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INTRODUCTION
All fishes possess a mechanosensory lateral line system, which
responds to the surrounding water motion relative to the fish’s skin.
Such water motion can be generated due to a variety of biotic and
abiotic events, including encounters with prey, predators,
conspecifics and inanimate obstacles. Consequently, the lateral line
system plays an important role in mediating fish behavior in
different ecological contexts. Over the years, there is a rich body
of literature documenting various aspects of lateral line function,
ranging from biomechanical and neural principles of operation to
behavioral significance (for reviews, see Dijkgraaf 1963; Kalmijn,
1988; Denton and Gray, 1988; Coombs et al., 1988; Coombs et al.,
1992; Bleckmann, 1993; Montgomery et al., 1995; Schellart and
Wubbels, 1997; Coombs and Montgomery, 1999; Bleckmann et al.,
2001; Janssen, 2004; Mogdans, 2005; van Netten, 2006; Bleckmann,
2008).

The lateral line system consists of superficial (SN) and canal (CN)
neuromast subsystems, which are morphologically, physiologically
and functionally different (e.g. Coombs et al., 1988; Münz, 1989).
In terms of the basic structure, both types of neuromasts consist of
mechanosensory hair cells covered by a gelatinous cupula. However,
SNs are generally smaller in diameter (≤100μm) than CNs (up to
several thousands of microns) and contain fewer hair cells (<~100)
compared with CNs (~200–10,000) (Münz, 1989). Although the
relative numbers and spatial distribution of SNs versus CNs over
the head and body are quite species-specific, most if not all fish

species (e.g. the mottled sculpin Cottus bairdi) have both types of
neuromasts (Coombs et al., 1988). A reported exception is the
plainfin midshipman fish, Porichthys notatus, whose trunk lateral
line only has SNs (Weeg and Bass, 2002). The clear distinction
between SNs and CNs is that SNs are located superficially on the
skin surface whereas CNs reside just below the skin surface in a
fluid-filled canal that opens up to the surrounding water via a series
of pores – one pore between each pair of neuromasts. Thus, whereas
SN cupulae protrude directly into the water surrounding the fish,
CN cupulae protrude into the canal fluids. Hair cells of both types
are mechanically excited by viscous coupling with the surrounding
fluid motion via the overlying cupula. An SN cupula, protruding
into the surrounding water, responds to the local fluid velocity field.
A CN cupula, being inside the canal, responds to the fluid motion
induced by the local net acceleration of the water against the fish
skin, which is also proportional to the pressure gradient across the
surrounding two canal pores (Denton and Gray, 1983; Kalmijn,
1989). Physiologically, SNs and CNs are likely to be innervated by
different afferent fibers (Münz, 1985). Thus, fish have separate
channels for measuring the velocity and acceleration fields produced
by not only periodic (Denton and Gray, 1983; Münz, 1985; Coombs
and Janssen, 1989; Coombs and Janssen, 1990; Kroese and Schellart,
1992) but any stimuli (Bleckmann, 2008).

Attention has been paid to the relative contributions of SNs and
CNs to the orienting behavior of fish in response to both live and
artificial prey (e.g. a chemically inert vibrating sphere). For the
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SUMMARY
This paper presents the first computational fluid dynamics (CFD) simulations of viscous flow due to a small sphere vibrating near
a fish, a configuration that is frequently used for experiments on dipole source localization by the lateral line. Both two-
dimensional (2-D) and three-dimensional (3-D) meshes were constructed, reproducing a previously published account of a mottled
sculpin approaching an artificial prey. Both the fish-body geometry and the sphere vibration were explicitly included in the
simulations. For comparison purposes, calculations using potential flow theory (PFT) of a 3-D dipole without a fish body being
present were also performed. Comparisons between the 2-D and 3-D CFD simulations showed that the 2-D calculations did not
accurately represent the 3-D flow and therefore did not produce realistic results. The 3-D CFD simulations showed that the
presence of the fish body perturbed the dipole source pressure field near the fish body, an effect that was obviously absent in the
PFT calculations of the dipole alone. In spite of this discrepancy, the pressure-gradient patterns to the lateral line system
calculated from 3-D CFD simulations and PFT were similar. Conversely, the velocity field, which acted on the superficial
neuromasts (SNs), was altered by the oscillatory boundary layer that formed at the fish’s skin due to the flow produced by the
vibrating sphere (accounted for in CFD but not PFT). An analytical solution of an oscillatory boundary layer above a flat plate,
which was validated with CFD, was used to represent the flow near the fish’s skin and to calculate the detection thresholds of the
SNs in terms of flow velocity and strain rate. These calculations show that the boundary layer effects can be important, especially
when the height of the cupula is less than the oscillatory boundary layer’s Stokes viscous length scale.
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mottled sculpin, both neurophysiological and controlled behavioral
studies suggest that the acceleration-responsive CNs, rather than
the velocity-responsive SNs, mediate the orienting behavior (e.g.
Coombs and Janssen, 1990; Coombs et al., 2001). However, sculpin
larvae can feed in the dark on free-swimming Artemia at distance
with the aid of SNs (Jones and Janssen, 1992). Despite the fact that
the SNs of the sculpin larvae are eventually embedded into the canal
to become CNs, the prey detection at the larval stage is due to
movement of the SN cupulae in response to local flow velocities.
Similar results were also found for the larvae of the willow shiner
Gnathopogon elongatus caerulescens for whom it was shown that
the number of Artemia consumed per larva was proportional to the
cupular length and saturated at lengths above ~100μm (Mukai et
al., 1994). Later, Mukai performed a controlled experiment using
willow shiner larvae that demonstrated the role of mechanoreception
by the SNs on prey detection (Mukai, 2006). Abdel-Latif et al.
showed that, under still water conditions, the blind cave fish
Astyanax mexicanus could still detect and approach a small vibrating
sphere, presumably by means of its SN subsystem after the
destruction of its CN subsystem (Abdel-Latif et al., 1990). However,
there is a debate (e.g. Coombs et al., 2001; Mogdans, 2005)
concerning the exact detection mechanism, as the pressure field
around a dipole source could theoretically be detected by the
pressure-sensitive ear of this species.

The stimulus to the lateral line system is the relative motion
between fish skin and adjacent water, which is described by the
spatio–temporal varying flow velocity and pressure fields
surrounding the lateral line system. In general, such flow velocity
and pressure fields are not (fully) measured in neurophysiological
and behavioral studies – particularly in regions close to the skin
where boundary layers are important. The inability to measure and
specify the stimulus hinders our understanding of the lateral line
system (Coombs and Montgomery, 1999). Potential flow theory
(PFT) has been used in the past to address this issue. For example,
the potential dipole source flow equations were used to model the
pressure field due to a vibrating sphere near a fish body (e.g. Coombs
et al., 1996; Coombs and Conley, 1997a; Coombs and Conley,
1997b; Conley and Coombs, 1998; Coombs et al., 2000; Curcic-
Blake and van Netten, 2006). The same equations were used to
calculate the slip flow velocity along the fish skin, caused by a nearby
vibrating sphere (e.g. Kroese et al., 1978). (In PFT, the boundary
condition at a solid wall requires only that the fluid velocity normal
to the wall be equal to the wall velocity. Thus, the fluid is allowed
to ‘slip’ past the wall surface in the wall tangential direction.) This
slip flow velocity was taken as the stimulus to the SNs, with the
assumption that the cupular lengths were long enough to penetrate
the viscous boundary layer along the fish’s skin. More sophisticated
potential flow solutions have been developed to calculate the slip
flow velocity distribution (and pressure distribution) over idealized
fish body geometry (Hassan, 1985; Hassan, 1992a; Hassan, 1992b;
Hassan, 1993). All of these studies ignore the fact that the real flow
has to satisfy the no-slip boundary condition at the fish skin due to
viscosity, i.e. zero relative velocity at the skin in both the normal
and tangential directions [see pp. 140–143 in Panton (Panton, 1996)].

Computational fluid dynamics (CFD) solves the Navier–Stokes
equations, which include the viscous terms. CFD simulations have
been previously employed to investigate tadpole swimming (Liu et
al., 1996; Liu et al., 1997), fish undulatory swimming (Carling et
al., 1998; Kern and Koumoutsakos, 2006; Borazjani and
Sotiropoulos, 2008), dorsal–tail fin interaction in swimming fish
(Akhtar et al., 2007), oral cavity flow in ram suspension-feeding
fish (Cheer et al., 2001), jet flow behind a modeled swimming squid

(Jiang and Grosenbaugh, 2006) and drag forces acting on a simulated
neuromast inside a fish lateral line trunk canal with the canal flow
driven by a two-dimensional (2-D) vortex street outside the canal
(Barbier and Humphrey, 2008). To our knowledge, no previous CFD
simulations have studied the flow due to a vibrating sphere (i.e. a
dipole source) or a swimming prey-like object near a three-
dimensional (3-D) fish body and calculated directly the stimuli to
the lateral line system. CFD is useful because it has the ability to
consider realistic fish body geometry and realistic spatial
arrangements of the fish body and the signal source and because it
can simultaneously output both the pressure and flow velocity fields
at the lateral line locations. In the present study, we carried out a
CFD numerical investigation of the flow due to a vibrating sphere
near a mottled sculpin in still water. We performed a series of
simulations of a prey-tracking sequence of a mottled sculpin as it
responded to an artificial prey (i.e. vibrating sphere). The
approximate shape and orientation of the fish body were taken
directly from a video recording of a real tracking sequence (Coombs
and Conley, 1997a). The series of simulations show explicitly how
the presence of the fish body perturbs the contour lines of constant
pressure of the dipole field.

The flow due to the vibrating sphere must satisfy the no-slip
boundary condition at the fish’s skin. This produces an oscillatory
boundary layer of sheared flow that affects the magnitude of the
hydrodynamic signals detectable by the SNs. As important as this
effect is, we were not able to simulate it directly for a 3-D fish-shaped
body because of limited computational resources. Instead, we used
CFD to calculate the 3-D oscillatory boundary layer flow along a flat
plate produced by a nearby vibrating sphere. We then used this result
to validate an analytical model of an oscillatory boundary layer flow.
The analytical model was then applied to a number of previous
neurophysiological and behavioral experiments to calculate detection
thresholds that take into account viscous effects.

This paper considers only flow due to the motion of the vibrating
sphere in calm water. A future paper will include the added effects
of an ambient, unidirectional current.

MATERIALS AND METHODS
Simulations of flow around a sculpin due to a nearby

vibrating sphere
Our computational domain and meshes for the fish simulations were
constructed according to the experimental designs of Coombs and
Conley (Coombs and Conley, 1997a; Coombs and Conley, 1997b)
and by using the geometry and mesh generation software, GAMBIT
(Lebanon, New Hampshire, USA). The geometry consisted of a
mottled sculpin-like body, sitting on a solid flat bottom and a nearby
3 mm-radius solid sphere executing a vibration. The sphere
performed sinusoidal motions along an axis for a series of bursts
of 500ms on and 500ms off so as to dismiss the effects of acoustic
streaming, which took more than 500ms to develop. The sculpin
body was constructed to approximately match the dimensions of
the real fish. The length of the main body of the fish was 8cm, with
a portion of the tail extending an additional 1cm. The body was
2cm in width at its thickest point, which is just in front of the pectoral
fins. The dorsal fin extended about 0.5cm above the fish in its front
and about 1cm above in its rear. The pectoral fins and tail fin were
0.5mm thick whereas the dorsal fin was 1mm thick. Both a 2-D
setup and a 3-D setup were considered. The purpose was to
compare the 2-D results with the 3-D results and to find out if the
2-D setup was accurate enough to reproduce the involved fluid
physics. (The 2-D assumption is often adopted in studies but it is
necessary to check its validity before use.)
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In the 2-D setup (Fig.1), the cross-sections of the sculpin body
and of the sphere formed the inner boundaries of a rectangular
computational domain (275�100cm). The sculpin body was held
stationary. The cross-section of the sphere was given a prescribed
axis of motion along with a solid-body vibration with the following
time history:

u(t) = U0cos(ωt) , (1)

where U0 is velocity amplitude of the sphere vibration, t is time and
ω=2πf where f is the vibration frequency in Hz. A no-slip boundary
condition was prescribed at the sculpin body and at the perimeter
of the sphere cross-section. Also prescribed was a zero pressure
inlet boundary condition at the outer boundaries of the domain (to
approximate an infinite domain). The area between the inner and
the outer boundaries of the domain was discretized into triangular
meshes. The consecutive nodal points on the sculpin cross-section
were 2mm apart, close to the spacing between two consecutive
lateral line CNs in the trunk canal of a real sculpin (Coombs et al.,
1988). The perimeter of the sphere cross-section was equally
divided by 20 nodal points. The size of the triangular meshes was
increased gradually from the inner boundaries to the outer boundaries
of the domain. A dynamic mesh model was used to represent
explicitly the vibrating motion of the sphere cross-section, i.e. the
meshes surrounding the sphere cross-section deform as the sphere
cross-section moves (Fig.1B).

In the 3-D setup (Fig.2), a box-shaped computational domain
(60�40�10cm) was considered. The surface of the 3-D sculpin
body was discretized into triangular meshes with 2mm edge lengths.
The sphere surface was divided into triangular meshes with 1mm
edge lengths. The volume between the sculpin body surface, the
sphere surface and the surface of the box-shaped computational
domain was discretized into tetrahedral control volumes. A
deforming mesh zone was placed around the sphere surface to
accommodate the sphere motion. Suitable boundary conditions were
prescribed similar to those in the 2-D setup.

In the present still-water case, flow was generated exclusively
from the vibration of the sphere. The flow was assumed laminar,
incompressible and Newtonian and was governed by the unsteady
incompressible Navier–Stokes equations together with the continuity
equation. Throughout this study, the fluid density, ρ, was
1.0�103 kg m–3 and the fluid kinematic viscosity, ν, was
1.0�10–6 m2 s–1. The governing equations with the above-described
computational domains and simulation setups were solved by a
commercially available, finite-volume code, FLUENTTM (v. 6.2.16,
Lebanon, New Hampshire, USA). The third-order MUSCL
(Monotone Upstream-Centered Schemes for Conservation Laws)
scheme was used for spatial interpolation. The PRESTO! (PREssure
STaggering Option) scheme was selected as the discretization
method for pressure. The PISO (Pressure-Implicit with Splitting of
Operators) scheme was used for pressure–velocity coupling.
Temporal discretization was a first-order implicit scheme. A
dynamic mesh model built into FLUENTTM was employed to
explicitly consider the sphere vibration.

To examine the effect that the fish body and fins have on the
received dipole pressure signal, two body geometries were
considered: body with fins extended (Figs1 and 2) and body with
fins retracted (this geometry is not shown). Also considered was a
virtual-body case where the standard potential dipole source flow
solutions (Pozrikidis, 1997) in an unbounded domain (without any
internal fish boundaries) were evaluated at virtual lateral line
locations identical to those on a real fish body. For all cases, the
time step for integration was set at 1/100th of the vibration period.

M. A. Rapo and others

The 2-D flow field was initialized by simulating 200 time steps;
the 3-D flow field was initialized by simulating 1000 time steps.
This was done to allow transients to decay. After the initial start-
up, flow velocity and pressure fields were saved at each time step
for post-processing.

For the 2-D setup, pressure gradients were calculated along the
sculpin cross-section by:

where p1 and p2 are pressure values at two consecutive nodal points
on the profile, which were 2 mm apart by mesh construction and
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Fig. 1. (A) 2-D computational domain for a circular cylinder (with cross-
section identical to that of the sphere) vibrating nearby a sculpin cross-
section. (B) A zoomed-in view of the meshes surrounding the cylinder and
the sculpin. The vibrating motion of the cylinder was represented by a
small rectangular deforming mesh zone that surrounds the immediate area
of the cylinder. (C) Node locations around the sculpin cross-section where
pressures at pore openings were evaluated. The convention for calculating
the pressure difference is identified by the direction of the arrows. The
pressure at the arrow tip (p1) is subtracted from the pressure at the arrow
tail (p2). The distance between two consecutive pore openings is assumed
to be 2 mm. dp/ds denotes the pressure gradient along the profile.
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dp/ds denotes the pressure gradient along the profile. The ordering
of p1 and p2 was defined by the arrows shown in Fig. 1C. For the
3-D setup, nodal points (Fig. 2C) were manually selected to
approximately follow what might be considered the true locations
of lateral line canals on the mottled sculpin [see fig. 1 in Coombs
(Coombs, 2001)]. As the selected nodal locations were not evenly
spaced, a spline curve for the pressure values was fitted to those
locations for each of the lateral line sections (i.e. trunk canals,
infraorbital canals, supraorbital canals, mandibular canals and
occipital canal) (Fig. 2C). Next, pressure values were sampled
every 2mm on each fitted curve and then used in Eqn2 to calculate
pressure gradients. Also, for comparison purposes, the mid-plane
cross-section of the 3-D fish body was identified, and pressure
gradients were calculated along the mid-plane cross-section profile
(Fig. 2D), similar to what was done for the 2-D setup.

To validate the 3-D setup and simulation procedure, a few cases
of a vibrating sphere above a flat plane wall were simulated. The
mesh densities over the sphere surface and over the plane wall were
the same as those used for the 3-D simulations that incorporated
the fish body. The numerical results for the magnitudes of the
pressure and pressure gradient (which are not affected by viscosity)
showed excellent agreement with the PFT solution of a sphere
vibrating above a plane wall (Fig.3). The 2-D setup and simulation
procedures were validated in a similar way (Rapo, 2009).

Flat-plate oscillatory boundary layer simulations and
analytical model

3-D simulations were also performed of the formation of oscillatory
boundary layers due to the vibration of the sphere. When a sphere
vibrates near a stationary fish body in otherwise quiescent water,
two oscillatory boundary layers will form, one on the sphere and
one on the fish skin. Outside these two boundary layers, PFT is
applicable (Fig.3). The significance of the boundary layer on the
sphere was recognized by Kalmijn (Kalmijn, 1988). A mathematical
formulation was provided by van Netten (van Netten, 2006).

Both oscillatory boundary layers have the same Stokes viscous
length scale, δ, defined as:

where ν is the kinematic viscosity of the fluid and ω=2πf. (For
f=50Hz, which is a typical condition used in many experiments,
δ~80μm.) Because of the oscillatory nature of the motion
considered, viscous diffusion due to the presence of the wall cannot
penetrate beyond a distance of order δ away from the wall [e.g. pp.
263–272 in Panton (Panton, 1996)]. The magnitude of the velocity
of the oscillatory boundary layer of the fish skin is usually much
weaker than that of the oscillatory boundary layer surrounding the
sphere, with the difference in magnitude depending on the distance
between the sphere and the fish’s skin.

The 3-D computational mesh as described in the previous section
was unable to resolve the oscillatory boundary layer along a fish-
shaped body because the distances from centroids of the wall-
adjacent control volumes to the fish skin were ~290μm, which is
much larger than δ. To resolve this boundary layer, we would need
to use a much finer near-wall mesh, which our current computational
setup could not handle. To deal with this problem, we used CFD
to calculate, instead, the flow along a flat plate produced by a nearby
vibrating sphere. Anderson et al. (Anderson et al., 2001) have shown
that flat-plate boundary layer theory can be used to model the
boundary layer along a fish, and we adopted this assumption for
the oscillatory case. The flat-plate geometry required fewer mesh
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Fig. 2. (A) 3-D computational domain for a sphere vibrating nearby a sculpin
body. (B) A zoomed-in view of the surface meshes of the sphere and of the
sculpin, with nodes spaced approximately 1 mm apart on the sphere and
2 mm apart on the sculpin. The vibrating motion of the sphere was directly
represented by a deforming mesh that surrounds the immediate vicinity of
the sphere and is contained inside a small rectangular prism (not shown).
(C) Node locations around the sculpin body where pressures were
evaluated, including those points which fall directly on the sculpin’s lateral
line system (marked by various colors). (D) Points around the sculpin mid-
plane cross-section, where pressures were interpolated from the pressure
data computed on the 3-D sculpin surface. In both C and D, the convention
for calculating the pressure difference is identified by the arrow direction.
The pressure at the arrow tip (p1) is subtracted from the pressure at the
arrow tail (p2). The distance between two consecutive pore openings is
assumed to be 2 mm. dp/ds denotes the pressure gradient along the
profile.
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points overall than a fish-shaped body while still allowing for a fine
grid-point spacing at the wall (grid-point locations were at 0, 5, 13,
24, 39, 61μm … away from the wall). The plane wall surface was
covered by quadrilateral meshes. A deforming mesh zone, consisting
of tetrahedral meshes, was present around the sphere so as to
represent the motion explicitly. The volume between the deforming
mesh zone and the boundary layer mesh zone close to the plane
wall was divided into tetrahedral control volumes. The same
numerical schemes and time step as previously described were used.
Large parameter ranges as found in the literature were considered;
velocity amplitude 7 mm s–1≤U0≤314 mm s–1, sphere radius
2.5 mm≤a≤18 mm and distance from sphere to fish body
1.1cm≤r≤20cm.

For the remainder of this section, we consider a sphere with
vibration axis parallel to the wall. We define a Cartesian
coordinate system such that the positive x-direction is parallel to
the wall and to the axis of the sphere vibration, the positive y-
direction is the wall-normal direction toward the sphere, the
positive z-direction is chosen such that the defined xyz-coordinate
system satisfies the right-hand rule and u, v and w are the x-, y-
and z-velocity components, respectively. Using this Cartesian
coordinate system, the strain rate tensor, S, can be defined as (e.g.
Pozrikidis, 1997):

Also we define the overall strain rate (S) as:

S is a useful measure of the magnitude of fluid-parcel deformation
irrespective of directional information. Within the oscillatory
boundary layer at the fish’s skin, bending of an SN cupula will be
affected by the dynamic behavior of S surrounding the cupula as
well as the whole velocity profile, u(y,t).

We use the CFD simulation of the oscillatory flat-plate boundary
layer to validate a simpler analytical model, which we then use in
the next section of this paper to analyze threshold velocity and S
responses of SNs. The following is the analytical model. For a sphere
vibrating parallel to a flat plane wall with r>>δ, the wall-parallel
velocity profile along the wall-normal (y-) direction has an
approximate solution:

This solution is for the flow created due to an oscillating plate, which
is written in the frame of reference of the plate (e.g. Pozrikidis, 1997).
The boundary-layer edge velocity is replaced by the wall slip flow
velocity that corresponds to a potential dipole source placed at the
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center of the sphere and an image dipole source placed an equal
distance below the wall to satisfy the potential flow ‘zero-normal-
flow’ wall boundary condition. C(a,δ) is the amplitude correction term
due to the sphere boundary layer and φ is the phase delay. Both are
calculated according to van Netten (van Netten, 2006) as:

Because this case involves only unidirectional flow, S is just |du/dy|,
which is found by taking the y-derivative of the velocity profile
(Eqn 6):

The velocity and strain rate profiles calculated using Eqns 6–8 are
in excellent agreement with the results of CFD simulations for
different parameter values (Fig.4).

The maximum strain rate at the wall, Swall, is found by setting
y=0 and taking the maximum, which occurs at (ωt+φ)=3π/4. This
gives:

The maximum shear stress at the wall is just μSwall, where μ is the
fluid dynamic viscosity, which is equal to 1.0�10–3 kgm–1 s–1. Eqn
9 is a useful measure of the forces acting to displace the cupula,
especially when the height of the cupula, H, is unknown. If the height
is known, another useful measure is maximum average strain rate,
Saverage, along the cupula, which is defined as:

where Δu is the maximum velocity difference between the cupular
tip and base over the whole vibration cycle.

RESULTS
Simulated prey-tracking sequence: the 2-D case

The initial three steps of a six-step, prey-tracking sequence recorded
by Coombs and Conley (Coombs and Conley, 1997a) for a mottled
sculpin were simulated using the 2-D setup (Fig.5A) and the 3-D
setup (Fig.5B–D). The sphere had a radius of 3mm, oscillating at
a frequency of 50Hz with source velocity amplitude of 0.18ms–1

(peak-to-peak). These three positions were selected because they
represented different relative locations between the fish’s body (and
pectoral fins) and the dipole source. In the starting location at the
time of signal onset (Position No. 1, Fig.5A,B), the sphere was
slightly less than a body length away and was closer to the fish’s
tail than head. In the second position (Position No. 2, Fig.5C), the
sphere was also less than a body length away and was lateral to the
point of pectoral fin insertion. In the third position (Position No. 3,
Fig.5D), the dipole source was in a more frontal location much closer
to the head of the fish than the tail.

For 2-D CFD simulations, with the fish body present (columns
2 and 3 in Fig.5A), the iso-pressure lines terminate on the fish body
and are more concentrated around curved regions of the body and
sharp edges of the fins. These local concentrations of pressure

Saverage =
Δu

H
 , (10)

Swall = 2  C a, δ( )  
U0

δ
 

a

r

⎛
⎝⎜

⎞
⎠⎟

3

 . (9)

d u y,  t( )
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= C a,  δ( )  
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δ
a

r

⎛
⎝⎜

⎞
⎠⎟

3

e− y /δ sin ω t + φ − y / δ( ) − cos ω t + φ − y / δ( )  . (8)
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2 + C2

2 φ = arctan C2 / C1( )
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3δ
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           C2 =
3δ
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1+
δ
a

⎛
⎝⎜

⎞
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 .  (7)
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contours cannot be predicted from PFT without the fish body present
(column 4 in Fig.5A). When the fins are extended (column 2 in
Fig.5A), a zone of near constant pressure is created on the side of
the fish closest to the source (the ipsilateral side) in a small, localized
pocket behind the extended fin and side of the body. The presence
of the fish body shields a large region of water from the dipole
source, creating a region of near constant pressure along the
contralateral side of the fish opposite the dipole source.
Consequently, the pressure gradient seen by the lateral line on both
the ipsi- and contralateral side tends toward zero as the fin insertion
point (indicated by the red arrow in column 2 in Fig.5A) is
approached. This is in contrast to the case with a streamlined body
present, where only the body curvature itself determines how the
pressure field is affected (column 3 in Fig.5A). In this case, there
is no constant pressure region on the ipsilateral side of the fish near
the pectoral fin. The iso-pressure lines of the hydrodynamic field

without a body present are obviously undisturbed (column 4 in
Fig.5A).

Simulated prey-tracking sequence: the 3-D case
The same sculpin tracking sequence was simulated using the 3-D
setup (Fig.5B–D). The presence of the fish body perturbs the
pressure field but to a lesser extent than for the 2-D case. Whereas
there are clear differences between the results for fins extended and
fins retracted in the 2-D case (columns 2 and 3 in Fig.5A), there is
no such detectable difference in the 3-D case (columns 2 and 3 in
Fig.5B). The reason is that, in the 3-D case, the dipole source flow
field extends over and under the fins, as well as around them and
therefore there is no longer any zone of near constant pressure behind
the extended fins. In the 3-D case, the presence of the fish body
still shields a region of water on the contralateral side from the dipole
source but the overall effect of this shadow zone is weaker than for
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the 2-D case. The overall pressure field calculated from PFT without
the fish body present is different from that obtained from the 3-D
CFD simulations but the magnitude of the calculated pressure
gradients along the virtual fish mid-plane profile are quite similar
to those calculated from the 3-D CFD simulations. This is not the
case in the 2-D simulation.

The magnitude of the pressure gradient around the fish body is
directly related to the location of the dipole source. Spatial variations
are most striking when comparing the ipsilateral side of the fish
closest with the dipole source and the contralateral side. However,
equally noticeable are the differences in magnitude seen between
the head and trunk of the fish. In the starting position (Fig.5B), the
magnitude of the pressure gradient is larger on the ipsilateral side
near the end of the trunk (blue line) than at the front of the fish
(green line). In the second position (Fig.5C), the magnitude of the
pressure gradient is similar for both the head and trunk (green line
versus blue and red lines) but a clear difference still exists between
the two sides of the fish (blue line versus red line). In the third
position (Fig.5D), the head of the fish is much closer to the dipole
source, while the tail is further away. The pressure gradient
amplitude has more than quadrupled for the front sections of the
head canals (green line). Also, the contrast in pressure gradients
between the two sides of the fish has widened (blue line versus red
line).

Fig.6 shows the pressure gradients along the lateral line canals
of the mottled sculpin (Fig.2C) based on the 3-D CFD results for
the third position of the video sequence (Fig.5D). Interestingly, the
ipsilateral (positive numbers on the horizontal axis) pressure-
gradient patterns along supraorbital, infraorbital and mandibular
canals with different elevations (above and below the eye and along
the lower jaw) but largely overlapping azimuths (rostro-caudal
extents) tend to converge on the same, nearly redundant pattern.
However, patterns on the ipsi- and contralateral side (negative
numbers) are dramatically different. Ipsilateral patterns have steeper
slopes and distinct zero-crossings (locations where the direction or
sign of the pressure gradient changes from positive to negative). In
this case, the true source location is near the zero-crossing point on
the ipsilateral side.

Applying the oscillatory boundary layer solution to real
experiments

We applied the analytical solutions Eqns 6 and 9 for the oscillatory
boundary layer to the results of a number of previous
neurophysiological and behavioral experiments designed to measure
the threshold sensitivity of SNs in different species and under varying
conditions. We used the reported experimental parameters to re-
compute values of the velocity threshold at the tip of the SN cupula
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examples are shown here: (A) f=30 Hz, r=10a, U0=0.04 m s–1, phase
ωt=0.4π, where ω=2πf and t the time. (B) f=45 Hz, r=20a, U0=0.1 m s–1,
phase ωt=1.6π. (C) f=50 Hz, r=3.67a, U0=0.007 m s–1, phase ωt=2π.
(D) f=75 Hz, r=40a, U0=0.03 m s–1, phase ωt=2π. δ, Stokes viscous length
scale; U�, fluid velocity just outside the oscillatory boundary layer.
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and the strain rate threshold at the wall, Swall. The parameters needed
for the analysis are a, r, f, U0 and H. The following is a description
of the different experiments used in the analysis and the results of
the calculations.

Kroese et al. (Kroese et al., 1978) used a=1.55mm oscillating at
f=20Hz parallel to the skin and perpendicular to the longitudinal
axis of an SN of the clawed frog (Xenopus laevis), with
U0=5�10–4 ms–1 and placed at a distance of r=3.75mm from the
skin. They assumed an SN cupula height of 100μm and found a
velocity threshold of 38μms–1 based on the potential flow equations.
The Stokes viscous length scale for these particular experimental
conditions calculated using Eqn3 is δ=126μm. Thus, the cupula
would be fully immersed in the oscillatory boundary layer flow.
From Eqn6, we find that u at the tip of the cupula after being
corrected for the boundary layer effects is 30μms–1 (about 21%
smaller than Kroese et al.’s threshold estimated from PFT). From
Eqn9, we find that the maximum Swall threshold is 0.45s–1 and from
Eqn10 the maximum Saverage is 0.30s–1.

Coombs and Janssen estimated velocity thresholds for SNs
located along the trunk lateral line of mottled sculpin from
neurophysiological measurements (Coombs and Janssen, 1990). The
velocity field was produced by an oscillating sphere whose center
was placed r=15mm away from the fish trunk. The radius of the
sphere was 3mm and it was oscillated in a direction perpendicular
to the substrate (up/down with respect to the fish) at frequencies in
the range 10–500Hz. The source velocity amplitude of the sphere
corresponding to the threshold response, while not explicitly given,
can be calculated using the dipole equations (e.g. Pozrikidis, 1997)
and the results given in fig.7 of Coombs and Janssen (Coombs and
Janssen, 1990). We estimated that the peak-to-peak acceleration
threshold (at the fish) for SNs at 10Hz is –55dB re. 1ms–1 and that
the threshold acceleration increases linearly by about 7.5dBoctave–1.
From this, we determined that the corresponding source velocity
amplitude of the sphere needed to produce the measured peak-to-
peak acceleration in an unbounded fluid to be about 3.5mms–1 for
10 Hz, 5.3 mm s–1 for 50 Hz and 6.3 mm s–1 for 100 Hz. The
corresponding velocity amplitude threshold at the tip of the SN
cupula based on potential flow equations (with values doubled to
account for the presence of the fish body) is 28μms–1 at 10Hz,
42μms–1 at 50Hz and 50μms–1 at 100Hz. The velocity threshold
values corrected for the oscillatory boundary layer effects (assuming
H=100μm) are 18μms–1 at 10Hz, 42μms–1 at 50Hz and 54μms–1

at 100Hz, where δ=176μm at 10Hz, δ=80μm at 50Hz and δ=56μm
at 100Hz. The velocity threshold for the 10Hz case is lower than
the potential flow case due to the slowing of the flow near the wall,
the velocity threshold for the 50Hz case is unchanged and the
velocity threshold for 100Hz case is actually slightly higher than
the potential flow case due to overshoot in the velocity profile
(Fig.7). {At certain distances from the wall the phase lag in viscous
stresses is so great that the viscous and pressure terms actually add
together. The combination of these forces accelerates the fluid to
produce the overshoot [pp. 268–269 in Panton (Panton, 1996)].}
The experimental parameter values give maximum Swall of 0.24s–1

at 10Hz, 0.78s–1 at 50Hz and 1.30s–1 at 100Hz. With H=100μm,
the maximum Saverage are 0.18s–1 at 10Hz, 0.42s–1 at 50Hz and
0.54s–1 at 100Hz.

Coombs et al. used a vibrating sphere to stimulate CNs and
SNs and to see which subsystem was responsible for the orienting
response in mottled sculpin (Coombs et al., 2001). When they
disabled SNs, the fish was still able to orient towards the vibrating
sphere. However, when they disabled CNs, response rates fell to
spontaneous levels, indicating that the SNs were not used for

orienting. An alternative explanation is that during the experiment,
the stimulus to the SN was below its threshold velocity and strain
rate. In their experiments, Coombs et al. used a sphere of radius
of 3 mm placed 3–6 cm from the fish (Coombs et al., 2001). The
source velocity was 5.5 cm s–1 for the 10 Hz signal and 9.0 cm s–1

for the 50Hz signal. The maximum velocity at the tip of the cupula
[taking viscous effects into account and assuming that H is
100μm, as in Coombs and Janssen (Coombs and Janssen, 1990)]
is 5–36μm s–1 for 10 Hz (range of values in all cases depend on
the distance between the sphere and the fish) and is 11–89μm s–1

for 50 Hz. The maximum Swall was 0.06–0.47 s–1 for 10 Hz and
0.21–1.66 s–1 for 50 Hz. With H=100μm, the maximum Saverage

are 0.05–0.36 s–1 for 10 Hz and 0.11–0.89 s–1 for 50 Hz. These
values are above the SN threshold values measured by Coombs
and Janssen (Coombs and Janssen, 1990) when the fish was 3 cm
from the sphere but are below threshold values when the fish was
6 cm from the sphere.

Alternately, Abdel-Latif et al. showed that blind cave fish could
orient toward a vibrating sphere even when the CN subsystem was
disabled, indicating that the fish were relying on the SN subsystem
to locate the sphere (Abdel-Latif et al., 1990). Their experimental
parameters were a=2.5mm, r=20cm, f=10–90Hz and displacement
amplitudes = 0.2–1.4 mm. A positive behavioral response for
frequencies 50Hz and 70Hz was reported for all amplitudes. The
corresponding velocity thresholds (taking into account the oscillatory
boundary layer effects) based on an SN height of 200μm (Teyke,
1988) are 0.14–0.96μms–1 at 50Hz and 0.19–1.31μms–1 at 70Hz
(depending on the displacement amplitude). These values are well
below the threshold values of the SNs of other species described
above. In addition, the maximum Swall range is 0.0023–0.016s–1 at
50Hz and 0.0037–0.026s–1 at 70Hz, and the maximum Saverage range
is 0.0007–0.048s–1 at 50Hz and 0.0010–0.0065s–1 at 70Hz. Again
these are extremely low values, even acknowledging the possibility
of signal startup transients, which from the present numerical
simulation briefly increased the maximum wall strain rate up to 4
times the steady state value.

DISCUSSION
The results from the 2-D and 3-D simulations are significantly
different. Qualitatively, the perturbation to the dipole pressure field
due to the presence of fish body is much more prominent in the
2-D CFD results than in the 3-D CFD results. Similarly, the effect
of the pectoral fin is also more visible in the 2-D than in the 3-D
results. For our specific case, the 2-D and 3-D CFD simulations
produced the ‘Mexican-hat’ shaped pressure-gradient patterns with
two zero-crossings for the head canal (green line of column 2 in
Fig. 5D for 3-D, not shown for 2-D). However, the simulations
produced completely different pressure-gradient patterns for the
trunk canals (Fig. 5A versus 5B). Quantitatively, the most
prominent difference is that the 2-D pressure-gradient magnitudes
are 20 times larger than those calculated using the 3-D geometry.
Taken together, this raises concerns about using 2-D results to
calculate the hydrodynamic stimulus, at least for the present
situation of a fish using its lateral line system to locate a vibrating
sphere.

The 3-D results confirm that it is valid to use PFT to predict the
spatial patterns of pressure gradient that affect the canal subsystem.
The CFD simulations show that the fish body does perturb the dipole
pressure field but only to a small extent, such that the pressure
gradients evaluated along the lateral line locations are quite similar
to those calculated from the 3-D virtual body case using PFT. This
confirms the effectiveness of using PFT to estimate pressure-gradient
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Fig. 5. See next page for legend.
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patterns to the canal subsystem created by a vibrating sphere in still
water (Goulet et al., 2008). The 3-D CFD results do show that the
extended fins significantly distort the dipole pressure field locally.
The fact that the lateral line trunk canals of the mottled sculpin are
routed above the pectoral fins is probably of morphological
significance, as it appears that this may limit the distortion in the
received signal.

Our higher resolved CFD boundary layer simulations using a flat-
plate model highlight the fact that a vibrating sphere generates an
oscillatory boundary layer at the fish’s skin. The resulting flow
velocity signal to the SNs and their responses are greatly affected
by characteristics of the oscillatory boundary layer, which include
its thickness (characterized by the Stokes viscous length scale) and
the time-varying and height-varying flow magnitude and direction.
Because of the presence of a boundary layer at the fish’s skin, the
velocity and velocity gradient patterns that act on the SNs cannot
be predicted by PFT. In particular, there is a phase difference
(Fig.4A) between the flow velocity outside and inside the oscillatory
boundary layer. Also, there is overshooting of the flow velocity
inside the boundary layer (Fig.4C,D), such that the velocity inside
the boundary layer can be greater than the outside flow. Thus, the
height of the cupula becomes an important parameter. For example,
a cupula with a shorter height that is completely immersed in the

boundary layer will experience a weaker integrated flow over its
length than a taller cupula that extends outside the boundary layer.
Consequently, a weaker response from the shorter cupula will be
expected. Mukai et al. found that the feeding rate of the willow
shiner larvae consuming Artemia was proportional to the cupular
length on the larva body and saturated at lengths above ~100μm
(Mukai et al., 1994). The trend of their fig.1 curve relating the
feeding rate to the cupular length corresponds well with the trend
of the curves shown in Fig.7 of the present study, which can be
interpreted as the maximum tip-to-base velocity difference as a
function of neuromast height for three different frequencies. Fig.7
may provide an explanation to their results, provided that the larvae
use the SNs to detect appendage-beating movement of Atemia.

There is a minimum cupular displacement that must occur in order
for the neuromast to respond, corresponding to a minimum velocity
whose drag force causes the displacement. This is called the
velocity threshold. Although the velocity threshold may be species-
specific, the CNs probably respond to internal canal fluid velocities
as low as 1–10μms–1 (van Netten, 2006). Inside the subdermal canal,
the velocity is driven by the pressure difference between pore
openings, which translates to an acceleration threshold of
0.1–1mms–2 (van Netten, 2006). The SNs respond to as little as
25–60μms–1 (for a review, see van Netten, 2006). These results
were obtained using PFT with the assumption that the cupular height
is larger than the boundary layer thickness. Using our analytical
treatment, we showed that the oscillatory boundary layer formed at
the fish’s skin should be taken into account when estimating these
velocity thresholds. The oscillatory boundary layer correction can
be significant depending on the cupular height relative to the
boundary layer thickness. Re-analysis of Coombs and Janssen
(Coombs and Janssen, 1990) gives a threshold velocity range of
18–54μms–1 over a frequency range of 10–100Hz, when the
oscillatory boundary layer effects are taken into account. The
velocity threshold can also be defined as the maximum tip-to-base
velocity difference experienced by the cupula, because the base
velocity is zero. This is species-specific and depends on a number
of parameters, including cupular height and shape, as well as internal
cupula stiffness (McHenry et al., 2008).

From CFD outputs, one may calculate maximum wall-strain rates,
which are a measure of the near-wall fluid-parcel deformation
probably experienced by the SNs and are independent of cupular
height. For the mottled sculpin of the Coombs et al. (Coombs et al.,
2001) experiment, the maximum wall strain rates given in the
previous section corresponded to the threshold values of SNs (either
just above or just below, depending on the starting distance of the
fish from the vibrating dipole source). At the same time, the
acceleration experienced by the lateral line canal subsystem (based
on Fig.6) is 5–50mms–2, which is many times stronger than the
reported acceleration detection thresholds of CNs. This is consistent
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Fig. 5. Comparison between 2-D calculations (A) and 3-D calculations (B),
and comparison between 3-D computational fluid dynamics (CFD)
(columns 2 and 3 in B–D) and 3-D potential flow theory (PFT, column 4 in
B–D) results when the pectoral fins are either included (column 2) or
excluded (columns 3 and 4). The calculations correspond to a video-
recorded sequence of a mottled sculpin’s step-by-step approach towards
an artificial prey – in this case a sinusoidally vibrating sphere [from
Coombs and Conley (Coombs and Conley, 1997a)]. The first three steps of
the prey-tracking sequence are illustrated, including the initial orienting
response at signal onset (A and B are for the same step) followed by two
subsequent approach steps (C,D). Each block in columns 2–4 contains a
plot of the iso-pressure contours of the normalized instantaneous pressure
field that surrounds the sculpin and the vibrating sphere. Plotted in the
lower panel are distributions of normalized pressure gradient along the
three major portions of the lateral line canal system: the trunk canal on the
ipsilateral (I) side of the body with respect to the dipole source (blue curve),
the trunk canal on the contralateral (C) side of the body (red curve) and the
frontal canals (F) on the head (green curve). T stands for the tail position.
The pressure contours in column 4 correspond to the solution of a 3-D (2-D
in A) dipole source in an unbounded fluid, unperturbed by the presence of
the fish. The pressure gradient values plotted in column 4 are calculated
from the unperturbed pressure field but the magnitudes are doubled to
account for the potential flow wall-boundary condition of the fish and to
facilitate comparison with the CFD solutions. The red arrow in column 2 of
A indicates the pressure gradient results for the pectoral fin insertion
points. U0, velocity amplitude; ρ, fluid density; ω=2πf; a, sphere radius;
dp/ds, pressure gradient; p, pressure.
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with the conclusion that the acceleration-responsive CNs, rather than
the velocity-responsive SNs, mediate the mottled sculpin’s orienting
behavior to the vibrating sphere (e.g. Coombs et al., 2001). However,
all the SN thresholds calculated for the blind cave fish of the Abdel-
Latif et al. (Abdel-Latif et al., 1990) experiment are extremely low
as compared with those numbers obtained for other experiments.
This raises concerns regarding claims that the SNs were used for
detecting the dipole source, especially since these otophysan fish
have pressure-sensitive ears that could have easily detected the
pressure changes of a nearby dipole source of the same frequency
(Montgomery et al., 2001).

LIST OF ABBREVIATIONS
a sphere radius
C, C1, C2 amplitude correction term
CFD computational fluid dynamics
CN canal neuromast
dp/ds pressure gradient
du/dy shear rate
e mathematical constant e
f vibration frequency
H cupula height
p1, p2 pressure values at two consecutive nodal points on the profile
PFT potential flow theory
r distance from the sphere to the fish body
S strain rate tensor
S strain rate
Saverage average strain rate
SN superficial neuromast
Swall wall strain rate
t time
u x velocity component
u(y,t) velocity profile
U0 velocity amplitude of the sphere vibration
U� fluid velocity just outside the oscillatory boundary layer
v y velocity component
w z velocity component
δ Stokes viscous length scale
Δu maximum velocity difference between cupular tip and base
μ fluid dynamic viscosity
ν fluid kinematic viscosity

ρ fluid density
φ phase delay
ω 2πf
2-D two-dimensional
3-D three-dimensional
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