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INTRODUCTION
A vast body of research has described the complexity of flight in
insects ranging from the fruit fly, Drosophila melanogaster, to the
hawk moth, Manduca sexta (Sane, 2003; Wang, 2005). Over this
range of scales, flight aerodynamics as well as the relative lift and
drag forces generated are surprisingly similar (Birch et al., 2004;
Hedrick et al., 2009). The smallest flying insects have received far
less attention, although previous work has shown that flight
kinematics and aerodynamics may be significantly different (Miller
and Peskin, 2004; Miller and Peskin, 2005; Sunada et al., 2002;
Weis-Fogh, 1973). These insects are on the order of 1mm in length
or smaller, fly at Reynolds numbers (Re) near 10 or below and
include ecologically and agriculturally important species such as
parasitoid wasps, thrips and haplothrips. At these low Re, lift forces
relative to drag forces decrease substantially (Miller and Peskin,
2004; Wang, 2000).

While quantitative data on wing beat kinematics is not
available, it is thought that many tiny insects clap their wings
together at the end of the upstroke and fling them apart at the
beginning of the downstroke (Ellington, 1999) (see supplementary
material Fig. S1). In fact, all tiny insects that have been filmed
to date appear to use ‘clap and fling’. Weis-Fogh first described
how the tiny wasp Encarsia formosa uses this motion and
speculated that it augments the lift forces generated by
strengthening the bound vortex on each wing (Weis-Fogh, 1973).
The clap and fling motion has also been reported in the greenhouse
whitefly Trialeurodes vaporariorum (Weis-Fogh, 1975) and
Thrips physapus (Ellington, 1984a). Miller and Hedrick have
observed clap and fling kinematics in high-speed videos of the
tiny parasitoid wasps Muscidifurax raptor and the jewel wasp
Nasonia vitripennis (see supplementary material Fig. S2). Fling
has also been observed in a few medium and larger insects such

as butterflies and moths (Marden, 1987) and the tethered flight
of Drosophila melanogaster (Vogel, 1967).

A combination of experimental, theoretical and numerical work
supports that insects augment the lift forces generated during flight
by the clap and fling mechanism (Ellington, 1984a; Ellington, 1984b;
Lehmann and Pick, 2007; Lehmann et al., 2005; Lighthill, 1973;
Miller and Peskin, 2005; Weis-Fogh, 1973). Lift is augmented during
wing rotation (fling) and subsequent translation by the formation
of two large leading edge vortices (Miller and Peskin, 2005; Sun
and Xin, 2003). Much less attention has been given to the total force
required to actually clap the wings together and fling the wings apart.
Miller and Peskin found that relatively large forces are required to
fling rigid wings apart at Re below 20 (Miller and Peskin, 2005).
Furthermore, the lift to drag ratios produced during clap and fling
are lower than the ratios for the corresponding one wing case,
although the absolute lift forces generated are larger. For the smallest
insects, the forces required to fling the wings are so large that it
raises the question of why tiny insects clap and fling in the first
place.

One major assumption in previous clap and fling studies using
physical models (Lehmann and Pick, 2007; Lehmann et al., 2005;
Maxworthy, 1979; Spedding and Maxworthy, 1986; Sunada et al.,
1993), mathematical models (Lighthill, 1973) and numerical
simulations (Chang and Sohn, 2006; Miller and Peskin, 2005; Sun
and Xin, 2003) is that the wings are rigid. It seems likely that wing
flexibility could allow the wings to reconfigure to lower drag profiles
during clap and fling. In this case, the fling might appear more like
a ‘peel’, and the clap might be thought of as a reverse peel (Ellington,
1984a; Ellington, 1984b). A number of studies support the idea that
flexibility allows for reconfiguration of biological structures, which
results in reduced drag forces experienced by the organisms (e.g.
Alben et al., 2002; Alben et al., 2004; Denny, 1994; Etnier and
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and fling appears to be rather inefficient for the smallest flying insects. We also add flexibility to the wings and find that the
maximum drag force generated during the fling can be reduced by about 50%. In some instances, the net lift forces generated are
also improved relative to the rigid wing case.
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Vogel, 2000; Koehl, 1984; Vogel, 1989). The basic idea in these
cases is that the force on the body produced by the moving fluid
causes the flexible body to bend or reconfigure, which, in turn,
reduces the force felt by the body.

A number of recent computational and experimental studies have
explored the role of wing flexibility in augmenting aerodynamic
performance in insects but most of this work has focused on single
wings at ‘higher’ Re (>75). For example, Vanella et al. explored
the influence of flexibility on the lift to drag ratio for Re ranging
from 75 to 1000 using two-dimensional, two-link models of a single
wing (Vanella et al., 2009). They found that aerodynamic
performance was enhanced when the wing was flapped at a 1/3 of
the natural frequency. Ishihara et al. studied passive pitching by
modeling a rigid wing that was free to pitch and were able to generate
sinusoidal motions that produced enough lift to support some Diptera
(Ishihara et al., 2009). A number of other studies have explored the
role of wing flexibility in avian flight (Heathcote et al., 2008; Kim
et al., 2008) and thrust generation (Alben, 2008; Lauder et al., 2006;
Mittal, 2006).

While flexibility will probably reduce the drag forces required
for clap and fling, the wings should not be so flexible that the lift
forces produced are significantly diminished. Ellington suggested
that a peel mechanism with flexible wings might actually serve to
augment lift forces relative to the rigid-fling case (Ellington, 1984b).
In the case of peel, the wings are pulled apart along the leading
edges and curve along the wing chords. As the peel progresses, the
separation point between the wings moves from the leading edge
to the trailing edge (see Fig.1A,B). The peeling motion of the wings
has been observed in images of Drosophila virilis (Vogel, 1967)
and Lepidoptera (Norberg, 1972). The wings of the tiny wasps
Muscidifurax raptor and Nasonia vitripennis definitely flex during
flight but it is difficult to determine the extent of peeling from
available videos. This motion can be approximated as a ‘flat peel’.
Ellington (Ellington, 1984b) claims that if the wings ‘unzip’ with
a velocity uz(t), then the circulation Γ around the separated section
of the wing may be approximated as:

Γ = uz (t) xe f (β) , (1)

where xe is the length of the exposed section of the wing, and β is
the constant half-angle between the wings and f(β)�(β –π/2)2+2,
0≤β≤π. According to this model, Ellington (Ellington, 1984b)
calculated that the circulation generated by the flat peel is 2.6 times
greater than the corresponding case of inviscid fling calculated by
Lighthill (Lighthill, 1973).

Similarly, flexible clap might be thought of as a reversed peel.
As the wings clap together, the angle of attack increases and the
wings meet at the leading edges. The meeting point between the
wings then moves from the leading edge to the trailing edge. As
described by Ellington (Ellington, 1984b) and visualized by
Maxworthy (Maxworthy, 1979), the clap produces a downward jet
of air and the wings consequently experience an upward force (see
Fig.1C,D). This downward jet and brief augmentation of the lift
force was also observed in two-dimensional numerical simulations
(Miller and Peskin, 2005; Sun and Xin, 2003) and physical models
of clap with rigid wings (Lehmann et al., 2005). The mean lift force
during clap can be roughly estimated using a ‘reverse peel’ model.
The mass of the air per unit span between the wings is ρβc2. This
air mass gains velocity uc in the duration c/u during the clap. The
mean lift force (F) per unit span will be approximately equal to the
change in momentum of the air mass:

F = ρβcuc
2 . (2)

This is an inviscid approximation of the mean force, and the force
generated in the viscous case is likely to be smaller because some
momentum is lost to viscosity.

In this paper, we have used computational fluid dynamics to study
the effects of wing flexibility on the forces produced during clap
and fling. The immersed boundary method was used to model pairs
of rigid and flexible wings performing a two-dimensional clap and
fling stroke at Re=10. The cases of flexible clap and peel were
compared with the cases of rigid clap and fling. Lift and drag
coefficients were calculated as functions of time and related to the
bending of the wing and the relative strengths of the leading and
trailing edge vortices.

MATERIALS AND METHODS
As both viscosity and the interactions of the flexible wing with the
air are important at this scale, a direct numerical simulation of the
fully coupled fluid–structure interaction problem is appropriate. In
this paper, the immersed boundary method (Peskin, 2002; Zhu and
Peskin, 2002) is used to simulate two flexible wings immersed in
a viscous, incompressible fluid. The immersed boundary method
has been used successfully to model a variety of problems in
biological fluid dynamics. Such problems usually involve the
interactions between incompressible viscous fluids and deformable
elastic boundaries. Some examples of biological problems that have
been studied with the immersed boundary method include aquatic
animal locomotion (Fauci, 1990; Fauci and Fogelson, 1993; Fauci
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Fig. 1. The clap and peel mechanism of lift generation in insect flight redrawn from Ellington (Ellington, 1984b). (A) A two-dimensional diagram of the
circulation around two wings performing a peel. (B) A rigid model of ʻflat peelʼ. β represents half of the angle between the wings, x represents the exposed
portion of the wing and u represents the velocity of the separation point. (C) A two-dimensional diagram of flexible clap or reverse peel. As the wings are
clapped together, the point of attachment moves from the leading to the trailing edge of the wing. (D) A two-dimensional diagram of the circulation around
two wings performing a clap. The clap motion creates a jet of air downward.
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and Peskin, 1988), cardiac blood flow (Kovacs et al., 2001;
McQueen and Peskin, 1997; McQueen and Peskin, 2000; McQueen
and Peskin, 2001) and ciliary driven flows (Grunbaum et al., 1998).

The dimensional analysis presented here is used to determine the
forces relevant to the problem of clap and fling in small insects.
The Navier–Stokes equations in three dimensions can be rewritten
in dimensionless form as follows:

u� = u / U t� = tU / L
p� = p / ρU2 x� = x / L

F� = ρU2F / L �� = L� , (5)

where u is the fluid velocity, p is the pressure, F is the force per
unit area applied to the fluid by the immersed wing, ρ is the density
of the fluid, μ is the dynamic viscosity of the fluid, t is dimensional
time and x is the position. The dimensionless variables are u�, x�,
p� and t�, which represent the non-dimensional velocity, position,
pressure and time, respectively. F� is the non-dimensional force per
unit volume, L is a characteristic length (such as the chord length
of a wing) and U is a characteristic velocity (such as the average
wing tip velocity). Re is then given by Eqn4 and may be thought
of as being roughly proportional to the ratio of inertial to viscous
forces in the fluid.

Using the dimensional analysis described by Alben (Alben, 2008;
Alben, 2009), the dimensionless equations describing a two-
dimensional wing immersed in a fluid can be written as follows:

where m� is the dimensionless mass, T is the tension, k� is the
dimensionless bending stiffness, f� is the dimensionless force acting
on the wing, � is the curvature, n is the unit vector pointing normal
to the wing, and r is the unit vector tangent to the wing. As above,
time is scaled by the chord of the wing divided by the characteristic
velocity. The dimensionless wing mass and bending stiffness may
then be written as:

where ρs is the mass per unit length of the wing and kbeam is the
dimensional flexural stiffness.

In this paper, the Re is set to 10, corresponding to the case of some
of the smallest flying insects such as Thripidae frankliniella (Sunada
et al., 2002). The non-dimensional bending stiffness is varied from
about 0.25 to 4. The mass of a thrips is about 6.0�10–8 kg (Tanaka,
1995) and its wing length is about 0.75mm. Assuming that a wing
weighs about 3.0�10–9 kg (this is 1/20 of the total mass, and the
feathery wings probably weigh much less) and the wing length is
0.75mm, ρs would be roughly equal to 4.0�10–6kgm–1. Given a wing
chord of about 0.25mm and an air density of 1.2kgm–3, m� would
equal 0.016. Because this value is much less than one, the effects of
inertia on the wing are ignored. The wing is modeled as a massless
boundary that resists bending and stretching.

m�=
ρs

ρL
 ,          (8)

k �=
kbeam

ρU 2 L3
           (7)

m �
∂2

dt2
X(r ,t) =

∂
∂r

Tr̂( ) − k �
∂2

∂r2
κ n̂( ) + f � ,              (6)^

Re =
μLU

ρ
             (4)

∂u�

∂t �
+ u�• ∇�u�= −∇�p�+ 

1

Re
∇�2 u�+ F �            (3)

              ∇ �•u� = 0
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The basic idea behind the immersed boundary numerical method
is as follows.

(1) At each time step, calculate the forces that the boundaries
impose on the fluid. These forces are determined by the deformation
of the elastic boundaries. Additional external forces used to drive
the motion of the boundary may also be applied to the fluid.

(2) Spread the force from the Lagrangian grid describing the
position of the boundaries to the Cartesian grid used to solve the
Navier–Stokes equations.

(3) Solve the Navier–Stokes equations for one time step.
(4) Use the new velocity field to update the position of the

boundary. The boundary is moved at the local fluid velocity,
enforcing the no-slip condition.

Further details of the immersed boundary method and its
discretization may be found in the Appendix.

Numerical simulations
The two-dimensional numerical simulations of flight in this paper
were constructed to be similar to the physical experiments of
Dickinson and Götz (Dickinson and Götz, 1993) and previous two-
dimensional numerical simulations of clap and fling (Miller and
Peskin, 2005). Dickinson and Götz used an aluminium wing with
a chord of 5cm immersed in a sucrose solution with a kinematic
viscosity of 0.0000235m2 s–1 (about 20 times that of water) moving
with a characteristic velocity in the range of 0.04–0.12ms–1. The
dimensions of the sucrose tank used in the physical experiment were
1m in length by 0.4m in width. The same parameters as listed for
this physical experiment were used in all of the following numerical
experiments with two exceptions: (1) the size of the computational
tank was increased to reduce wall effects at lower Re and (2) the
translational velocity was changed to simulate Re=10. In the
following simulations, we use a computational tank that is 1m�1m
in size. For numerical convenience, we place this tank within a
slightly larger periodic domain, of size (1m+30h)�(1m+30h),
where h=Δx=Δy is the mesh width of our fluid grid. The edges of
the computational tank are made of immersed boundary points that
are linked by stiff springs to stationary target points. The region
within the four walls is called the ‘computational tank’. The
Navier–Stokes equations were solved on a 1230�1230 Cartesian
grid, and each wing was discretized on a Lagrangian array of 120
points. Miller and Peskin (Miller and Peskin, 2005) presented a
convergence analysis that showed that this mesh size is within the
range of convergence for the two-wing problem at Re below 100.

Unless otherwise stated, the motion of the flexible wings was
prescribed by attaching target points to the top 1/5 of the boundary
along the leading edge of the wing with springs (Fig. 2). The target
points moved with the prescribed motion and applied a force to
the boundary proportional to the distance between the target and
corresponding boundary points. The bottom 4/5 of the wing
(trailing edge) was free to bend. This has the effect of modeling
a flexible wing with a rigid leading edge. In the ‘nearly-rigid’ case,
springs were attached to target points along the entire length of
the wing, which prevented any significant deformation. The
dimensional stiffness coefficient of the springs that attach the
boundary points to the target points was ktarg=1.44�105 kg s–2, and
the stiffness coefficient for the tension or compression of the wing
was also set to kstr=1.44�105 kg s–2. These values were chosen to
prevent any significant stretching or deformation of the wings in
the rigid case.

The dimensional flexural or bending stiffness of the wing was
varied from kbeam=0.125 κ to 2 κ  Nm2, where κ=5.5459�10–6 Nm2.
As stated above, this range of bending stiffnesses corresponds to
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dimensionless values ranging from 0.25 to 4. We chose this value
of κ to represent the case where deformations during translation are
small but bending does occur when the wings are close. This range
of values was found to produce deformations that are qualitatively
similar to those observed in flight videos.

Lift and drag forces were calculated as functions of time by
summing the forces that each immersed boundary point of the model
wing applied to the fluid at each time step and taking the opposite
sign of that value. As done in experiments, lift and drag coefficients
were filtered to remove high frequency ‘noise’ from the vibrations
of the elastic boundary. This did not change the basic shape of the
graphs. The lift and drag coefficients are defined as follows:

where CL is the lift coefficient, CD is the drag coefficient, S is the
surface area per unit length of the model wing, FD is the drag force
per unit length and FL is the lift force per unit length. As CL and
CD vary with time, they may also be thought of as normalized lift
and drag forces. The normalization does not change with time, so
the actual force plots would maintain the same shape. It should be
noted that these definitions are designed for high Re, and in this
intermediate range lift and drag coefficients become functions of
Re.

For the smallest insects that probably transport themselves on
gusts of wind, we use the ratio of the average lift force produced
during the stroke to the average drag force as a simple measure of
flight efficiency. Lift (the vertical component of the force) is

CD (t) =
2 FD (t)
ρ S U 2

 ,               (10)

CL (t) =
2 FL (t)
ρ S U 2

                (9)

generated to help keep the insects afloat while drag (the horizontal
component of the force) is of less importance since any thrust
produced would likely be swamped by wind gusts. This metric is
particularly appropriate when the wings are close to each other
because the horizontal component of the force acting on each wing
cancels. It is worthwhile to note that a number of other measures
of efficiency are used in the literature, many of which are likely to
be more appropriate for medium to large insects (e.g. Wang, 2004).

Kinematics of the clap and fling strokes
Quantitative descriptions of the wing beat kinematics of the smallest
flying insects are currently unavailable. This is partially due to the
fact that these insects are extremely difficult to film. Many of these
insects may be as small as 0.25mm in length and flap their wings
at frequencies of 200Hz or greater (Dudley, 2000). The authors
know of several unpublished high-speed videos of Thysanoptera,
Muscidifurax raptor and Nasonia vitripennis shot from a single
camera, but quantitative reconstruction of the wingbeat kinematics
is not possible from one camera angle. The simplified flight
kinematics of clap and fling used in this paper are similar to those
used by Lighthill (Lighthill, 1973), Bennett (Bennett, 1977),
Maxworthy (Maxworthy, 1979), Spedding and Maxworthy
(Spedding and Maxworthy, 1986), Sun and Xin (Sun and Xin, 2003),
Miller and Peskin (Miller and Peskin, 2005), and Chang and Sohn
(Chang and Sohn, 2006) to investigate flight aerodynamics using
mathematical and physical models.

Either a single clap upstroke or a single fling downstroke was
simulated. This simplification was made because the influence of
the wake produced by the previous stroke is small for Re of 10 and
below. Chang and Sohn (Chang and Sohn, 2006) found changes in
the strength of the leading edge vortices at Re on the order of 100
when isolated clap and fling motions were compared with cyclical
clap and fling motions; however, the overall aerodynamics and
forces acting on the wings at Re=10 were quite similar.

At the end of the upstroke and the beginning of the downstroke,
the wings were placed 1/10 chord lengths apart. This distance was
chosen based on the analysis of Sun and Xin who showed that the
forces acting on the wings during clap and fling do not change
significantly for distances of 1/10 of the wing chord and lower (Sun
and Xin, 2003). The kinematics of the left wing during the clap
strokes (upstrokes) are described here. The right wing (when
present) was the mirror image of the left wing at all times during
its motion, and the kinematics of the fling (downstroke) was
symmetrical to the upstroke. The translational velocities during the
clap stroke were constructed using a series of equations to describe
each part of the stroke. Plots of translational and angular velocities
as functions of time are shown in Fig.3. The velocity during
acceleration at the beginning of the clap stroke is given by:

where V is the maximum translational velocity during the stroke,
v(τ) is the translational velocity at dimensionless time τ defined by
Eqn12, t is the actual time, c is the chord length of the wing, τaccel

is the dimensionless time when translational acceleration begins and
Δτaccel is the dimensionless duration of translational acceleration.
Δτaccel was set to 1.3. For the clap strokes, τaccel was set to 0. For
the fling strokes, τaccel was set to 0 (translation starts at the
beginning of wing rotation), 0.435, 0.87, 1.305 or 1.74 (translation

τ =
tV
c

 ,             (12)

v (τ ) =
1

2
V 1 + cos π +

π (τ − τaccel )

Δτaccel

⎡

⎣
⎢

⎤

⎦
⎥

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
                (11)

Boundary points

Resistance to bending

Target points

Target springs

Fig. 2. Design of the flexible wing. The fluid domain is represented as a
Cartesian grid, and the boundary (wing) points are represented as red
circles. These points interact with the fluid and move at the local fluid
velocity. The green springs represent the bending and stretching stiffness
of the boundary. The desired motion of the wing is prescribed by the target
points along the top 1/5 of the wing, shown above as blue circles. These
points do not interact with the fluid and they move according to the desired
motion of the wing. They also apply a force to the actual boundary via the
target springs (yellow springs). Because the target springs are only
connected to the leading edge of the wing, this has the effect of making a
wing with a stiff leading edge and flexible trailing edge.
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starts at the end of rotation). After acceleration, the translational
velocity of the wing was fixed as V.

The translational velocities during deceleration of the left wing
during the clap stroke are given as:

where τdecel is the dimensionless time when translational deceleration
begins and Δτdecel is the dimensionless duration of translational
deceleration. The translational velocity during the fling stroke is
symmetric to the downstroke and may be constructed similarly.
Unless otherwise noted, τfinal was taken to be 6.87 (this gives a
translation of about 3.8–5.5 chords depending upon the kinematics),
where τfinal is the duration of each half stroke. Δτdecel was taken to
be 1.3, and V was set to 4.7�10–3 ms–1. For the clap strokes, τdecel

was set to 3.83 (rotation starts with deceleration), 4.265, 4.7, 5.135
or 5.57 (rotation starts at the end of translation).

The angles of attack were similarly defined using a set of
equations describing the angular velocity during the rotational phase
of the stroke. Let α be defined as the angle of attack of the wing
relative to the horizontal plane. For all clap strokes, the wings were
translated at a constant angle of attack of 45deg. during the
upstroke and rotated to 90deg. at the end of the upstroke. For all
fling strokes, the wings were rotated from α=90deg. to α=45deg.
at the beginning of the downstroke. After rotation, the angle of attack
was held constant for the remainder of the stroke. Let θ be defined
as the angle between the left wing and the positive x-axis (the origin
is defined as the intersection of the wing with the x-axis at the initial

v (τ ) = V −
1

2
V 1+ cos π +

π (τ − τdecel )

Δτdecel

⎡

⎣
⎢

⎤

⎦
⎥

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
  ,              (13)
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time). The angular velocity of the left wing during the rotational
phase at the end of the upstroke is given by:

where ωrot is a constant determined by the total angle of rotation
and by the duration of the rotational phase in Eqn15, ω(τ) is the
angular velocity as a function of dimensionless time, τturn is the
dimensionless time wing rotation begins, Δτrot is the dimensionless
duration of the rotational phase and Δθ is the total angle through
which rotation occurs. Δθ was set to 45deg., and Δτrot was set to
1.74 in all simulations. Rotation at the beginning of the downstroke
was constructed similarly.

RESULTS
Translational/rotational overlap

For this set of simulations, we vary the translational-rotational
overlap during wing rotation for clap and fling strokes and consider
nearly rigid and flexible wings (kbeam=κ). For the clap simulations,
the wings come to rest at the beginning, first quarter, middle quarter,
third quarter or end of rotation. This corresponds to 0, 0.25, 0.5,
0.75 and 1.0 overlap between rotation and translation (τdecel=3.83,
4.265, 4.7, 5.135 and 5.57). For the fling simulations, translation
begins at the beginning, first quarter, middle quarter, third quarter
or end of rotation. Similarly, this corresponds to 1.0, 0.75, 0.5, 0.25
and 0 overlap between rotation and translation (τaccel=0, 0.435, 0.87,
1.305 and 1.74).

Lift coefficients and drag coefficients as functions of time
(expressed as the fraction of the stroke) for the four cases (rigid
clap, rigid fling, flexible clap and flexible fling) are shown in Figs4
and 5. For the clap strokes, the first peak in the force coefficients
corresponds to the acceleration of the wing from rest. The force
coefficients quickly reach steady values until the wings begin to
decelerate and rotate. The next peak in the force coefficients
corresponds to the rotation of the wings together (clap). Large lift
and drag forces are produced as the air between the wings is squeezed
downward. Note that lift coefficients produced during the rigid and
flexible clap strokes are comparable, but the maximum drag
coefficients produced during the clap are significantly lower in the
flexible case.

For the fling strokes, the first peak in the force coefficients
corresponds to the rotation of the wings apart (fling). The peak lift
forces in the flexible cases are higher than in the corresponding
rigid cases. There are several possible explanations for this
phenomenon. Peel delays the formation of the trailing edge vortices,
thereby maintaining vortical asymmetry and augmenting lift for
longer periods (Miller and Peskin, 2005). Similarly, the suppression
of the formation of the trailing edge vortex would also reduce the
Wagner effect at the beginning of translation (Weis-Fogh, 1973).
Lift augmentation by ‘peel’ versus ‘fling’ was also predicted using
simple analytical models of inviscid flows around rigid wings
(Ellington, 1984b). As the wings are peeled apart, the wings are
deformed and store elastic energy. As the wings translate apart, the
wings ‘straighten’ and push down on the fluid, causing an upwards
lift force. Not only is the lift greater but the drag is also lower in
the flexible case; thus, further enhancing the advantage of a flexible
wing.

For a comparison of the average forces generated in each case,
lift and drag coefficients were averaged over wing rotation and 2.5

ωrot =
2 Δθ
Δτrot

 ,             (15)

ω (τ ) =
1

2
ωrot 1− cos 2π

τ − τ turn

Δτ rot
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Fig. 3. Translational and rotational velocities as functions of dimensionless
time during the clap and fling. (A) For 0% overlap during clap, translation
ends before rotation begins. For 100% overlap, translation and rotation end
simultaneously. (B) For 0% overlap during fling, the wing completes its
rotation before translation begins. For 100% overlap, the wing begins to
rotate and translate simultaneously.
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chord lengths of travel as shown in Fig.6. Please note that this is
equivalent to take the ratio of the average lift force to the average
drag force produced. For the fling cases, average lift coefficients
increase as the amount of rotational/translational overlap increases.
In the case of 100% overlap, average lift forces are larger in the
flexible case than in the rigid case. For other degrees of overlap,
average lift coefficients for rigid and flexible wings are comparable.
For all overlapping fling cases, the average drag coefficients
produced by flexible wings are lower than those produced by rigid
wings. Moreover, the average ratio of lift to drag produced during
fling is higher for flexible wings than for rigid wings. This effect
increases as the degree of rotational/translational overlap is
increased. For the clap cases, average lift coefficients are comparable
for rigid and flexible wings, and these forces increase as the degree
of rotational/translational overlap increases. The average drag forces
produced in the rigid wing cases, however, are higher than the

corresponding flexible wing cases. As a result, average lift over
drag is higher for flexible wings. In summary, these results suggest
that wing flexibility could improve the efficiency of hovering flight
at low Re.

In order to answer the age-old question, what is the sound of one
wing clapping, we now consider a single wing moving according
to the same kinematics as in the two-wing case. The force
coefficients as functions of time are shown in Fig.7. During the
fling motion, the first peak in the force coefficients corresponds to
the forces generated during rotation, and the second peak
corresponds to the forces generated during translational acceleration.
Wing deformation during one-winged clap and fling is minimal,
and these force traces are similar to the rigid wing case (data not
shown). By comparing the scale bar between Figs5 and 7, one can
easily see the that maximum drag forces generated during two-
winged fling are 10 times higher than the maximum generated by
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Fig. 4. Lift coefficients as functions of time for flexible
and rigid clap and fling. (A) Fling with rigid wings for
0%, 25%, 50%, 75% and 100% overlap between the
rotational and translational phases of the stroke. The
first peak occurs during wing rotation and the second
peak occurs during translational acceleration. The
largest lift forces are generated when rotation and
translation begin at the beginning of the stroke
(100% overlap). (B) Fling with flexible wings. Larger
peak lift forces are produced due to the peel
mechanism (see Results) and elastic storage.
(C) Clap with rigid wings. The first peak in the lift
force occurs during translational acceleration. The
second peak occurs during wing rotation as the
wings are clapped together. (D) Clap with flexible
wings. Lift forces generated during clap flexible
wings are very similar to the forces generated with
rigid wings.
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Fig. 5. Drag coefficients as functions of time for
flexible and rigid clap and fling. (A) Fling with rigid
wings for 0%, 25%, 50%, 75% and 100% overlap
between the rotational and translational phases of
the stroke. A very large peak in the drag force
occurs during wing rotation as the wings are pulled
apart. The largest drag forces are generated when
rotation and translation begin at the beginning of the
stroke (100% overlap). (B) Fling with flexible wings.
The peak drag forces produced are significantly
lower in the flexible wing case. (C) Clap with rigid
wings. A large peak in the drag force occurs towards
the end of the stroke as the wings are clapped
together. (D) Clap with flexible wings. Peak drag
forces generated during clap with flexible wings are
significantly lower than those generated by rigid
wings.
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one wing (either rigid or flexible). During the clap motion, the first
peak in the force coefficients corresponds to the forces generated
during translational acceleration. The first dip in the force
coefficients towards the end of the stroke corresponds to the
deceleration of the wing. As the wing rotates towards the end of
the stroke, another peak in the lift and drag forces force is observed.
These forces quickly drop as the wing decelerates to rest. Force
coefficients for one-winged clap and fling averaged over rotation
and 2.5 chord lengths of translation are shown in Fig.8.

L. A. Miller and C. S. Peskin

Streamline plots of the fluid flow around wings performing a
fling with 100% overlap between the translational and rotational
phases are shown in Fig.9. The streamlines are curves that have the
same direction as the instantaneous fluid velocity u(x,t) at each point.
The curves were drawn by making a contour map of the stream
function because the stream function is constant along streamlines.
The density of the streamlines is proportional to the speed of the
flow. Color has been added to the streamline plots to help the reader
distinguish individual streamlines and vortices. Regions of negative
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Fig. 7. Lift and drag coefficients as a function of time
for one-winged clap and fling with flexible wings. The
amount of rotational/translational overlap was varied
from 0% (translation starts at the end of rotation) to
100% (translation starts with rotation). The
kinematics of the single wing are exactly the same
as the kinematics of the left wing in the two-winged
cases. (A) Lift coefficients as a function of time for
one-winged flexible fling. The first peak corresponds
to the forces generated during rotation, and the
second peak corresponds to the forces generated
during translational acceleration. (B) Lift coefficients
generated during one-winged flexible clap. The first
peak corresponds to the forces generated during
translational acceleration. The dip in the lift force
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fling. (D) Drag coefficients generated during one-
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vorticity appear as warm colors and positive vorticity appear as cool
colors. Close up views of the deformation of the left wing for each
case at four points in time are shown in Fig.10.

Two-winged fling with rigid wings is shown in Fig. 9A. During
wing rotation, two large leading edge vortices begin to form as
the wings fling apart (i–ii). As translation begins, a pair of trailing
edge vortices forms and begins to grow in strength (ii–iv). Two-
winged fling with flexible wings (kbeam=κ) is shown in Fig. 9B.
The wings move with the same motion as in Fig. 9A (100%

rotational/translational overlap). As the wings move apart, the
point of separation moves from the leading edge to the trailing
edge of the wing (i–ii). The formation of the trailing edge vortices
occurs later in the stroke, and the trailing edge vortices are
relatively weaker than the rigid wing case (ii–iv). One flexible
wing (kbeam=κ) moving with the same fling motion as A and B
is shown in Fig. 9C. Because of the smaller aerodynamic forces
acting on the wing, its deformation is negligible and is very close
to the rigid wing case (Fig. 10).
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Fig. 8. Average lift and drag coefficients for one-winged flexible clap and fling. The rotational/translational overlap was set to 0%, 25%, 50%, 75% and 100%.
Force coefficients were averaged over rotation and a 2.5 chord length translation. (A) Average lift coefficients increase during the fling motion as the degree
of rotational/translational overlap increases. However, average lift coefficients during clap decrease slightly as the amount of rotational/translational overlap
increases. (B) A similar pattern is seen for the drag forces generated during one-winged clap and fling. (C) The average lift over drag forces produced during
one-winged clap and fling remain relatively constant as the degree of rotational/translational overlap is varied.
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Fig. 9. Streamline plots of fling with nearly rigid and flexible wings. (A) Two-winged fling with rigid wings and 100% rotational/translational overlap. (i) Two
large leading edge vortices begin to form as the wings fling apart. (ii–iv) As translation begins, a pair of trailing edge vortices forms and begins to grow in
strength. (B) Two-winged fling with flexible wings and 100% translational/rotational overlap. (i–ii) As the wings move apart, the point of separation moves
from the leading edge to the trailing edge of the wing. (ii–iv) The formation of the trailing edge vortices occurs later in the stroke, and the trailing edge
vortices are relatively weaker than the rigid wing case. (C) One flexible wing moving with that same motion as the left wing in A and B. The deformation of
the wing is negligible. Color has been added to the streamline plots to help the reader distinguish individual streamlines and vortices. Regions of negative
vorticity appear as warm colors and positive vorticity appear as cool colors.
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Streamline plots of the flow around wings performing a clap with
100% overlap between the translational and rotational phases are
shown in Fig.11. Two-winged clap with rigid wings is shown in
Fig.11A. As the wings clap together, the fluid is pushed out between
the trailing edges causing an upwards lift force (i–iv). Two-winged
clap with flexible wings (kbeam=κ) using the same motion is shown
in Fig.11B. Towards the end of the stroke, the wings bend as they
are clapped together, reducing the peak drag forces generated (ii–iv).
In addition, the point of ‘attachment’ moves from the leading edge
to the trailing edge of the wing. One flexible wing (kbeam=κ) moving
with the same clap motion is shown in Fig.11C. Because of the smaller
aerodynamic forces acting on the wing, its deformation is negligible.

Varying wing flexibilities
In this set of simulations, the flexural stiffness of the wings was
varied from 0.25 κ to 2 κ, and the translational/rotational during clap

L. A. Miller and C. S. Peskin

and fling overlap was set to 100%. The lift and drag coefficients as
functions of time for clap and fling cases are shown in supplementary
material Fig.S3. The largest lift forces are produced for the case
where kbeam=1.25 κ. Lift coefficients decrease as the bending
stiffness of the wing increases or decreases from this value. For
flexible two-winged clap, the lift coefficients are comparable for
all five values of the bending stiffness. During flexible fling, the
drag coefficients increase with increasing bending stiffness. Drag
coefficients generated during two-winged flexible clap also increase
with increasing bending stiffness.

Average lift and drag during wing rotation and a 2.5 chord
translation are shown in Fig.12. Average lift coefficients for flexible
clap and fling are shown in Fig.12A. The average lift coefficient
generated during fling was greatest when the bending stiffness was
set to 1.25 κ. The average lift generated during clap was relatively
constant for this range of values. The average drag coefficients for

2 flexible wings
       2 rigid wings 
       1 flexible wing 

i ii

iii iv

Fig. 10. Plots of the configuration of the left wing in a
flexible wing pair (black line), rigid wing pair (broken
line) and a single flexible wing (gray line) at four
points in time corresponding to Fig. 9. The single
flexible wing has minimal deformations, and the plot
overlaps almost entirely with the rigid wing. The
flexible wing from the wing pair deforms during fling
(ii–iii) and returns to a nearly straight configuration
during translation (iv).
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Fig. 11. Streamline plots of clap with nearly rigid and flexible wings. (A) Two-winged clap with rigid wings and 100% rotational/translational overlap. (i–iv) As
the wings clap together, the fluid is pushed out between the trailing edges. (B) Two-winged clap with flexible wings and 100% translational/rotational overlap.
(ii–iv) Towards the end of the stroke, the wings bend as they are clapped together, reducing the peak drag generated. As the wings move together, the
point of ʻattachmentʼ moves from the leading edge to the trailing edge of the wing. (C) One flexible wing moving with that same motion as the left wing in A
and B. The deformation of the wing is negligible.
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flexible clap and fling are shown in Fig.12B. For the both clap and
fling, the average drag coefficients increase with increasing bending
stiffness. Average lift over drag ratios for flexible clap and fling
are shown in Fig.12C. Lift over drag increases with decreasing
bending stiffness.

Varying the rigid section of the wing
To investigate the effect of wing stiffness asymmetries on the forces
produced during flight, the rigid section of the flexible wing (1/5
of the chord length) was moved from the leading to the trailing edge
of the wing in five steps. In all cases, the flexural stiffness of the
wings was set to 1.0 κ. The rotational/translational overlap was set
to 100%. Combes and Daniels measured the flexural stiffness of
M. sexta wings as a function of distance along the chord and found
that the bending stiffness decreases from the leading to the trailing
edge of the wing (Combes and Daniels, 2003). A quick look at the
wing morphology of most insect wings suggests that this is true for
many species, making the assumption that flexural stiffness is
proportional to wing thickness. There might be a few exceptions to
this rule, however. For example, if the bristles of thrips’ wings are
more flexible than the solid portion, then there may be some variation
in the location of the stiffest portion of the wing as a function of
distance from the leading to the trailing edge.

Lift coefficients and drag coefficients as functions of time
(expressed as the fraction of the stroke) for clap and fling with
the various wing designs are shown in supplementary material
Fig. S4. In all cases, the rotational/translational overlap was set
to 100% and the flexural stiffness of the wing was set to kbeam=κ.
The rigid portion of the wing was also the location where the
external force used to move the wing was applied. During
flexible fling, the largest lift forces were produced in the case
where the middle of the wing was made rigid. The smallest lift
forces where produced in the case where the trailing edge of the
wing was rigid. During flexible clap, the lift forces produced for
all wing designs are comparable. The largest drag forces during
flexible fling were produced when the middle portion of the wing
was rigid. These forces are significantly larger than all other cases.
During clap, the smallest peak drag forces were produced when
the leading edge of the wing was rigid.

Average lift and drag coefficients during rotation and a 2.5 chord
translation are shown in Fig.13. Average lift coefficients as a
function of the wing design (location of the rigid portion of the
wing) for flexible clap and fling are shown in Fig.13A. The average
lift coefficient generated during fling was greatest when the middle
part of the wing was rigid. The lowest lift forces were generated
when the trailing edge of the wing was rigid. The average lift

generated during clap was relatively constant for each wing design.
Average drag coefficients are shown in Fig.13B. In the case of fling,
the largest average drag coefficients were generated when the middle
part of the wing was rigid. These forces dropped as the rigid part
was moved to either the leading or trailing edge of the wing. In the
case of clap, the forces generated were relatively constant. Average
lift over drag for clap and fling as a function of the location of the
rigid part of the wing are shown in Fig.13C. Average lift over drag
increases as the rigid part is moved towards the leading edge of the
wing.

Streamline plots of the flow around wings during fling for three
wing designs are shown in supplementary material Fig.S5, and plots
of the wing configurations at four points in time are shown in Fig.14.
When the leading edge is rigid, two large leading edge vortices begin
to form as the wings fling apart. As translation begins, a pair of
trailing edge vortices forms and begins to grow in strength. When
the rigid wing is in the middle of the wing, large deformations of
the wings occur along the leading and trailing edges as the wings
are pulled apart. When the leading and trailing edges finally
separate, large leading edge vortices are formed. When the rigid
section is located at the trailing edge, the point of separation moves
from the trailing to the leading edge of the wing as the wings are
pulled apart. Large trailing edge vortices are formed at the beginning
of the stroke, and the leading edge vortices are small.

Streamline plots of the flow around wings performing clap with
three different wing designs are shown in supplementary material
Fig.S6. For the case of a rigid leading edge towards the end of the
upstroke, the wings bend as they are clapped together, reducing the
peak drag generated. When the rigid section is in the middle or
trailing edge of the wing, the fluid dynamics and forces generated
are similar to the rigid wing case since wing deformations are
minimal.

DISCUSSION
The results of this study suggest that wing flexibility may be
important for reducing drag forces generated during clap and fling
at low Re, and some lift augmenting effects may also be produced.
This is significant since the drag forces generated during two-wing
fling may be as much as 10 times higher than those generated for
one wing moving with the same motion. For flexible wings, the
fling part of the stroke is more like a peel, and the clap part of
the stroke is more like a reverse peel. When wing translation begins
with wing rotation (100% overlap), lift forces are higher for
flexible wings. As the wings peel apart, the point of separation
travels from the leading to the trailing edge of the wing. This delays
the formation of the trailing edge vortices, which reduces the
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Fig. 12. Average lift and drag coefficients during rotation and a 2.5 chord translation as a function of the bending stiffness. The bending stiffness was set to
0.25κ, 0.5κ, 0.75κ, 1.0κ, 1.25κ, 1.5κ and 2.0κ. (A) The average lift coefficient generated during fling was greatest when the bending stiffness was set to
1.25κ. The average lift generated during clap was relatively constant for this range of bending stiffness. (B) For the both cases, the average drag coefficients
increase with increasing bending stiffness. (C) Average lift over drag decreases with increasing bending stiffness.
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Wagner effect and sustains vortical asymmetry (large leading edge
vortex and small trailing edge vortex) for a larger portion of the
stroke (please see the discussion below). Increased lift production
by wing peel versus fling was also predicted by Ellington
(Ellington, 1984b).

Asymmetries in flexural stiffness along the wing chord also
influence aerodynamic performance. Wings that are more rigid along
the trailing edge of the wing maximize the average lift/drag forces
produced during fling. Wings that are more rigid in the middle
maximize the average lift force produced during fling. This result
suggests that differences in wing design could reflect different
performance parameters that an insect has ‘maximized’.

Average lift forces were greatest during fling when the flexural
stiffness of the wing was set to kbeam=1.25 κ. Using this value for
the flexural stiffness of the wings, deformations during translation
or single wing flapping are minimal, and the force coefficients
produced are comparable with the rigid wing case. These results
agree with the qualitative observations of Ellington (Ellington, 1980)
who oscillated single thrips’ wings at the frequency and amplitude
characteristic of flight. As the forces generated during the clap and
fling portion of the strokes are so much larger than the single wing
case because of wing–wing interactions, wing deformations in the
numerical simulations presented in this paper are significant and
greatly influence the aerodynamics. Measurements of the actual
flexural stiffness of tiny insect wings and experimental work that
considers wing–wing interactions at low Re are needed to verify
this effect.

L. A. Miller and C. S. Peskin

Relating the wake to the forces generated
To understand the aerodynamic mechanisms of lift and drag
generation, we apply the general aerodynamic theory for viscous
flows presented by Wu (Wu, 1981). For the particular case of fling
shown in Fig.15A, assume two wings were rotated apart along their
trailing edges and are now translating away from each other along
a horizontal plane. During rotation, two large leading edge vortices
(Rn1 and Rp1) of equal strength and opposite sign were formed and
remain attached to the wing. During translation, two small trailing
edge vortices of equal strength and opposite sign begin to form and
grow in strength (Rn2 and Rp2). Let the rest of the fluid domain Rf
be of negligible vorticity. Note that the subscript n denotes regions
of negative (clockwise) vorticity and p denotes regions of positive
(counterclockwise) vorticity. The total lift acting on both wings can
then be defined as follows (Miller and Peskin, 2005):

where |ω | is the absolute value of the vorticity. This equation
basically states that the total lift on both wings is proportional to
the difference between the magnitude of the time rate of change of
the first moment of vorticity associated with the leading edge
vorticity and the time rate of change of the first moment of trailing

FL = ρ
d
dt

x ω dx dy
Rn1∫∫ +

d
dt

x ω dx dy
Rp 1∫∫

⎛

⎝
⎜

⎞

⎠
⎟   

        −  ρ
d
dt

x ω dx dy
Rn 2∫∫ +

d
dt

x ω dx dy
Rp 2∫∫

⎛

⎝
⎜

⎞

⎠
⎟  ,          (16)

0 0.5 1
0

1

2

3

0 0.5 1
0

10

20

30

Rigid part of wing
0 0.5 1

0

0.1

0.2

0.3

0.4

Clap

Fling

A B C

A
ve

ra
ge

 C
L 

A
ve

ra
ge

 C
D

A
ve

ra
ge

 C
L/

C
D
 

Fig. 13. Average lift and drag coefficients during rotation and a 2.5 chord translation as a function of the portion of the wing that was made rigid. When the
rigid part of the wing was set 0.2, the lower 1/5 (trailing edge) of the wing was rigid. When the rigid part of the wing was set to 1.0, the top 1/5 (leading
edge) of the wing was rigid. (A) The average lift coefficient generated during fling was greatest when the middle part of the wing was rigid. The lowest lift
forces were generated when the trailing edge of the wing was rigid. The average lift generated during clap was relatively constant for each wing design.
(B) In the case of fling, the largest average drag coefficients were generated when the middle part of the wing was rigid. These forces dropped as the rigid
part was moved to either the leading or trailing edge of the wing. In the case of clap, the forces generated were relatively constant. (C) Average lift over drag
increases as the rigid part is moved towards the leading edge of the wing.
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Fig. 14. Plots of the configuration of the left
wing in a flexible wing pair with a rigid middle
section (black line), rigid leading edge (broken
line) and rigid trailing edge (gray line) at four
points in time corresponding to Fig. 13. The
wing with the rigid middle section greatly
deforms during the fling (ii–iii), generating large
lift and drag forces. The leading edge of the
wing with the stiff trailing edge lags behind,
producing a smaller leading edge vortex and
lower lift forces.
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edge vorticity. Therefore, suppression of the formation of the trailing
edge vortex from the motion of the peel should transiently enhance
lift forces during translation.

To understand the aerodynamic mechanism of drag generation,
consider the case of a wing in translation as shown in Fig.15B,C.
Both wings are started from rest and are now translating at a constant
velocity. The Re of the wing in (Fig.15A) is larger than that of
(Fig.15B) but both wings translate at Re <30 (this prevents the
separation of the trailing edge vortex). During translation, a leading
edge vortex (Rn) and a trailing edge vortex (Rp) of equal strength
and opposite sign were formed and remain attached to the wing.
Let the rest of the fluid domain Rf be of negligible vorticity. The
vortices formed are more diffuse for the lower Re. The total drag
force acting on both wings can then be defined as follows:

This equation basically states that increasing the time rate of change
of vorticity in the y-direction increases the relative drag forces
generated. In other words, larger vortices that move away from the
wing in the vertical direction generate larger drag forces than
compact vortices.

Limitations of the model
Although the lift forces generated for flexible clap and fling using
the particular wing kinematics described in this paper are in some
cases larger than the corresponding lift forces generated for the rigid
wing, one cannot extend these results to flexible wings in general.
In fact, a flexible single wing using the same motion generates lower
lift than a rigid wing. Because the wing kinematics studied in this
paper do not represent the optimal case, it is not necessarily true
that the optimal flexible wing stroke would outperform the optimal
rigid wing stroke. What can be concluded from this work is that (1)
the drag forces generated from wing–wing interactions can be an
order of magnitude larger than a single wing, and (2) the addition
of flexibility can reduce the drag but the maximum and average
drag forces are still substantially larger than the single wing case.

Ideally, one would like to be able to explore a wide parameter
space of wing beat kinematics and find the optimal rigid and flexible
wing strokes, similar to the studies presented by Berman and Wang
(Berman and Wang, 2007) for rigid wings and Alben (Alben, 2008)
for flexible appendages. Unfortunately, one cannot make the quasi-
steady or inviscid assumptions at Re=10 to make this sort of analysis
feasible. It may be possible to determine optimal rigid and flexible
wing strokes with the use of physical models, but new custom
experimental systems will need to be designed to measure the small
forces generated by flapping appendages at this scale.

Implications for bristled wings
Although wing flexibility reduces the amount of force needed to
clap the wings together and fling them apart, these forces are still
significantly larger than the forces generated during single-wing
translation. In addition, lift over drag ratios are lower for two-winged
clap and fling than for one-winged translation. It could be the case
that tiny insects sacrifice aerodynamic efficiency for increased lift.
Another possibility for some tiny insects is that wing fringing further
reduces the force required to clap the wings together and fling the
wings apart. During wing rotation in the clap and fling, there could
be some flow between the wings’ bristles, which would reduce the
aerodynamic forces generated. If the spacing of the bristles and the

   
FD = −ρ

d
dt

yω dx dy

= ρ
d
dt

y ω dx dy
Rn∫∫ − ρ

d
dt

y ω dx dy  .      
    

 (17)
Rp∫∫

R f∫∫

Re is near the transition where the bristled appendages act either as
leaky rakes or solid paddles (Cheer and Koehl, 1987), then it could
be possible for the wings to act as solid plates during translation.
This might allow for lift to be preserved during flight.

APPENDIX
The dimensional equations of motion for a two-dimensional fluid
are as follows:

�•u(x, t) = 0 , (A2)

where u(x, t) is the fluid velocity, p(x, t) is the pressure, F(x, t) is
the force per unit area applied to the fluid by the immersed wing,
ρ is the density of the fluid and μ is the dynamic viscosity of the
fluid. The independent variables are the time t and the position x.
Note that bold letters represent vector quantities. EqnsA1 and A2
are the Navier–Stokes equations for viscous flow in Eulerian form.
EqnA2 is the condition that the fluid is incompressible.

The dimensional interaction equations between the fluid and the
boundary are given by:

F(x, t) = ∫f(r, t) δ(x – X(r, t)) dr , (A3)

∂X r , t( )
∂t

= U X r, t( )( ) = u x, t( )δ x − X r, t( )( )d x∫  ,         (A4)

ρ
∂u x, t( )

∂t
+ u x,t( ) • ∇u x, t( )

⎛

⎝
⎜

⎞

⎠
⎟ =

−∇p x, t( ) + μ Δu x, t( ) + F x, t( ) (A1)

Rp

Rn

Rp2

Rp1

Rn2

Rn

Rp

B C

A

Fig.15. (A)Regions of positive and negative vorticity during the translation of
two wings following ʻclap and flingʼ. Rn1 and Rn2 denote regions of negative
vorticity. Rp1 and Rp2 denote regions of positive vorticity. The two wings are
initially clapped together and rotate apart along their trailing edges. This
rotation creates two large leading edge vortices. Towards the end of
rotation, the wings begin to translate apart. During translation, two weak
leading edge vortices begin to form. In this diagram, the wings are moving
away from each other at a constant speed and angle of attack. The leading
edge vortices (denoted by Rn1 and Rp1) are stronger than the trailing edge
vortices (denoted by Rn2 and Rp2). This vortical asymmetry results in larger
lift forces than in the symmetrical case without fling. (B,C) Regions of
positive and negative vorticity during the translation of two wings from rest.
Both wings are started from rest and are now translating at a constant
velocity. The Reynolds number (Re) of the wing in B is larger than that of C
but both wings translate at Re <30 (this prevents the separation of the
trailing edge vortex). The vortices formed are more diffuse for the lower Re.
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where f(r, t) is the force per unit length applied by the wing to
the fluid as a function of Lagrangian position and time, δ(x) is a
two-dimensional delta function, X(r, t) gives the Cartesian
coordinates at time t of the material point labeled by the
Lagrangian parameter r. Eqn A3 applies force from the boundary
to the fluid grid, and Eqn A4 evaluates the local fluid velocity at
the boundary. The boundary is then moved at the local fluid
velocity and this enforces the no-slip condition. Each of these
equations involves a two-dimensional Dirac delta function δ,
which acts in each case as the kernel of an integral transformation.
These equations convert Lagrangian variables to Eulerian
variables and vice versa.

The immersed boundary equations are given by:

ftarg(r, t) = ktarg (Y(r, t) – X(r, t)) , (A5)

f(r, t) = ftarg (r, t) + fbeam (r, t) + fstr (r, t) . (A8)

These equations describe the forces applied to the fluid by the
boundary in Lagrangian coordinates. Eqn A5 describes the force
applied to the fluid as a result of the difference between the actual
position of the wing and the position of a target boundary; the
motion of which serves to drive the motion of the wing in this
work. The function ftarg(r, t) gives the external force per unit length
applied to the wing, ktarg is a stiffness coefficient and Y(r, t) gives
the desired position of the wing as a function of time. Eqn A6
describes the force applied to the fluid as a result of the
deformation of the actual boundary, which here is modeled as a
beam. The function fbeam(r, t) gives the force per unit area of wing
that results from the bending of the beam and kbeam is the
corresponding stiffness coefficient. Eqn A7 describes the force
applied to the fluid per unit area of the wing as a result of the
resistance to stretching by boundary given as fstr(r, t), where kstr

is the corresponding stiffness coefficient. Finally, Eqn A8
describes the total force applied to the fluid per unit length, f(r,
t), as a result of both the target boundary and the deformation of
the boundary.

The system of differentio-integral equations given by
Eqns A1–A8 was solved on a square grid with periodic boundary
conditions. The Navier–Stokes equations were discretized on a
fixed Cartesian grid, and the wings were discretized on a moving
Lagrangian array of points. Consider the discretization of the
equations that describe the force applied to the fluid as a result
of the deformation of the boundary (Eqns A5–A8). Let Δt be the
duration of the time step, let Δr be the length of a boundary spatial
step, let n be the time step index and let r define the location of
a boundary point in the Lagrangian framework (r=mΔr, m is an
integer). Also, let Xn(r)=X(r, nΔt), Yn(r)=Y(r, nΔt), un(x)=u(x,
nΔt) and pn(x)=p(x, nΔt). For any function φ(r), let (Drφ)(r) be
defined by the following equation:

Drφ( ) r( ) =
φ r +

Δr
2

⎛
⎝⎜

⎞
⎠⎟

− φ r −
Δr
2

⎛
⎝⎜

⎞
⎠⎟

Δr
 .              (A9)

fstr (r ,t) = kstr
∂
∂r

∂ X

∂r
− 1

⎛

⎝
⎜

⎞

⎠
⎟  

∂X(r, t) ∂r
∂X(r, t) ∂r

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
       (A7)

fbeam r ,t( ) = −kbeam

∂4 X r, t( )
∂r4

                (A6)

Using these definitions, the target force, ftarg, defined by EqnA5,
is discretized as follows:

The bending force, fbeam, defined by EqnA8, is discretized as
follows:

where (f n
beam)l=fbeam(lΔr, nΔt), Xn

m=X(mΔr, nΔt), nf is the total
number of grid points in the boundary and δml is the Kronecker
symbol, which is defined as follows:

Of course, EqnA11 can be ‘simplified’ by making use of the
definition of δml to collapse the summations to individual terms but
it is actually advantageous not to do this. The reason is that EqnA11
automatically handles the otherwise special cases l=1, 2, nf–2 and
nf–1. An efficient implementation of EqnA11 which handles these
cases seamlessly is to loop over m rather than l and, for each m, to
compute the contribution to all of the relevant values of (fbeam)l. For
more details on the discretization of the bending force, see Zhu and
Peskin (Zhu and Peskin, 2002). The stretch force, fstr, defined by
EqnA7, is discretized as follows:

Finally, the total force applied to the fluid by the boundary is
given by the following equation:

fn = fn
str +fn

targ +fn
targ . (A14)

Because the Lagrangian array of boundary points does not
necessarily coincide with the fixed Cartesian grid used for the
computation of the fluid velocities, a smoothed approximation to
the Dirac delta function (Eqns A3–A4) is used to handle the
fluid–boundary interaction. This approximate delta function applies
a force from the boundary to the fluid and interpolates the fluid
velocity. The approximate two-dimensional Dirac delta function,
δh, used in these calculations, is given by the following equations:

where h is the size of the spatial step in the Cartesian grid and 
x=(x, y).

Using this choice of δh, EqnsA3–A4 can be discretized as follows:

   
Fn x( ) = f n (r )δh x − Xn r( )( )Δr

r
∑  ,         (A16)

  δh x( ) = h−2φ
x
h

⎛
⎝⎜

⎞
⎠⎟

φ
y
h

⎛
⎝⎜

⎞
⎠⎟

φ s( ) =
1

4
1+ cos

π s
2

⎛
⎝⎜

⎞
⎠⎟

⎛

⎝⎜
⎞

⎠⎟
       if s ≤ 2 ,

0                               

         (A15)
⎧

⎨
⎪

⎩
⎪

fstr
n r( ) = kstr Dr Dr Xn (r ) − 1( ) Dr Xn r( )

D r Xn r( )
⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

 .            (A13)

  
δml =

1           if m = l
0          if m ≠ l  .            

  (A12)
⎧
⎨
⎩⎪

   

fbeam
n( )l

=

kbeam

Δr( )4
Xm+1

n + Xm−1
n − 2Xm

n( )
m=2

n f −1

∑ 2δml − δm+1,l − ,δm−1,l( )       (A11)

ftarg
n = ktarg Yn (r ) − Xn (r )( ) + ctarg

Yn (r ) − Yn−1(r )

Δt
−

Xn (r ) − Xn−1(r )

Δt
⎛
⎝⎜

⎞
⎠⎟

 .        (A10)
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where ∑
r

is the sum over all of the discrete collection of points of the
form r=mΔr, and ∑

x
is the sum over all of the discrete points of the

form x=(ih, jh), where i, j, m are integers and h is the mesh width.
The final step is to discretize the incompressible Navier–Stokes

equations. The method used in this paper is implicitly defined as
follows:

D0•un+1 , (A19)

where D0 is the central difference approximation to �. It is defined
as follows:

D0=(D0
1, D0

2) ,

where {e1, e2} is the standard basis of R2. The operators Dα
± are

forward and backward difference approximations of �/�xα. They are
defined as follows:

D0=(D0
1, D0

2) ,

Thus, the viscous term given as ∑
2

α=1
Dα

+ Dα
– is a difference

approximation to the Laplace operator. Finally, Sh(u) is a
skew-symmetrical difference operator, which serves as a difference
approximation of the non-linear term u•�u. This skew-symmetrical
difference operator is defined as follows:

Sh(u)φ = gu • Dh
0φ + g Dh

0 • (uφ) . (A23)

For further discussion, see Peskin (Peskin, 2002). Since the
equations are linear in the unknowns un+1 and pn+1, the Fast Fourier
Transform (FFT) algorithm was used to solve for un+1 and pn+1 from
un, pn and Fn.

LIST OF ABBREVIATIONS
c chord length of the wing
CD drag coefficient
CL lift coefficient
D0 central difference approximation to �
Dα

± forward and backward difference approximations of �/�xα
f� dimensionless force acting on the wing
F mean lift force
F force per unit area applied to the fluid by the immersed wing
F� non-dimensional force per unit volume
FD drag force per unit length
FL lift force per unit length
F(x, t) force per unit area applied to the fluid by the immersed wing
fbeam(r, t) force per unit area of wing that results from the bending of the

beam and kbeam is the corresponding stiffness coefficient
f(r, t) force per unit length applied by the wing to the fluid as a

function of Lagrangian position and time t
fstr(r, t) force applied to the fluid per unit area of the wing as a result

of the resistance to stretching by boundary 

Dα
− φ( ) x( ) =

φ x( ) − φ x − heα( )
h

              (A22)

Dα
+ φ( ) x( ) =

φ x + heα( ) − φ x( )
h

              (A21)

Dα
0 φ( ) x( ) =

φ x + heα( ) − φ x − heα( )
2h

 ,             (A20)

ρ
un+1 − un

Δt
+ Sh un( )un⎛

⎝⎜
⎞
⎠⎟

− D0 pn+1 = μ Dα
+

α =1

2

∑ Dα
−un+1 + Fn         (A18)

Un+1 r( ) = un+1(x)δh x − Xn r( )( )h2

x
∑             

         
Xn+1 r( ) − Xn r( )

Δt
 = Un+1 r( )  ,       (A17)

ftarg(r, t) external force per unit length applied to the wing
h=Δx=Δy mesh width of fluid grid
k� dimensionless bending stiffness
kbeam dimensional flexural stiffness
kstr stiffness coefficient for the tension or compression of the wing
ktarg dimensional stiffness coefficient of the target springs 
L characteristic length
m� dimensionless mass
n unit vector pointing normal to the wing
n as subscript is negative (clockwise) vorticity
n time step index
nf total number of grid points in the boundary
p pressure
p as subscript is positive (counterclockwise) vorticity
p� non-dimensional pressure
p(x, t) pressure
Rn leading edge vortex
Rp trailing edge vortex
Rf fluid domain
r location of a boundary point in the Lagrangian framework 
r unit vector tangent to the wing
S surface area per unit length of the model wing
Sh(u) skew-symmetrical difference operator
t dimensional time
t� non-dimensional time
T tension
U velocity vector in Lagrangian framework
U characteristic velocity
u fluid velocity
u represents the velocity of the separation point
u� non-dimensional velocity
uc average velocity of air mass
unzipping velocity of air mass between wings
uz(t) unzipping velocity of air mass between wings
u(x, t) fluid velocity in Eulerian framework
V maximum translational velocity during the stroke
X(r, t) Cartesian coordinates at time t of the material point labeled by

the Lagrangian parameter r
x position in Cartesian coordinates
x exposed portion of the wing
x� non-dimensional position
xe length of the exposed section of the wing
Y(r, t) desired Eulerian position of the wing
β constant half-angle between the wings
Γ circulation
Δr length of a boundary spatial step
Δt duration of the time step
Δθ total angle through which rotation occurs.
Δτaccel dimensionless duration of translational acceleration
Δτdecel dimensionless duration of translational deceleration
Δτrot dimensionless duration of the rotational phase
δ(x) two-dimensional delta function
δh(x) discretization of the two-dimensional delta function
δml Kronecker symbol
� curvature
v(τ) translational velocity at dimensionless time τ
μ dynamic viscosity of the fluid
ρ density of the fluid
ρs mass per unit length of the wing
∑
r

sum over all of the discrete collection of points of the form
r=mΔr

∑
x

sum over all of the discrete points of the form x=(ih,jh), where
i, j, m are integers

τaccel dimensionless time when translational acceleration begins
τdecel dimensionless time when translational deceleration begins
τfinal dimensionless duration of each half stroke
τturn dimensionless time wing rotation begins
ωrot constant determined by the total angle of rotation and by the

duration of the rotational phase in Eqn 15
ω(τ) angular velocity as a function of dimensionless time
|ω | absolute value of the vorticity
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