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INTRODUCTION
Fish locomotion is actuated through rhythmic undulation of flexible
bodies and/or unsteady flapping of body-attached fins.
Morphologically, these fins fall into two categories: median fins
(e.g. dorsal fins, ventral fins and caudal fins) and paired fins (e.g.
pectoral fins and pelvic fins). Paired fins are employed mostly in
motion stabilization, maneuvering and labriform swimming (Webb,
1973; Blake, 1979; Vogel, 1994; Standen, 2008).

In most bony fishes, the attached fins possess a characteristic
skeleton-reinforced membrane structure – a soft (and thin)
collagenous membrane strengthened by bony fin rays. The
Young’s modulus of the fin rays is much larger than that of the
membrane so that the bending stiffness of the fin is determined
mostly by the embedded rays (Lauder et al., 2006; Lauder and
Madden, 2007). The non-uniform distribution of these rays
imparts anisotropic structural flexibility so that certain
deformations may be favored while others are restricted. The basal
end of each ray attaches to four separate muscles. This architecture
enables a fish to control the motion of each ray individually. In
addition, the curvature along a ray can also be actively controlled.
According to morphological studies (Harder, 1975; Kardong,
1998), a fin ray contains a central bundle of collagen surrounded
by small, segmented bony elements called hemitrichs. These
elements are paired and resemble a bimetallic strip with two
elongated bony elements separated by the central collagen core.
A hemitrich is connected with short ligaments and elastic fibers
so that bending moments can be implemented along the length
of a ray (Alben et al., 2007).

Recently, ray fins, with their capacity of sophisticated shape
control, have attracted much attention owing to their possible
applications on bio-inspired engineering. The structural lightness
and robustness, controllability, versatility and deployability of these
bio-structures make them promising prototypes of novel propulsion
systems. Indeed, experimental tests have been undertaken to study

hydrodynamic performance of a mechanical replica of a ray fin
(Tangorra et al., 2007).

Our study is motivated not only by the scientific need to
understand the structure vs function of ray fins but also by the
biomimetic applications of these bio-structures on autonomous
underwater vehicles (AUVs) or micro-aerial vehicles (MAVs). The
high efficiency and versatility of this design are especially useful
under complex conditions, e.g. in confined space, low speed and
unsteady currents. Our primary objective is to identify essential
characteristics of ray fins that contribute most to their locomotion
performance. From the biomimetic point of view, it is convenient
to create simple, easily manufactured devices possessing essential
characters of fish fins rather than exact copies of nature. For this
reason, instead of exactly duplicating the fin of a specific species
(Ramamurti et al., 2002; Mittal et al., 2006), in the current
investigation we consider idealized fins with simplified geometry,
internal structure and kinematics.

In a previous work we have computationally examined the
dynamics of a trapezoid fin supported by a number of nonlinear
beams resembling the caudal fins of bony fishes (Zhu and Shoele,
2008). Numerically, the fluid–structure interaction problem was
solved by coupling a large Reynolds number boundary-element
method (BEM) with a nonlinear Euler–Bernoulli beam model. At
the base ends, the orientations of the rays are controlled
individually, a pivotal characteristic that allows for different
locomotion modes to be achieved through synchronized ray
motions. For example, by synchronizing the rays a caudal fin can
undergo both homocercal (with dorso–ventral symmetry) and
heterocercal (with dorso–ventral asymmetry) motions. In both
cases, passive flexibility of the rays greatly increases the
propulsion efficiency of the fin. Moreover, it also reduces lateral
force generation and the sensitivity of propulsion efficiency to
kinematic parameters. Both of these features are beneficial to the
performance of the fin.
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SUMMARY
We investigate the thrust generation capacity of a thin foil consisting of a membrane strengthened by embedded rays that is
geometrically, structurally and kinematically similar to pectoral fins of bony fishes during lift-based labriform locomotion. Our
numerical model includes a fully nonlinear Euler–Bernoulli beam model of the skeleton and a boundary-element model of the
surrounding flow field. The fin undergoes a dorso–ventral flapping activated by rotations of the rays. Both the trailing edge
vortices (TEV) and the leading edge vortices (LEV) are accounted for and modeled as shear layers. The thrust generation and
propulsion efficiency are examined and documented. Our results show that synchronization of rays is pivotal to the performance
of the system. A primary factor that determines the performance of the fin is phase lags between the rays, which create variations
of the effective angle of attack at the leading edge as well as shape changes throughout the fin surface. Structural flexibility of the
rays leads to passive deformations of the fin, which can increase the thrust generation and the propulsion efficiency.
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We herein propose a numerical study of a fin that is geometrically,
structurally and kinematically similar to a pectoral fin during
labriform swimming [specifically, as discussed later, the parameters
chosen in this study are close to data measured from striped surfperch
(Drucker and Jensen, 1996a; Drucker and Jensen, 1996b; Drucker
and Jensen, 1997)].

At low speed, labriform swimming using pectoral fins is a primary
mode of locomotion (Webb, 1973). Two extreme cases of fin
movements, drag-based (i.e. rowing) and lift-based (i.e. flapping),
have been identified (Blake, 1983; Vogel, 1994), although it is
known that pectoral fin motions are usually complicated and rarely
exhibit pure drag-based or lift-based movements (Gibb et al., 1994).
In drag-based propulsion, it is found that with rigid fins positive
thrust is generated in half of the period (i.e. no thrust generation
during the recovery phase) so that the duty factor is 50% (Blake,
1981; Lauder and Jayne, 1996). Recently Mittal et al. (Mittal et al.,
2006) and Tangorra et al. (Tangorra et al., 2008) have demonstrated
that with structural flexibility the duty factor can be increased to
100%. In lift-based propulsion positive thrust generation is obtained
during the whole flapping period and the duty factor may approach
100% (Vogel, 1994; Walker and Westneat, 2002). It was also found
that lift-based propulsion generated higher efficiency, while drag-
based propulsion generated higher thrust. Based upon this, it was
suggested that drag-based mode was employed mostly in low speed
maneuvering, while lift-based mode was used in power-conserving
cruising (Kato, 1999; Archer et al., 1979). Incidentally, the lift-based
mode is much simpler kinematically than the drag-based mode and
thus easier to materialize in biomimetic devices.

Our focus is upon the performance of a pectoral fin in lift-based
thrust generation (Westneat, 1996; Walker and Westneat, 1997).
The major aspects we are going to test in this numerical study are:
(1) effects of leading edge vortices (LEV) to the propulsion
performance of the fin; (2) significance of the synchronization of
ray motions; and (3) effects of the structural flexibility of the rays.
Towards this end, we apply a fully coupled fluid–structure
interaction model in which the rays are modeled as Euler–Bernoulli
beams and the fluid motion is solved as potential flow. Vorticity
generations from both the trailing edge and the leading edge are
modeled as shear layers and mathematically represented as
distributions of dipoles on thin sheets.

The paper is organized as follows. We first specify the geometry,
internal structure and kinematics of the idealized fin. The
fluid–structure interaction model, including the BEM (with LEV
incorporated) and the fully nonlinear structural model, is then briefly
described. Using this model, we investigate the dynamics and near-
body flow field of the flapping fin, focusing on the effects of fin
kinematics as well as structural flexibility. Finally, conclusions are
drawn.

MATERIALS AND METHODS
Physical model of a paired fin and its kinematics

As shown in Fig.1, we consider a skeleton-reinforced fin, which is
reminiscent of the pectoral fins of a fish (e.g. Drucker and Jensen,
1997; Thorsen and Westneat, 2005). The fin is supported by 15
rays, tagged Ray 1 to Ray 15. A Cartesian coordinate system (x, y,
z) is defined, within which the base ends of the rays form a baseline,
which lies on the x-axis with length x0. The trailing ends outline
the trailing edge of the fin. The base ends of the rays are pinned
during the motion. The fin has a uniform thickness d except for the
vicinity of the trailing edge (within a region around 4% of the chord
length) where tapering is implemented. The purpose of this tapering
on the profile of the fin is to create a sharp trailing edge required

for implementation of the Kutta condition as discussed later. It does
not affect the rays (i.e. they are still considered to be uniform beams).
θi, the angle between the base end of Ray i and the x-axis, varies
evenly from 90deg. (Ray 1) to 30deg. (Ray 15) and does not change
with time during the flapping motion. The length of Ray i, Li, is
given as L1{1–0.8[(i–1)/14]5/4}, where L1 is the length of Ray 1 (the
ray at the leading edge).

The fin undergoes a translational motion in the x direction with
constant speed U. To achieve lift-based thrust generation, a
dorso–ventral flapping is activated by rotating each individual ray
around the baseline. The angle between Ray i and the x–z plane is
denoted as αi and prescribed as αi=α0[1–cos(ωt–ϕi)]/2, where ω is
frequency, ϕi is the phase of the i-th ray in rolling and t is time.
According to this depiction, during the flapping motion each ray
rotates (with the baseline as the rotating axis) between αi=0 and α0

(α0 is maximum angle of rolling of each ray in one stroke). During
the downstroke period a ray goes from α1=0 to α0. The recovery
from α0 to 0 occurs in the upstroke period.
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Fig. 1. Geometry and internal structure of the fin. x0, length of baseline; d,
thickness of fin.
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Fig. 2. Kinematics of fin flapping with ϕ15=45 deg. U, forward speed.
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We also define a Strouhal number St�ωL1/2πU, where U is the
forward speed. In this study we focus on a range of St between 0.1
and 0.5. To imitate observed fin activation at moderate swimming
speed (Gibb et al., 1994), we assume that between fin strokes there
are periods of inactivity during which the fin is held in its vertical

position (αi=0). Thus, in our simulations we consider only one period
of flapping motion. The motion starts from the vertical position
(Fig.2). It is then followed by a downstroke and an upstroke (also
known as abduction and adduction, respectively). The motion starts
from Ray 1 and ends at the moment it returns to its original position
(i.e. the duration of simulation is T=2π/ω). Unless otherwise
specified, for simplicity we assume that the phase ϕi varies linearly
from ϕ1=0 to ϕ15; thus, ϕ15 is used as a metric of the phase difference
between neighboring rays. Both the structural deformation of the
rays and the phase difference between them can cause the bow shape
in lateral view as observed in experiments (Drucker and Jensen,
1997).

In the following calculations, we use L1=0.1 m, x0=0.03 m,
d=2 mm, α0=145 deg. and U=0.5 m s–1. Although we aim at
examining the mechanical principles about this type of design in
general rather than the performance of a particular species, the choice
of these parameters has certain biological relevance. Specifically,
most parameters in this study are chosen following the experimental
measurements by Drucker and Jensen of striped surfperch
(Embiotoca lateralis) (Drucker and Jensen, 1996a; Drucker and
Jensen, 1996b). In high-speed labriform cruising, this fish achieves
a speed of 0.48ms–1, around 80% of pectoral caudal gait transition
speed. As shown in their experiments, the flapping amplitude of the
fin tip is about twice the span of the fin, and the Strouhal number
based upon the flapping period reported by Drucker and Jensen
(Drucker and Jensen, 1997) is around 0.3–0.4. These are within the
range of the fin kinematics considered in our present study.

Structural dynamics model
Despite the fact that rays have complicated internal structures and
are usually tapered/branched near the trailing ends, for simplicity
in our model the rays are depicted as cylindrical Euler–Bernoulli
beams with uniform cross-sections. These beams can be stretched
(with tensile stiffness EA, where E is the Young’s modulus and A
is the cross-sectional area) or bent (with bending stiffness EI). In
this study we concentrate on the passive deformability of the rays,
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y

z

Fig. 3. Vorticity sheets shed from the trailing edge (in red) and the leading
edge (in blue and green).

Fig. 4. Streamlines within a plane rotating with Ray 1 (the
leading edge) during a flapping period. Strouhal number
St=0.4, ϕ15=60 deg. Leading edge vortex (LEV) is included
and the rays are flexible. t, time; T, period. C1, C2, C3 and
C4 are regions of circulation.
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while the active deformability activated by the muscles/tendons
connected to the rays (Alben et al., 2007) is not considered.

Numerically, a three-dimensional nonlinear model is employed
to simulate the dynamics of the rays (Zhu and Shoele, 2008). This
method was originally developed to study the fully nonlinear
dynamics of marine cables (Tjavaras et al., 1998), and is
characterized by its capacity to simulate arbitrary configurations and
large deformations owing to the implementation of a dual
Euler–Lagrangian coordinate system and the robust Euler parameters
(e.g. Junkins and Turner, 1986) instead of the more conventional
Euler angles, which suffer from singularities.

To elaborate, by invoking the conservation of momentum we have
(Tjavars, 1996):

where m is the mass per unit length, s is a Lagrangian marker
measuring the distance from a point on the ray to the basal end
along the unstretched ray, ε is the strain, V and ω are the translational
and angular velocities, respectively, T is the internal force inside

m 
∂V

∂t
+ ωω V

⎛
⎝⎜

⎞
⎠⎟

=
∂T

∂s
+ ΩT + 1+ ε( ) Fh + Fc( )  , (1)

the ray, Fc is the constraining force from the membrane that controls
the distance between neighboring rays and Fh is the hydrodynamic
force on each ray.

Similarly, from conservation of angular momentum another set
of equations is obtained as:

where M is the internal moment. Ω is the Darboux vector measuring
the material torsion and curvatures of the ray. τ is the tangential
vector along the ray. M and Ω are related by Mτ=GJΩτ, Mn=EIΩn

and Mb=EIΩb. The subscripts τ, n and b represent components in
the tangential, normal and bi-normal directions, respectively, and
GJ represents the torsional stiffness. In the following simulations
with flexible rays, unless otherwise specified we assume E=1GPa
(e.g. Lauder et al., 2006); a much larger E (100GPa) is applied to
approximate the behavior of a rigid ray. Because no twisting motion
is considered, the value of GJ is irrelevant. To model the viscoelastic
behavior of the rays, we further replace E by E+D∂/∂t, where the
viscous coefficient D is chosen to be 0.4sGPa. The diameters of

ω

∂M

∂s
+ ΩM + 1+ ε( )3

τT = 0 , (2)
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Fig. 5. Deformation of the fin during one flapping period with rigid (upper row) and flexible (lower row) rays. Strouhal number St=0.4, ϕ15=60 deg. Leading
edge vortex (LEV) is included. t, time; T, period.

t=3T/4 t=Tt=T/2t=T/4

Fig. 6. The flow field (streamlines) within the same rotating plane as in Fig. 4 viewed from a coordinate system moving with the point where the leading edge
intersects this plane. Strouhal number St=0.4, ϕ15=60 deg. Leading edge vortex (LEV) is included and the rays are flexible. t, time; T, period.
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the rays are estimated by using the argument in Alben et al. (Alben
et al., 2007), i.e. during normal swimming the bending energy stored
in the fin must be balanced by the kinetic energy of the flow.
According to their estimation, for this to be true the EI of a ray, its
length L and the swimming speed U must be related by
EI/L<U2L3/12, based upon which we choose the radius of a ray to
be 1mm.

For the i-th ray, its base end is pinned in space with the
orientation determined by the angles θi and αi. Its trailing end is
treated as a free end with no external load. The resulting system of
nonlinear equations is solved by an efficient finite difference
algorithm, the modified box method (Tjavaras, 1996).

The hydrodynamic load on the rays is imposed via the attached
membrane, which is modeled as arrays of linear springs connecting
the neighboring rays. According to Lauder et al. (Lauder et al., 2006),
the membrane between fin rays has a modulus of about 0.3–1.0MPa.
If its thickness is smaller but comparable with the effective diameter
of the ray, the spring constant per unit length should be O(103)Nm–2;

in this study we choose the spring constant to be 2000Nm–2. The
rays are assumed to have the same density as water. The mass of
the membrane is not considered because it is much smaller than the
added mass.

Fluid dynamics model
We consider cases with large Reynolds numbers (Re) so that the
flow field can be described by defining a flow potential Φ(x,t), where
x=(x, y, z) is the position vector [as demonstrated by Anderson et
al. (Anderson et al., 1998)], predictions from a potential flow model
are in reasonable agreement with experimental measurements for a
flapping foil when Re~O(104). The vorticity shed from the trailing
edge of the fin is physically modeled as a zero-thickness shear layer
and mathematically represented by a thin sheet of distributed
dipoles. The strength of the newly shed vortices is determined by
the Kutta condition at the trailing edge (Zhu et al., 2002).

A key characteristic of our current fluid dynamics model is the
inclusion of vorticity shed from the leading edge area. Following
the treatment of leading edge separations within the potential flow
framework (Katz, 1980; Dong, 2007), we model the leading edge
separation as thin shear layers (i.e. in the same fashion as the trailing
edge separation). This depiction, per se, is consistent with
experimental visualizations that show that vorticity shed from the
leading edge area starts as thin vorticity layers before they roll-up
and form individual vortices (Taneda, 1977).

Katz studied the dynamics of two-dimensional flow around a thin
plate (Katz, 1980). In that model, LEV was depicted as a shear layer
initiated from a prescribed separation point near the leading edge.
Good comparisons with experiments were achieved over a large
range of angle of attack. A similar model was applied to solve the
flow around a thin plate, in which vorticity shed from both edges
are represented as vortex sheets emanating from the sharp edges
(Jones, 2003). Dong extended this method to three dimensions,
unsteady flow and finite foil thickness (Dong, 2007). An algorithm
was developed to predict the unsteady separation lines by using the
adverse pressure gradient (Faltinsen and Pettersen, 1987). The
accuracy of this method has been tested via comparisons with
experimental measurements of a foil undergoing pitching and
heaving motions (Read, 2000). It was demonstrated that by including
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Fig. 7. Comparison of the effective angles of attack near the tip of the
leading edge between a fin with rigid rays and one with flexible rays.
Leading edge vortex (LEV) is included. t, time; T, period.

Fig. 8. (A) Strength of dipole distribution in the vorticity layer shed from the trailing edge (normalized by UL1). (B) Iso-surface of the vorticity field. Leading
edge vortex (LEV) is not included in this simulation. Strouhal number St=0.4, ϕ15=60 deg. The rays are flexible. t, time; T, period, U, forward speed; L1,
length of Ray 1.
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this simplified LEV representation the accuracy of the potential flow
based prediction is significantly improved. Specifically, it was found
that in general the incorporation of LEVs greatly reduce the
predicted thrust generation.

Taking advantage of the special geometry of the fin we study,
in our model we assume that the locations of leading edge separation
are fixed at sharp edges existing near the leading edge, so that
although we model LEV in the same manner as the abovementioned
studies, the complicated algorithm to locate separation lines is not
required. Furthermore, by using two vortex sheets shed alternatively,
one from the upper side and the other from the lower side of the
leading edge, we assume that each vortex sheet remains on its side
of the fin, so that the singularity associated with a vortex sheet
passing through the fin is avoided. Otherwise to eliminate this
singularity it requests special treatment (Dong, 2007).

As shown in Fig.3, in our approach the LEV is modeled as two
shear layers, one from the upper side and the other from the lower
side of the leading edge, where sharp angles exist between
neighboring panels. Similar to their trailing edge counterpart, the
strengths of these shear layers are determined by invoking the Kutta
condition. In addition, to prevent interceptions of these shear layers
with the fin itself, which will induce singularity, at each time step
the distances between the shear layers and the fin are carefully
monitored. Whenever interception is likely to occur, the shear layer
is pushed away from the fin so that singularity is prevented. Although
our model allows continuous vorticity generation from both
separation lines at the leading edge, it has been demonstrated in our
results that at any given moment only one of them is associated
with significant vorticity shedding.

Fluid–structure coupling
To solve the fluid and the structural problems simultaneously in a
fully coupled algorithm, we employ the following iteration method:
at each time step to start the iteration we apply an initial guess of
fin deformation and solve the hydrodynamic problem through the
BEM. Based upon this the hydrodynamic load is updated and applied
to calculate the body deformation; if this recalculated deformation
is not sufficiently close to the initial guess it is used as the initial
guess in the next iteration step.

Detailed description and validation of this iteration method are
provided in previous publications (Zhu, 2007; Zhu and Shoele,
2008).

Numerical issues
Numerically, the fluid dynamics problem is solved using a boundary-
element approach by discretizing the fin surface Sb into Nb panels
Sbj, j=1, .…, Nb, and the wake surfaces Sw into Nw panels, where
Nb is the total number of panels on the fin surface, Sbj represents
one panel and Nw is the number of panels on the wake. By satisfying
the no flux condition at the centroids of the panels on the fin surface
this boundary value problem is formulated as a system of linear
equations and solved numerically (Katz and Plotkin, 1991; Zhu et
al., 2002).

After obtaining Φ(x,t), the hydrodynamic pressure (p) is
determined through Bernoulli’s equation, and given as:

ω

   

p x,t( ) = −ρ
∂Φ x,t( )

∂t
+

1

2
∇Φ x,t( ) 2⎧

⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
 , (3)
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Fig. 9. Strength of dipole distribution of the vorticity layer shed from (A) the upper side of the leading edge, and (B) the lower side of the leading edge. The
dipole strength is normalized by UL1 (C) Iso-surface of the vorticity field generated by the leading edge vortices (LEV). Strouhal number St=0.4, ϕ15=60 deg.
The rays are flexible. t, time; T, period, U, forward speed; L1, length of Ray 1.
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where ρ is the density of water (103 kg m–3). We assume that the
hydrodynamic force acting on this panel, pΔSbj (ΔSbj is the area
of the panel), is transferred equally to four grid points that are
closest to the panel on the two neighboring rays (two points on
each ray).

Hydrodynamic forces
Integrating p over the fin surface, we obtain the overall
hydrodynamic force on the fin (F) as:

F = ∫∫Sb p(x�,t)ndx� , (4)

where n is a unit normal vector pointing into the fin. The power
(P) required to drive the fin is given as:

P = ∫∫Sb p(x�,t)n · Vb(x�,t)dx� , (5)

where Vb is the instantaneous velocity at the surface of the fin.
The propulsion efficiency η is defined as:

η = FTU / P , (6)

where FT=–Fx and P represent the thrust force and power
consumption averaged over one period T, respectively. To
characterize the hydrodynamic performance of the fin, we herein
define a mean thrust coefficient CT=FT/GρL1

2U2.

The dynamics of the fin is also characterized by generation of
lift force Fz and lateral force Fy. Correspondingly, we will examine
the lift coefficient CL=Fz/GρL1

2U2 and the lateral force coefficient
Cy=Fy/GρL1

2U2, focusing upon the first-harmonic components
CL

(1)=2/TRe{∫
T

0CL(t)eiωtdt} and Cy
(1)=2/TRe{∫

T

0Cy(t)eiωtdt}.

RESULTS
Using the fully coupled model we study cases with St=0.1~0.5 and
ϕ15 varying from 30deg. (π/6) to 120deg. (2π/3). To put this choice
of phase lag in perspective, we note that, according to Webb (Webb,
1973), the phase lag between leading and trailing edges varies with
swimming speed, ranging from π at 0.2BL s–1 to 0.2π at higher
velocities.

Flow visualization and fin deformation
We first study the near-body flow field around the fin as well as
the deformation of the fin itself during a single downstroke–upstroke
period.

In Fig.4 we plot the in-plane streamlines within a plane parallel
to the rotating axis (i.e. the baseline). This plane rotates with Ray
1 and its distance to the baseline remains as 0.75L1. The fin is flexible
with St=0.40 and ϕ15=60deg. Four snapshots at different phases of
motion are shown. At t=T/8 (i.e. at the beginning of the downstroke
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Fig. 10. (A) Mean thrust coefficient CT and (B)
propulsion efficiency η as functions of the Strouhal
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motion), a pair of counter-rotating circulations are generated, one
from the leading edge (marked as C1) and the other from the trailing
edge (marked as C2). These circulations are then shed into the wake
(see the snapshot at t=T/2). After the transition from downstroke to
upstroke motions, a new pair of circulations (C3 and C4) appears
(t=3T/4). Thus, at the end of the upstroke period (t=T), two pairs
of vortices are left in the wake. This sequence of vortex shedding
is qualitatively consistent with the depiction by Lauder and Drucker
(Lauder and Drucker, 2004).

Fig.5 displays structural deformations of the fin during a flapping
period. For comparison, in the same figure we also draw the shapes
of a fin with rigid rays. It is seen that effects of ray flexibility is
most pronounced near the leading edge. This is attributed to the
several facts. First, the rays in that vicinity are longer and thus more
deformable than others. Second, the ray at the leading edge (Ray
1) is loaded from one side only so that its deformation is different
from neighboring rays, which sustain hydrodynamic loads from both
sides.

The deformability of the rays has profound effects upon the
interaction between the fin and the surrounding flow field. Our
simulations demonstrate that it may significantly change the effective
angle of attack at the leading edge. For example, in Fig.6 we plot the
in-plane streamlines of the flow field measured in a reference system
fixed on the leading edge of the fin (i.e. this reference system follows
both the forward and the lateral motions of the intersection point
between this plane and the leading edge). During most of the cycle
(except for the snapshot at t=T/2, when the transition from downstroke
to upstroke occurs), the leading edge of the flexible fin is better aligned
with the incoming flow than that of the rigid fin. This effect is more
clearly shown by plotting the magnitude of the effective angle of attack
at the tip of the fin (i.e. the angle between the leading edge and the
incoming flow vector measured in the moving coordinate system)
(Fig.7). As illustrated in previous experiments using flapping foils
(e.g. Anderson et al., 1998), such a reduction in effective angle of
attack may mitigate generation of LEV.

Fig.8 shows the three-dimensional flow field visualized via dipole
distribution within the vorticity layer as well as iso-surfaces of
vorticity behind a fin when only the TEV are accounted. It is seen
that concentrations of dipoles, displayed in Fig.8A as red and blue
areas, correspond to three-dimensional vortex rings in Fig.8B.
Within one flapping period, two connected vortex rings, one during
upstroke and the other during downstroke, are generated, forming
a figure of ‘8’ shape in the wake. As shown in Fig.9A,B, with LEV
included during the downstroke period the LEV is generated
primarily at the upper side, while in the upstroke period the vorticity
sheds from the lower side. In Fig.9C we plot the iso-surfaces of
the vorticity field created by the LEV only (i.e. influences of the
TEV and the body itself are not considered). Owing to the
complexity of the vorticity field, it is difficult to observe clearly
defined vortex rings in the wake.

To summarize, during the downstroke motion two concentrations
of vorticity, one from the trailing edge of the fin and the other from
the upper side of the leading edge, are generated and shed into the
wake. Two additional vorticity concentrations are shed during the
upstroke period from the trailing edge and the down side of the
leading edge, respectively.

Thrust generation and propulsion efficiency of the fin
In Fig.10A,B we plot the mean CT and the η (defined as U � the
mean thrust divided by the mean power expenditure) as functions
of the St and ϕ15, the phase lag of Ray 15 (the phase ϕi varies linearly
from 0 when i=1 to ϕ15 when i=15). No LEV is included in the
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simulation and the rays are assumed to be rigid. As shown in the
figures, for fixed ϕ15, CT increases with St, while η reaches its
maximum value at an optimal St, which depends upon ϕ15. However,
when St is fixed, positive thrust and η are achieved only when ϕ15

is below a threshold value, which increases with St.
The inclusion of LEV (even though the rays are still rigid)

significantly changes CT (Fig.10C) as well as η (Fig.10D). Most
notably, the mean thrust is greatly reduced. Within the range of
parameters considered in this study (i.e. 0.1<St<0.5,
30deg.<ϕ15<120deg.), as predicted by the model without LEV the
maximum CT is around 1.3 whereas with LEV this value is merely
0.35. In both cases, however, predictions of the maximum values
of η are around 0.75. The effect of LEV is most pronounced in
small values of ϕ15. Our simulations show that, with LEV included,

positive thrust and efficiency can be obtained only when ϕ15 is
sufficiently large (ϕ15>~30deg.). Large values of ϕ15 also cause
negative thrust. Indeed, large ϕ15 corresponds to significant pitching
of the fin, which may be applied as a braking mechanism (Drucker
and Lauder, 2003). Besides, at large ϕ15 when the thrust generation
is close to zero, the discrepancy between predictions with and
without LEV becomes insignificant. This is attributed to the fact
that in these cases the fin motion resembles the feathering behavior
so that the effective angle of attack at the leading edge is minimized
and LEV is thus mitigated.

Hereafter, we include LEV in all the testing cases.
The effects of fin flexibility upon thrust generation and η are

displayed in Fig.10E,F. By comparing the mean CT and the η in
flexible cases with rigid cases, it is seen that flexibility has limited
effect in low St. However, in higher St it is able to improve the
performance of the flapping fin. To elaborate, the three-dimensional
anisotropic flexibility imparted by flexible rays can significantly
increase the mean CT (by 40% in some cases), accompanied by a
slight increase in η (by about 10%).

Fig.11A shows the time history of the CT over one flapping period
at St=0.4 and ϕ15=40deg. It is seen that although the thrust force
remains positive over most of the period, there exists a short time
interval with negative thrust during the transition between the
downstroke and the upstroke motions so that the corresponding duty
factor is clearly less than 100%. This is qualitatively consistent with
the experimental study of the lift-based swimmer bird wrasse
(Gomphosus varius) as reported by Walker and Westneat (Walker
and Westneat, 2002). Employing the experimentally recorded fin
kinematics of this fish (Walker and Westneat, 1997), Ramamurti et
al. (Ramamurti et al., 2002) has carried out fully-viscous simulations
using an unstructured finite-element method, yielding a time history
of thrust similar to our prediction (see fig.6 in that report). Based
upon descriptions in their studies, we estimate that the fin size is
around 2.5–3cm so that peak values of the CT obtained in their
simulations are around 0.5–0.7, which are also comparable with our
results. In Fig.11B we study a case with ϕ15=60deg. and find that
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the period with negative thrust is greatly reduced. In both cases
(ϕ15=40deg. and ϕ15=60deg.), the structural flexibility increases the
thrust and its effect is most pronounced during the upstroke period,
which is consistent with the fin deformation as shown in Fig.5.

As suggested in Fig.11, the duty factor clearly depends upon the
kinematic parameters as well as the fin flexibility. To further
illustrate this, in Fig.12 we plot the duty factor as a function of St

and ϕ15. The effect of flexibility to increase the duty factor is herein
quantitatively confirmed. Within this range of parameters, our
simulations record a maximum duty factor of 87%.

In Fig.13 we plot the first-harmonic components of the lift
coefficient and the lateral force coefficient as functions of the St

and the phase lag ϕ15. Similar to the case in thrusts generation, the
influence of structural flexibility is also more pronounced in high
St. Its specific effect depends upon the range of kinematic parameters
under consideration. For example, at St=0.4 this flexibility decreases

the lateral force when ϕ15<45deg. and increases it otherwise; the
lift force is increased when 45deg.<ϕ15<105deg.

We finally check the effect of different levels of ray flexibility,
achieved by varying E while keeping the ratio D/E and other
parameters unchanged. As shown in Fig. 14, peaks of both CT

and η occur when E is around 0.6 GPa. For sufficiently soft fins
significant drop of thrust generation is observed, echoing findings
from flexible foils (e.g. Katz and Weihs, 1978; Zhu, 2007).

DISCUSSION
By using a fully coupled model, we have numerically investigated
the fluid–structure interaction mechanisms involved in the lift-based
propulsion of an idealized pectoral fin. The fin is strengthened from
inside by a skeleton of fin rays, which are modeled as
Euler–Bernoulli beams. The fin motion is activated by rotations of
each individual ray. A ‘wing-like’ dorso–ventral motion
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characteristic of the lift-based mechanism is achieved by
synchronized ray motions.

Our results indicate that the hydrodynamic performance of such
a system is determined by its frequency of motion (represented by
the Strouhal number), phase difference among the rays, as well as
structural properties of the rays. By varying the phases of the rays,
the fin achieves a combination of roll and pitch motions. Based on
this mechanism the effective angle of attack at the leading edge as
well as the shape of the fin can be adjusted so that the thrust
generation and the propulsion efficiency can be optimized. With
properly chosen kinematic parameters, positive thrust is observed
in most of the downstroke–upstroke period. High propulsion
efficiency (with a peak value of ~0.8 within the range of parameters
considered in this study) is observed.

We studied the effect of passive deformation of the fin due to
structural flexibility of the rays. Our results show that such passive
deformations indeed increase the thrust generation as well as the
propulsion efficiency [although the increase in efficiency is not as
significant as in the case of caudal fins (Zhu and Shoele, 2008)].
By visualizing the near-body flow field we find that a primary effect
of structural flexibility is the reduction of the effective angle of
attack, which suggests a mechanism for the change in performance.

Further investigation shows that performance of the system
depends not only upon ϕ15, the maximum phase lag between all the
rays, but also upon the detailed distribution of the phases. For
example, in Fig.15 we plot the thrust coefficient and propulsion
efficiency of the fin when ϕi are quadratic (rather than linear)
functions of i. It is clear that the performance of the fin is
considerably changed. This not only demonstrates the subtlety of
lift-based propulsion but also brings in more parameters to be
optimized for the design of future biomimetic devices.

As mentioned in the introduction, in drag-based swimming
(rowing mode) with flexible fins, the duty factor of swimming
reaches 1 (Mittal et al., 2006; Tangorra et al., 2008). However,
the studies by Ramamurti et al. (Ramamurti et al., 2002) as well
as our current simulation of lift-based swimmers (in flapping
mode) predict duty factors smaller than 1. This may be attributed
to the following factors: (1) these studies were carried out at
different forward speeds. As indicated by Tangorra et al. (Tangorra
et al., 2008), as forward speed increases (with other parameters
fixed) the capacity of thrust generation decreases and this may
eventually generated a lower than 1 duty factor. (2) It appears that
structural flexibility has a larger effect on the performance of a
rowing fin. Indeed in the rowing mode the duty factor of 1 is only
achieved with a highly flexible fin. To quantitatively understand
this effect, future investigations using fins with different levels of
flexibility are required. (3) The sequences of vortex shedding
(dorsal/ventral edge vortices in flapping mode vs dorsal/ventral
edge vortices along with abduction/adduction tip vortices in
rowing mode) are different between flapping and rowing modes.
These differences may affect the thrust drop during the transition
from downstroke (instroke) to upstroke (outstroke) motions and
consequently the duty factor.

One of the key characteristics of the current study is the
incorporation of a LEV model. As suggested by our results, two
concentrations of vorticity, one generated during the downstroke
motion and the other during the upstroke motion, are shed from the
leading edge into the wake. LEV significantly affects the thrust
generation and propulsion efficiency of the fin. The current model
of LEV stems from the potential flow framework. At a result,
although this method provides a convenient alternative to the
Navier–Stokes equations, it is based upon simplified descriptions

of the otherwise complicated mechanisms involved in vorticity
shedding, vortex formation and vortex–body interactions. For
example, as indicated in our recent Navier–Stokes study (Zhu and
Peng, 2009), when the vortex shedding and the body motion are
properly synchronized, the energy of LEV can be effectively
recovered so that the performance of the system is enhanced. For
accurate prediction and comprehensive understanding of
mechanisms like this and their effects upon the dynamical
performance of the fin, more sophisticated solvers (e.g. those based
on Navier–Stokes equations) are necessary. Although these models
are expected to be more accurate, they are computationally expensive
so that it is critical to carefully choose the cases to be tested. The
highly efficient potential-flow-based simulations discussed in this
study can provide valuable guidance.

Computational supports from TeraGrid resources provided by the San Diego
Supercomputer Center (SDSC) and the National Center for Supercomputing
Applications (NCSA) are acknowledged.

LIST OF ABBREVIATIONS
A cross-sectional area of a ray
BEM boundary-element method
CT(CT) (mean) thrust coefficient
CL[CL

(1)] (first-harmonic) lift coefficient
Cy[Cy

(1)] (first-harmonic) lateral force coefficient
d thickness of the fin
D material damping coefficient of the rays
E Young’s modulus of the rays
EA tensile stiffness
EI bending stiffness
F hydrodynamic force on the fin
Fc constraining force from the membrane that controls the

distance between the neighboring rays
Fh hydrodynamic force on a ray
FT(FT) (mean) thrust force
Fy lateral force
Fz lift force
GJ torsional stiffness
L length of ray
LEV leading edge vortices
Li length of Ray i
L1 length of Ray 1 (the leading edge ray)
M mass per unit length
M internal moment
n unit normal vector pointing into the fin
Nb number of panels on the fin surface
Nw number of panels on the wake
p hydrodynamic pressure
P(P) (mean) power spent
Re Reynolds number
s distance from a point on a ray to the basal end measured along

the unstretched ray
Sb fin surface
St Strouhal number
Sw wake surface
U forward speed
t time
T period (2π/ω)
T internal force inside a ray
V translational velocity of a ray
Vb instantaneous velocity at the surface of the fin
x0 length of baseline
(x, y, z) global coordinate system
α0 maximum angle of rolling of each ray in one stroke
αI angle between base end of Ray i and the x–z plane
ε strain in a ray
η propulsion efficiency
θi angle between base end of Ray i and the x-axis
ρ density of water
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(τ, n, b) tangential, normal and bi-normal unit vectors in the Lagragian
coordinate system

ϕ phase of the i-th ray in rolling
Φ flow potential
ω frequency
ω angular velocity of a ray
Ω Darboux vector measuring material torsion and curvatures of a

ray
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