring movements constitute dense
clouds of data points within the high-dimensional feature space that
are distinct from each other. For analysing these structures we used
cluster analysis. This approach is able to robustly distinguish the
clouds, also called clusters. For doing so, the feature data space is
segregated into classes by minimising the distances between the
data points within the classes and maximising distances between
classes. Each class can be characterised by its cluster centroid, which
is the point in data space that has minimal distance to all other data
points in that cloud. If the feature data space provides significant
structures due to reoccurring movements described by selected
velocity values, this procedure provides a stable set of classes and
an assignment of each velocity data point to one class.

Assigning the corresponding class label to the individual data
points within the temporal sequence of the flight velocity data leads
to a sequence of class labels that can be easily segregated by
identifying subsequences of constant class labels. Such a
subsequence of constant class labels ‘x’ represents what we call a
PM, e.g. subsequence ‘xxxxx’ is collapsed into a single PM with an
extended duration. The length of each subsequence determines the
duration of the corresponding PM.

Whether a set of classes constitutes an appropriate representation
of the feature data and therefore delivers meaningful movement
components has to be evaluated in a post-processing procedure. In

the following sections the details of preparing feature values for
clustering, the clustering procedure itself and the evaluation step
are briefly described (for details, see Braun et al., 2010).

Normalisation
For calculating similarities between feature values as required for
clustering, the feature values have to be normalised, because
translational and rotational velocities are given in different physical
dimensions. Moreover, because the individual translational and
rotational velocity components greatly differ numerically (e.g. yaw
velocities can be much larger than pitch velocities), all data of a
given feature were grouped and normalised independently. In this
way each velocity dimension contributes equally to the clustering
independent of its relative variability. All velocity dimensions get
equal importance for the clustering, which generally provides
different clustering results in comparison to clustering without
normalisation.

We used a standard normalisation technique called z-score which
normalises the data to zero mean and a standard deviation of one,
and leads to non-dimensional variables that are suited to clustering.
We chose this normalisation technique because most of the data are
concentrated in the numerical range –1 to 1 and outliers are not
overemphasised as occurs for example by normalisation to the
maximum.

Agglomerative hierarchical pre-clustering
With this approach we determined candidates for the suitable number
of clusters k to be identified within the feature data. The approach
starts by treating every feature data point as an individual cluster,
iteratively merges two clusters into a new one that minimises a given
criterion and stops when all data are contained within one cluster.
For determining an appropriate number of clusters Ward’s criterion
is used. This criterion treats the increase in inner cluster variance
resulting from the merging of two clusters as merging costs.
Identifying steps in the sequence of merging costs that is assigned
to each intermediate number of clusters indicates candidates for the
suitable number of clusters k. The hierarchical clustering approach
evaluates locally pairs of data points and clusters which makes it
applicable only to small data sets. We applied hierarchical clustering
to parts of our large data set (10% of the original data set) in order
to determine suitable numbers of clusters to be tested with the entire
data set by the k-means method.

k-means clustering
With the k-means clustering algorithm we partitioned our large sets
of noisy high-dimensional feature values into k clusters. This
approach has proven to be appropriate because of its robustness and
computational simplicity. The clustering approach needs the number
of clusters k to be a pre-defined parameter (MacQueen, 1967). To
define a value k that leads to a meaningful segregation of the data,
we evaluated the results of the agglomerative hierarchical clustering
described above.

For a given number of clusters k, k-means partitioning aims at
minimising the overall sum of distances between all the data points
and their respective assigned centroids. The calculation of this
partitioning is done iteratively. After choosing starting positions
for the centroids, all feature data points that are closer to centroid
xi�xi.k than to any other centroid become members of the cluster
of centroid xi. Based on these intermediate clusters, the positions
with minimal distance to the feature data points are calculated
individually for each cluster and they become the new centroids.
Since all centroids have been moved, the cluster members are
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recalculated on the basis of the current centroid positions. This
is done until the centroids no longer move significantly or
another user-defined criterion (e.g. maximal number of iterations)
is satisfied. Note that the k-means algorithm may get caught in
different local minima depending on the starting positions for the
centroids. Without any knowledge about suitable starting
positions, they are selected randomly from the feature data set.
We stabilise these random positions by k-means pre-clustering
for a subset of 10% of the data and use the centroids resulting
from the pre-clustering as new starting positions. In order to
further compensate for the dependence of the results on the
randomised starting positions, we calculated 10 runs and chose
results where the centroids provide minimal distance to their
assigned feature data points. We used the MatLab R2008b k-
means implementation with squared Euclidean distances.

To use the k-means approach for classifying feature values we
have to determine the most appropriate number of clusters k. This
implies we need to determine which clusters represent the feature
data best. By evaluating several numbers of clusters, as described
in the following paragraph, we are able to select a model and,
furthermore, estimate whether this model is appropriate and leads
to meaningful prototypical movements.

Evaluation
For determining the number of clusters that best segregate our data
and for evaluating whether they constitute an appropriate
representation, we evaluate the clustering result by two criteria. The
quality of clustering assesses whether the clusters represent
significantly distinguishable clouds of feature data points. The
instability reflects the reproducibility of the clusters with respect to
varying starting conditions and changes of the data set. Both criteria
are chosen to evaluate general characteristics of an appropriate
clustering instead of evaluating the different classification results
because we do not have prior knowledge of the ‘classification truth’
to compare with.

The variable conditions to be evaluated were achieved by
randomly choosing starting positions of the centroids and by leaving
out continuous chunks of the data (10%, 25% and 50%). We also
performed an evaluation with the complete data set, varying
randomly chosen starting positions. Through optimising quality and
stability we find the number of clusters that best segregate our data.
Every number of clusters between 2 and 20 was tested. For
computational reasons, for cluster numbers between 20 and 50 only
every fifth number was tested.

For each chunk size of omitted data we compared different runs
for a given number of clusters. For this comparison, each two
resulting cluster responses were matched by a minimal cost-perfect
matching algorithm (Kuhn, 1955; Kuhn, 1956). The cost of this
matching gives us a metric for the dissimilarity of the two clustering
results. We call this measure instability.

Furthermore, we analysed the quality of clustering by analysing
whether the data clouds are dense and distinguishable from each
other. Hence we determined for each cluster the similarity of its
assigned data points in relation to the distances of the cluster centroid
to the others. Our quality measure is the shortest squared Euclidean
distance between the cluster centre and any neighbouring cluster
centre (outer distance) divided by the mean squared Euclidean
distance between all data points of the cluster (inner distance). By
taking the mean inner distance we get a value for the variance inside
the cluster. A large outer distance in relation to a small inner distance
indicates distinct behaviour and leads to high quality values. We
calculated the quality of a clustering result by taking the mean quality

of its individual clusters. For determining the quality for the
different runs within one leave-out size condition (continuous
chunks) and a given number of clusters we also calculated the mean
value.

Evaluating the clustering results with respect to their stability and
quality for a varying number of clusters allowed us to identify the
number of clusters that best segregate the data. The optimal number
of clusters is found by searching for a combination of low instability
and high quality. Identifying stable clusters of sufficient quality is
a precondition for clusters to represent significant structures within
the feature data.

After we determined the best number of clusters, we had to select
the set of k clusters out of the sets resulting from the different runs
to be further analysed. We took the set with the lowest matching
cost (when compared with all other cluster sets).

Starplots
The cluster centroids of our data are five-dimensional vectors
corresponding to five features. They are visualised as star plots.
Every feature dimension provides its own coloured axis within the
unit circle.

As a consequence of normalisation, the centroids are non-
dimensional values. To interpret their components we have to de-
normalise them to restore the physical values. In order to visualise
translational and rotational velocities within a given star plot, we
normalise the three translational velocities to the combined
maximum of their absolute values. This was done for the two
rotational velocities in an equivalent way. Note that yaw velocities
are much faster than pitch velocities and by this normalisation, pitch
velocities and especially differences between different pitch
velocities might look very small.

Markov analysis
A level one Markov analysis consists of a set of states and the
transition probabilities between them. The set of states is given by
the set of PMs. Transition probabilities can be derived from the
sequence of PMs. We statistically tested the transitions against the
null hypothesis of chance levels of transition probabilities between
PMs. This procedure takes into account the fact that, if a PM occurs
very often, the probability of transition to this PM from any other
PM is expected to be high even if the transitions occur by chance.
We calculated a confidence interval for each transition probability
using Bernoulli statistics. If the global distribution value of the target
PM was inside the confidence interval we called it a chance level
transition. Transitions significantly below or above this chance level
were treated as ‘prohibited’ or ‘permissible’ transitions, respectively
(P<0.05).

Temporal detail analysis of velocity traces during saccades
The velocity threshold for saccades was set to 400degs–1 for yaw,
150degs–1 for pitch and 75degs–1 for roll. The peak velocity of a
saccade was found by a maximum search in between the two
crossings of the threshold. The start and end of a saccade were
defined by the next inflection or crossing of zero velocity.

RESULTS
Protoypical movements in differently sized flight arenas

We filmed flights in two arenas, a small cubic arena and a much
larger cylindrical arena. The cylinder had a volume 21 times bigger
than the cubic arena. In each frame we analysed the position and
orientation of the fly (Fig.1A) and calculated the velocities within
the fly-based coordinate system. The ground speed in the large arena
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tended to be higher than in the small arena (Fig.2A). In both arenas
backward flight occurred frequently. Interestingly, Eristalis flew
backwards more often in the small arena (25% of the total flight
time) than in the large one (13% of the total). Also, saccades were
exhibited more often in the small arena (Fig.2B). It appears that
the more confined space in the smaller arena forces the flies to
approach walls more frequently, whereupon they may retreat, flying
backwards and turning away from the walls. Note that both arenas
allow the animals to show only a small part of their behavioural
repertoire. For instance, velocities of up to 10ms–1, as were
previously described in other settings (Collett and Land, 1978), were
not observed in our flight arenas.

To describe the flight behaviour of Eristalis in a more general
way, we searched for PMs by applying the clustering approach as
described in Materials and methods. PMs were determined
separately for the two arenas. The hierarchical pre-clustering yielded
a range of between 2 and 50 clusters for both arenas. We tested
these numbers of clusters with the k-means algorithm and evaluated
the instability and quality of the clustering results (see Fig.3). To
this end, we left out 50 different chunks of data of different sizes
(0%, 10%, 25% and 50%). We found that we could increase the
number of clusters to up to nine in both arenas and still get stable
results for the complete data sets. Leaving out bigger chunks of the
data and comparing the results obtained for the different data sets
led to more instability, but the mean set of centroids stayed the same
irrespective of the amount of data left out. However, in all cases
there was a local minimum at nine clusters. The quality reached a
plateau at nine clusters for data sets of all sizes, suggesting that
quality cannot be improved much by increasing the number of
clusters (see Fig.3). We could also have chosen six clusters, which
have similar instability and quality values to those of nine clusters.
Since we tried to derive the classification with the highest resolution
that is possible under the constraints of quality and instability, we
selected nine clusters as appropriate for both flight arenas for our
further analysis.

k-means clustering treats the velocity values of a frame
independent of previous and subsequent frames. The clustering
process thereby omits the information about the time course of the

flight. Classifying each frame of the sequence individually raises
the possibility that PMs were derived from single frame events,
which we have to treat as classification errors, given our high
temporal resolution of 2ms per frame. We calculated the mean
duration of PMs via the mean number of frames individually
assigned to them (see Fig.4). The duration values were a first
indication that the clustering was successful, on average, because,
even though clustering omits the temporal structure of the data, the
results show that structure again. Essentially the same types of nine
PMs were found for the small and the large arena (see Fig.4).

We can clearly distinguish PMs that contain no or only
translational velocities and those that contain significant rotational
components (PM1, 2, 8). In both arenas, PM1 and PM2 (for
identification numbers see lower right corner of the centroid plots
in Fig.4) describe saccadic yaw turns that are combined with a
reduction of the pitch angle and a slight drop in altitude as well as
a sideways movement in the direction of the saccade. These two
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PMs make up only a small fraction of the data (3–4%; see Fig.4).
They also have the smallest standard deviation, compared with their
own duration, as found by analysing the mean durations of the PMs
(Fig.4).

PM3 and PM4 describe a combined forward and sideways
movement. Note that movements in a horizontal plane are a
combination of forward movement along the body long axis (red

line in Fig.4) and downward velocity (black line in Fig.4), because
the body was pitched upwards by at least 25deg during all observed
cruising flights.

PM5 corresponds to a combined upward and forward
movement in which altitude is gained. This PM is more often
exhibited in the small arena than in the large one, but, on the
other hand, it has a longer duration, on average, in the large arena
(see Fig.4).

The only PM that differs qualitatively between the arenas is PM6.
In the small arena it reflects backward motion. In contrast, in the
large arena it describes a pure forward motion. The backward PM
characteristic of the small arena is less often exhibited than the
forward PM found in the large arena. Although flies do exhibit
backward motion in the large arena too (see Fig.2), these events
are too rare and not sufficiently distinct to form a PM on their own.
Instead another forward PM is formed for the large arena. If we
increase the number of clusters from 9 to 12 in the k-means
algorithm, we also find a backward cluster in the set of PMs for the
large arena (not shown). Although the set of clusters is fairly
unstable, if 12 PMs were taken into account, the backward PM was
formed in every trial of the k-means analysis. Under the given
constraints of nine clusters, the backward PM is not formed from
the data derived for the large arena.

PM7 reflects motion mainly in a leftward direction. Surprisingly,
this PM has no mirror PM like PM1/PM2 and PM3/PM4. Closer
inspection of the sideways movement distribution between the PMs
shows that rightward movement is split across the other prototypes.
Hence whenever the fly is moving exclusively to the right, this
movement will be grouped into one of the other prototypes, most
often into PM4. In the small arena PM7 seems to represent those
leftward velocities which are higher than the leftward movement
component in PM3. PM7 and PM3 divide the leftward velocity into
a fast and a slow class whilst PM4 represents the mean value of
rightward velocity.

PM8 describes another form of saccade, a pitch saccade. It shows
a rather definite duration, similar to PM1 and PM2. In the star plots
the pitch velocity appears not to be much faster in PM8 when
compared with the other PMs. This is because the rotational
velocities were normalised against their overall maximum, which
was set by the much larger yaw velocity of 1131degs–1 (small arena).
Nonetheless, the pitch saccade is still very fast at 228degs–1 (small
arena). There is no pitch PM mirroring PM8, as for PM7. Again,
the downward movement is split up into several PMs, namely PM1
and PM2. Saccades are inspected in more detail below.

The final PM is hovering. PM9 makes up more than 20% of the
flight time in both arenas (see Fig.4). Its duration is highly flexible.

Even though key features such as ground velocity and saccade
frequency change with arena size, PMs stay qualitatively the same,
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with the exception of PM6. Although the individual PMs are to
some extent quantitatively different when compared with the
corresponding PM in the other arena, they still describe the same
type of movement (see Fig.4).

Irrespective of the environment, the PMs can be classified into
rotational PMs and PMs that are characterised by only negligible
rotational velocities. This finding is similar to those of previous studies
on the blowfly Calliphora vicina, which classified behaviour into
saccadic and intersaccadic intervals (Schilstra and van Hateren, 1999).
Saccades seem to be very distinct prototypical behavioural
components. The duration of the saccadic PMs (1, 2, 8) have less

variance than the others. Their outer distances calculated in order to
determine the quality measures (see Table1) show that they are quite
distinct from other PMs in comparison to the intersaccadic PMs.
However, saccades have a large inner variance which led to the
detailed analysis (see below). In contrast to saccades, the intersaccadic
intervals are much more heterogeneous and could be classified into
six PMs, five of which include translational movements.

Characterising sequences of PMs
What are the rules by which complex behaviour is built from PMs?
To characterise the order of PMs, we firstly analysed the transition

Table1. Quality and instability of the resulting nine clusters for the large and the small arena

Small arena Large arena

Quality Stability Quality Stability

PM Inner Outer Fraction Mean s.d. Inner Outer Fraction Mean s.d.

1 6.17 11.40 1.85 0.0002 0.0002 7.20 12.73 1.77 0.0002 0.0003
2 5.96 10.57 1.77 0.0002 0.0003 5.62 10.51 1.87 0.0000 0.0000
3 1.87 2.72 1.45 0.0010 0.0011 2.41 3.35 1.39 0.0004 0.0009
4 2.23 2.94 1.32 0.0006 0.0006 1.95 2.92 1.50 0.0003 0.0003
5 2.12 2.45 1.16 0.0005 0.0005 5.60 5.20 0.93 0.0002 0.0003
6 2.81 3.43 1.22 0.0004 0.0004 1.28 2.67 2.09 0.0014 0.0018
7 1.98 2.61 1.32 0.0008 0.0008 1.77 2.72 1.54 0.0005 0.0005
8 4.32 3.74 0.87 0.0021 0.0031 3.85 4.02 1.04 0.0011 0.0013
9 1.17 2.45 2.10 0.0006 0.0006 1.81 2.67 1.48 0.0004 0.0005

The inner distance is the mean squared Euclidean distance between all data points of the cluster. The outer distance is the smallest Euclidean distance
between the centroid (the prototypical movement, PM) and all other centroids. Stability is the mean cost of all the minimal cost perfect matchings for that
cluster to the other 49 cluster runs for the complete data set.

Table2. Transition probabilities as a percentage of the prototypical movements from flights in the small arena

PM 1 2 3 4 5 6 7 8 9

1 0 x 2 � 26 + 2 � 3 � 5 40 + 9 � 14 �

2 0 � 0 x 0 � 50 + 0 14 + 2 � 9 � 26
3 6 3 � 0 x 14 + 6 � 0 � 28 + 31 + 14 �

4 3 � 11 + 23 + 0 x 6 � 3 � 0 � 23 + 31 +
5 3 � 8 + 3 � 3 � 0 x 8 + 6 � 11 � 58 +
6 10 + 19 + 3 � 3 � 0 � 0 x 16 + 3 � 45 +
7 5 5 � 30 + 0 � 5 � 5 � 0 x 9 � 42 +
8 9 + 4 � 14 + 12 18 + 2 � 10 0 x 30 +
9 7 + 7 0 7 � 14 + 21 + 12 + 14 + 19 + 0 x

The probabilities given here are the frame-to-frame transition probabilities as a percentage. Interframe interval is 2ms. The transition is always from the row
PM to the column PM. Pluses indicate a significantly (P<0.5) higher chance of changing into this PM than the a priori chance, given by the distribution of
centroids. A circle shows that chance of changing into this PM is significantly below the a priori chance. Example: the transition probability from hovering
(PM9) to an upward flight (PM5) is given in row 9 column 5 and amounts to 21%. It is marked with a plus, so this transition is above chance level. The small
x marks omitted transitions. If there is no sign, a gap, this means that the transition is at chance level and not significantly above or below.

Table3. Transition probabilities as a percentage of the prototypical movements from flights in the large arena

PM 1 2 3 4 5 6 7 8 9

1 0 x 2 � 26 + 2 � 3 � 5 40 + 9 � 14 �

1 0 x 0 � 21 + 2 � 7 � 14 26 + 18 � 12 �

2 0 � 0 x 4 � 21 + 2 43 + 5 � 9 � 16
3 3 3 � 0 x 14 + 3 � 0 � 29 + 26 + 23 �

4 0 � 10 + 13 + 0 x 0 � 23 � 0 � 27 + 27 +
5 5 � 5 + 10 � 0 � 0 x 5 + 10 � 5 � 62 +
6 3 + 9 + 0 � 23 � 0 � 0 x 17 + 20 � 29 +
7 9 3 � 22 + 0 � 0 � 19 � 0 x 25 � 22 +
8 7 + 10 � 9 + 10 1 + 20 � 18 0 x 27 +
9 3 + 5 � 14 � 14 + 5 + 19 + 14 + 27 + 0 x

The probabilities given here are the frame-to-frame transition probabilities as a percentage. See Table2 for details. Pluses indicate a significantly (P<0.5)
higher chance of changing into this PM than the a priori chance. A circle shows that chance of changing into this PM is significantly below the a priori
chance. The small x marks omitted transitions. If there is no sign, a gap, this means that the transition is at chance level and not significantly above or below.
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probabilities between PMs (see Tables2 and 3), employing a level-
one Markov analysis. The transition probabilities from one PM into
all other PMs can be used as the stochastic rule that defines how
to elongate a behavioural sequence after that PM. We omitted the
staying probability for a PM, because this is equivalent to the mean
duration of a PM.

We tested whether the transition probabilities were significantly
above or below chance level. The null hypothesis was determined
by taking into account the a priori probability of the individual PMs.
A chance transition into an often-exhibited PM is much more
probable than a transition into a rare PM. Fig.5 shows that for the
small arena about 89% (64 out of 72) and for the large arena about
67% (48 out of 72) of the transitions were significantly different
from chance level. Some of the ‘prohibited’ transitions are likely
to be a consequence of physical constraints. For example, the
transition from a left saccade to a right saccade without an
intermediate state is hardly possible for the fly, as it would require
an almost instantaneous change of yaw velocity from approximately
+1000degs–1 to –1000degs–1. However, there are also transitions
that appear possible for physical reasons but nonetheless do not
occur. In the large arena, going from a climb flight to a forward
flight is uncommon and vice versa (see Fig.5B, PM5 and PM6). In
fact, transitions from climb flight into any forward translational
movement seem to be below or at chance level in either arena. In
the small arena we can observe that PM9 (hovering) often follows
other movements. Five other PMs are significantly more likely to
change into the hovering PM than chance level would predict. There
is no other PM that is targeted more often significantly above chance
level.

Do the transition probabilities of PMs depend on the volume of
the flight arena? To answer this question we used Bernoulli statistics
and calculated confidence intervals to test whether the transition
probabilities from a given PM to another differ significantly in the
two flight arenas. We found that 56% of the transitions were not
significantly different (P<0.05) from each other. When we subtracted
the transitions from and to PM6, which is a qualitatively different
PM for the two arenas and will elicit different transition probabilities,
60% of the transitions were not significantly different.

When we interpret the transition probabilities as probabilistic
rules, we are able to form sequences of PMs, which we call
superprototypes. Therefore we omit the staying probabilities and
concentrate on the transition probabilities between PMs. An obvious

way to form superprototypes is a so-called maximum walk, where
one uses the maximal transition probabilities. If we start for example
in the first cluster, the superprototype PM1–PM7–PM9 is the
maximum walk for the transitions of the small arena. This movement
would describe a left saccade (PM1) followed by leftward movement
(PM7) and end in hovering (PM9). To test whether the
superprototype, created by the maximum walk, is more probable
than a chance transition, we used as the null hypothesis the
probability given by the product of the independent transitions p.
The transition p from a start PM to a target PM is given by the
percentage of data assigned to the target PM. The transition
probability of the null hypothesis corresponding to the example
superprototype is 3.18�10–2. The transition probability based on
transitions between the corresponding PMs is 1.67�10–1.

In the aforementioned example, all transitions were significantly
above chance level. We used the significant transitions above chance
level to create two other examples, shown in Fig.6. Superprototype
A reflects a retreat from a position occupied before (PM6), a saccadic
yaw turn to the right (PM2), a short sequence of translational flight
(PM4) in the new direction and then hovering (PM9). This
combination was found eight times in our data. It is also more likely
(2.89�10–2) than the null hypothesis predicts (1.31�10–3).

Another superprototype has already been described qualitatively
in hoverflies and blowflies, i.e. zigzagging or wobbling (Collett,
1980; Collett and Land, 1975a; Schilstra and van Hateren, 1999).
This superprototype (Fig.6B) is more likely (7.26�10–3) than the
null hypothesis (2.68�10–3) predicts and seems to be a typical
movement of flies. It is, for example, consistently performed when
flies fly in an elongated tunnel and might be used to analyse the
3D structure of the fly’s environment (R.K., unpublished
observations).

In conclusion, we derived an objective description of prototypical
flight movements and the transition probabilities of their ordering.
By applying the clustering procedure we excluded any observer bias.

Fine structure of saccades
All nine PMs show variance. To further elucidate the role of PMs
in a behavioural context, we analysed whether this variance is noise
overlaying a fixed pattern or systematic variation caused by other
flight parameters, as for example body orientation. We concentrated
on the rotational PMs, i.e. the so-called saccades. The most
prominent change is in yaw angle. Changes in roll or pitch are rather
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subtle, but even these delicate changes in head and body orientation
are done in a saccadic fashion. Because we wanted to analyse the
smaller pitch and roll saccades and compare head and body saccades
we had to detect saccades by a thresholding operation with smaller
thresholds than the average rotation velocity in PMs (for details of
identification see Materials and methods).

We traced head saccades for all three rotational degrees of
freedom and found that pitch, yaw and roll saccades do not always
coincide. In the short section of a sample trajectory (see Fig.7) the
head performs all combinations of saccades. The mean velocity
values of all saccade types are presented in Fig.8. We combined
saccades of opposite direction by taking the absolute values of the
rotational velocities and aligning their maximums. Clearly saccades
incorporating yaw rotation dominate in terms of number (Fig.8H).
Interestingly, the standard deviation of the mean velocities is quite
low for saccades including simultaneous rotations about all three
rotational axes (Fig.8A) and for saccades with only a single
rotational axis (Fig.8E–G). Also the velocities in roll–pitch
combination saccades have a relatively small standard deviation
(Fig.8D). The velocities in combination saccades including yaw and
only one other rotational axis have large standard deviations and
unclear shapes (Fig.8B,C).

We used the yaw saccades as a trigger to analyse the head and
body rotations around the other axes (Fig.9). Body and head yaw
saccades of Eristalis have a mean amplitude of 33±22deg for the
body and 35±21deg for the head. The head yaw has steeper rises and
fall-offs than the body yaw (Fig.9B). These characteristics of Eristalis
yaw saccades are in accordance with blowfly yaw saccades (van
Hateren and Schilstra, 1999). However, the velocity profile of yaw
saccades in hoverflies shows a subtle difference to that of blowflies.
It seems that Eristalis stops turning the head and body simultaneously
(Fig.9D), whereas the head of Calliphora has already stopped
rotating before the body (van Hateren and Schilstra, 1999).
Qualitatively, the other rotational head velocity profiles look like those
of Calliphora. The change in pitch is smaller than the change in yaw,
and the roll movements are even more subtle than pitch rotations (see
Fig.9C). During rotations as well as during forward–sideways flight
(compare PM3 and PM4) we found dramatic changes in body roll
ranging up to approximately 80deg (estimated by eye inspection of
the high-speed image frames). The maximum roll angle of the head
was, however, only 12deg during a saccade. Thus, the head roll angle
is stabilised quite well against body roll, as is also characteristic of
Calliphora (van Hateren and Schilstra, 1999; Hengstenberg et al.,
1986; Schilstra and van Hateren, 1999).

How are direction and amplitude of yaw saccades controlled?
Collett and Land suggested the angle between body long axis and
course direction ( angle) had an impact on the direction of yaw
saccades in the hoverfly Syritta pipiens (Collett and Land, 1975a) as
did Wagner for houseflies (Wagner, 1986). We analysed this  angle
in our trajectories and found it to vary much more in Eristalis than
in houseflies (Wagner, 1986). The  angles range from 0 to 180deg
in Eristalis. A similar relationship is found in Eristalis to that in Syritta
between  and saccade direction: saccades are often directed to reduce
 (Fig.10). Moreover the  amplitude resulting from the yaw saccade
correlates with the starting  angle. Larger starting  angles correlate
with larger  amplitudes (see Fig.10). This finding shows that the 
angle is one source of the variance in yaw saccades as represented
by PM1 and PM2.
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As is characteristic of the head yaw angle, the head pitch jitters
less and shows longer periods of stable orientation than the body
(Fig.11A). The changes in head pitch are steeper and the pitch angle
of the head is at all times smaller than that of the body. Since body
pitch velocities have a much wider distribution, it is suggested that
the head is stabilised against most pitch movements of the body. In
our head data set we counted 113 head pitch saccades versus 532
body pitch saccades.

To explain the difference in the number of body and head pitch
saccades and the rather weak correlation between body and head
pitch (covariance normalised by the product of the autocorrelation:

0.46±0.07 mean ± s.d.; data not shown), we analysed the relationship
between ground velocity and body pitch and head pitch (Fig.11B).
We calculated the covariance for both, normalised by the
autocorrelation between ground speed and head pitch and body pitch,
respectively. The normalisation was done because pitch and ground
velocity have different dimensions and numerical magnitudes.
Every flight body trajectory of 4s length, for which a head trajectory
was also available (N5) was analysed in this way. The mean
covariance value and standard deviation were derived from
individual covariance analyses. The correlation between head and
body pitch is still stronger than the correlation between head pitch
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and ground velocity, which is another indication that the head is
stabilised against these body movements. In Eristalis the body pitch
is negatively correlated to ground velocity. This was also found to
be the case in houseflies (Wagner, 1986) and fruit flies (David,
1978). The body pitch angle of Eristalis is steepest during backward

flight (Fig.11C). Hence the pitch angle and pitch saccades are also
influenced by other flight parameters, for example the ground speed.

A roll rotation of the head is observed only rarely as Eristalis
stabilises the head almost perfectly against body roll movements.
During intersaccadic intervals the mean absolute roll velocity is
1.2±2.2degs–1. Nonetheless, head roll saccades are performed as can
be seen in Fig.7. As a first approach to find the causes of these
saccades, we classified head roll saccades as either increasing (N24)
or decreasing the roll angle (N35). We assumed, based on the roll
angle of the intersaccadic interval, that the fly stabilises its head
horizontally. We analysed the roll angle at the onset and end of
saccades and found that the start angles of saccades which decrease
the roll angle are significantly larger than the median intersaccadic
roll angle (see Fig.12). These saccades turn the head to approximately
its normal horizontal orientation and are therefore called correction
saccades. The end roll angles of correction saccades are not
significantly different from the median roll angle of all intersaccadic
intervals. Interestingly, non-correction saccades often turn the head
to an orientation above the median intersaccadic roll angle, but start
at angles that are similar to the intersaccadic median.

We analysed the body roll of the fly during the 24 non-correction
saccades by eye. Eleven saccades (46%) were performed in the
opposite direction to concurrent body roll movements. Six saccades
(25%) were directed in the same direction as the body roll. Two
roll saccades (8%) were found during landing and during a yaw
saccade without any body roll. In the final 21% (N5) we could not
find any indication of body roll.

DISCUSSION
We categorised complex flight behaviour of the hoverfly, E. tenax,
under spatially constrained conditions into prototypical movements
(PMs), and analysed further details about a particular kind of PM,
the saccades, which form a distinguishing feature of the behavioural
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repertoire of many insects. By applying a customised k-means
clustering analysis to the normalised behavioural velocity data we
derived nine PMs from continuous flight trajectories, which
constitutes a tremendous complexity reduction of behavioural
description. Furthermore, we analysed the ordering of PMs and
established a Markov model, giving insight into the way behaviour
is organised. Although first-order transitions of a Markov model
are unlikely to reveal the complete organisation of flight behaviour,
it is a good tool with which to find reoccurring successions of flight
manoeuvres, as we explain in detail below. This model together
with the set of prototypes constitutes a compact ethogram for
Eristalis for the confined flight environments and conditions of our
experiments.

The nine identified PMs are the result of applying a general purpose
data-mining technique with the k-means algorithm. Thereby, we had
to make several assumptions concerning feature selection,
normalisation, similarity measurement, clustering procedure and
evaluation. Each of them generally influences the results. However,
some of the assumptions we made are constrained by prior knowledge;
others are used for the reason of computational simplicity. At the
feature selection step we choose the features that are in common use
for describing movements, the fly-centred velocities. However, we
additionally tested an alternative world-based velocity feature set that
rendered qualitatively the same results. For normalisation we applied
the standard z-score approach in order to ensure that each velocity
dimension contributes equally to the clustering. Using the k-means
with squared Euclidean distances for classifying the velocity data also
constitutes a widely used approach because of its robustness against
noise and computational simplicity. Within the k-means clustering
approach we selected the most appropriate classifier and evaluated it
by comparing the sets of classes resulting from determining different
numbers of clusters. For this evaluation we applied general criteria
for an appropriate clustering.
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Fig.11. Pitch dependencies. (A)Ground velocity, body pitch and head pitch
of a hoverfly during an example flight plotted against time. (B)Mean (±s.d.)
covariance between ground velocity and head or body pitch. The
covariance was normalised by the respective products of the
autocorrelograms. The covariance was calculated for every flight. We
calculated the mean covariance and standard deviation of the mean from
all flights of at least 4s length (N5). (C)The ground velocity was binned
according to the x-axis. Box–whisker plots show the body pitch angle. The
grey horizontal line displays the median. The upper and lower boxes
represent the upper and lower quartile. The distance between top and
bottom of one box is its interquartile range. The whiskers mark 1.5 times
that range. Data points outside 1.5 times the interquartile range are plotted
as grey crosses. Large arrows indicate the direction of flight.
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Fig.12. Roll saccades. From left to right, the first two boxplots show the
absolute start and end angle of saccades increasing the roll angle (N24).
The third and fourth boxplots show the start and end angles of roll-
decreasing saccades, termed correction saccades (N35). The fifth boxplot
represent the median roll angle in the intersaccadic intervals. All boxplots
are organised as described in Fig.10. Non-overlaying box notches mark
distributions with significantly different median (P0.05). For better
visualisation, we included an asterisk to mark that the start angle of
saccades decreasing the roll angle are significantly higher than the
intersaccadic median roll angle. All other groups do not differ significantly
from the intersaccadic median.
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After determining the set of nine classes for our data, we were
able to classify each point of a flight trajectory and to determine
the temporal sequence of PMs. Analysing this sequence with
respect to the duration of the occurring PMs allowed us to assess
whether the classification leads to a meaningful segmentation of
the trajectory. The mean durations of PMs take values in the range
of several tens of milliseconds. Nonetheless, we also found much
shorter durations. These we treated as classification errors, because
owing to physical constraints genuine movements of hoverflies can
be expected to be in the range of more than 10ms. Classification
errors occur if a behavioural sequence does not fit well into one
class but, instead, is located at the border between several classes.
Also, the exact transitions between PMs (where the saccade ends
and where the sideways motion begins) might be smooth and result
in false classifications for the transition region. This form of
classification noise is included in our data and thus also occurs as
noise for the calculation of the transition probabilities between PMs.

Furthermore, we tested how PMs may depend on a 21-fold change
in the volume of the flight arena. Only one PM changed between
these different conditions. The transition probabilities between PMs
in the different flight arenas stayed similar as well. Nonetheless, we
would expect changes in the set of PMs if the environment allowed
for entirely new behavioural aspects. Barriers or defined landing sites,
for example, are likely to elicit different behavioural components,
and therefore to lead to the occurrence of other PMs with other
transition probabilities. Also, much larger flight arenas than were used
in this study will allow the animal to attain higher speeds.

The ethogram obtained in this way for Eristalis firstly shows a
separation into rotational and translational movements similar to those
described for other flying species (Bender and Dickinson, 2006;
Boeddeker and Hemmi, 2010; Collett and Land, 1975a; Eckmeier et
al., 2008; van Hateren and Schilstra, 1999; Mronz and Lehmann, 2008;
Schilstra and van Hateren, 1999; Wagner, 1986). As a consequence
of this behavioural segregation into translational and rotational
movements, the translational optic flow generated on the eyes
between saccades is not contaminated by much rotational flow. This
feature might be of computational significance, because only the
translational optic flow component contains information about the
three-dimensional layout of the environment (Koenderink, 1986). In
blowflies it was shown that motion-sensitive tangential cells represent
spatial information during the intersaccadic intervals (Boeddeker et
al., 2005; Egelhaaf, 2006; Karmeier et al., 2006; Kern et al., 2005;
Kern et al., 2006; Lindemann et al., 2005). Whereas saccades are
reflected by just a pair of distinct PMs, the intersaccadic interval,
interestingly, is subclassified into six PMs, five of which include
significant translational movements.

During saccades, the gaze strategy and head–body coordination
of Eristalis are similar to those of Calliphora (van Hateren and
Schilstra, 1999; Schilstra and van Hateren, 1999). Both flies
minimise the duration of rotational optic flow on the retina. In both
cases, head saccades have a larger velocity amplitude and shorter
duration than body saccades, which further reduces the duration of
rotational optic flow. However, in contrast to Calliphora where the
head stops rotating before the body, the head of Eristalis terminates
its rotation at the same time as the body does. We observed Eristalis
to exhibit all possible combinations of rotations in a saccadic way.

The pitch and yaw saccades of the head might be used to fixate
new targets: roll saccades, instead, do not seem to be necessary to
change the gaze towards a new target. Motion vision cells like the
tangential cells of flies respond predominantly to either horizontal or
vertical motion. These cells are often regarded as matched filters for
the detection of self-motion (Karmeier et al., 2006; Krapp et al., 1998;

Krapp et al., 2000). Hence, stabilisation of head roll orientation would
simplify the later processing of optic flow information by the visual
pathway. Without this stabilisation, the tangential cells, for example,
would respond to a yaw rotation with a horizontally aligned head in
the same way as to a pitch rotation with a vertically aligned head.
Our findings show that the head is stabilised with minimal drift during
intersaccadic intervals. There are two subclasses of roll saccades. One
class corrects the head position back to a horizontal orientation, which
is in accordance with the need to stabilise the head against roll
movement of the body. The other class corresponds to head turns
away from the horizontal orientation. They are in most cases
associated with body roll movements, either in the opposite or the
same direction as the body roll. These head roll saccades might be
either body roll residuals or overcompensation by the head.

Although the set of PMs is rather stable against changes in the
size of the flight arena, every PM is highly variable. We analysed
whether this variability is pure noise in a fixed motion pattern or a
result of systematic adjustments of PMs to flight parameters. We
found that the orientation of the body relative to the flight trajectory
( angle) influences the direction and amplitude of a saccade (PM1,
PM2) as has already been shown for other flies (Collett and Land,
1975a; Wagner, 1986). It seems that although hoverflies can fly in
any direction, they often align their body with the flight direction.
This is an indication that PM1 and PM2 are adjusted to the  angle.
We also found that the body pitch is negatively correlated to ground
velocity, as was shown for other flies (David, 1978; Wagner, 1986).
This behaviour might reduce friction during faster flight. The body
pitch angle is even steeper while flying backwards than during any
other observed behaviour. The head is stabilised fairly well against
body pitch movements, but there are weak correlations between body
and head pitch as well as between head pitch and ground velocity.
These might be residual effects of the body pitch. Both yaw and
pitch saccades correlate systematically with other flight parameters,
which show that PMs are adjusted to the actual flight situation.

What are the rules behind the arrangement of PMs as the building
blocks of complex behaviour? A similar analysis to that done here
was undertaken in the face-grooming behaviour of mice (Fentress
and Stilwell, 1973). PMs were defined and the transition probabilities
between such movements were characterised. We adapted this
approach and determined the transition probabilities on a frame-by-
frame basis. A structure consisting of building blocks and rules is
regarded as syntax in formal languages. To derive the rules or in
this context the grammar from the succession of our building blocks,
we analysed the transition probabilities of PMs employing a level-
one Markov analysis. Markov chains are regarded as an extension
of regular grammars (Fu, 1974; Gonzalez and Thomason, 1978). A
regular grammar is the set of rules forming a formal language
(type 3 grammar) in the Chomsky hierarchy (Chomsky and
Schützenberger, 1963).

We employed the syntax of PMs to derive more complex flight
behaviour, so-called superprototypes. For the first kind of
superprototype we always used the maximal transition probability
and derived a short succession of a turn, sideways flight and
hovering. For the examples shown in Fig.6, we used the significant
transitions shown in Fig.5. The most probable transition and
therefore the most probable superprototype is not always the most
interesting one. If one calculated the word occurrence probability
in the English language, based on standard newspaper texts, words
like ‘and’ would be far more probable than ‘xylophone’.

For Eristalis behaviour the ‘xylophones’, such as the zigzagging
superprototype, might be particularly useful in actively probing the
spatial structure of the environment. The two PMs involved in
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zigzagging (PM3 and PM4) are characterised by pronounced
sideways velocities, similar to the peering movements of locusts
(Collett and Paterson, 1991; Sobel, 1990; Wallace, 1959) and
mantids (Kral and Poteser, 1997). These animals use the resulting
motion parallax information to judge distances. In robots this gaze
strategy was successfully used to navigate around obstacles (Sobey,
1994). Eristalis may employ zigzagging in the same way locusts
use peering and thereby acquire more information about the 3D
layout of its surroundings. The other superprototype, consisting of
a backwards flight, turning, drifting and hovering, might be typical
wall-avoidance behaviour and would accord with our hypothesis
that the constraints set by the small arena led to more saccades than
those set by the large one.

Behavioural analysis based on PMs and their syntax has great
potential for interspecies comparisons of behaviour. Eristalis has
been claimed to mimic foraging honeybees, to be less attractive to
potential predators (Golding et al., 2001; Golding and Edmunds,
2000). Foraging bees navigate in close proximity to flowers and
only fly slowly for short durations. Similarly, Eristalis in a confined
space only flew for short periods at low velocities. Thus it might
be possible that at low flight speeds, as exhibited in our arenas or
during the last phase of homing flights (Collett and Land, 1975b),
Eristalis mimics the honeybee to avoid being attractive prey. It might
be possible to address this hypothesis by comparing the ethograms
of bees and hoverflies based on PMs.

LIST OF SYMBOLS AND ABBREVIATIONS
k number of clusters
PM prototypical movement
t time
 pitch angle
 yaw angle
 angle between the body long axis and the flight direction
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