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INTRODUCTION
Legged locomotion is a complicated process (for reviews, see
Alexander, 2003; Biewener, 2003). As it walks or runs, an animal
periodically accelerates both its limbs and its center of gravity. These
accelerations require the coordinated application of forces by
muscles and skeletal ‘springs’, and the mechanical and neural
coordination of these forces can be complex. In turn, the acceleration
of the body’s various masses and the contraction of muscles place
stresses on an organism’s skeleton that can be potentially harmful.
The metabolic demands of locomotion vary with the morphology,
size, speed and gait of the animal.

The extent of our understanding of the complex process of
legged locomotion can be assessed through a variety of metrics.
One common index is a comparison between measured and
predicted maximum speeds: if we understand the physiology and
mechanics of locomotion in a particular animal, we should be
able to accurately predict how fast that animal can run. Several
approaches have been applied to this task. Maximum running
speeds have been predicted based on (1) the mass of the body or
of its locomotory musculature (e.g. Hutchison and Garcia, 2002;
Weyand and Davis, 2005), (2) the rate at which energy can be
provided to the limbs (Keller, 1973), (3) the ground force muscles
can produce (e.g. Weyand et al., 2000), (4) the stiffness of the
‘spring’ formed by the muscles, ligaments and skeleton (e.g.
Farley, 1997), (5) the aerobic capacity of the lungs and circulatory
system (e.g. Jones and Lindstedt, 1993; Weyand et al., 1994),
and (6) the strength of bones, ligaments and tendons (e.g.
Biewener, 1989; Biewener, 1990; Blanco et al., 2003; Iriarté-Diaz,
2002). All of these factors vary with body size, limb morphology
and the distance over which speed is measured.

To assess the predictive accuracy of these models, we need
empirical standards with which their predictions can be compared.
The more precise the models become, the more precise these
standards need to be. Therein lies a problem. For extinct species
[e.g. Tyrannosaurus (Hutchison and Garcia, 2002)] it is impossible
to measure speed directly. For many extant species, maximum
running speed has been measured for only a few individuals and
often under less than ideal conditions. Even under the best of

circumstances the accuracy of speed measurements is often highly
questionable (e.g. Alexander, 2003).

Human beings provide an illustrative case study. In many
respects, humans are ideal experimental animals for the measurement
of maximum speeds. They are intelligent and highly motivated to
accomplish a given task, and a vast number of speed trials
(competitive races) have been conducted over the years at a wide
variety of distances. However, despite this wealth of experimental
data, it has proven difficult to quantify the maximum running speeds
of humans. In large part, this difficulty is due to the fact that
measured speeds have changed through time. For example, the world
record speed for men running 1500m is 14% faster today than it
was a century ago (Quercetani and Magnusson, 1988; Lawson,
1997) (International Association of Athletics Federations,
http://www.iaaf.org/statistics/records/inout=O/index.html), and
speed in the marathon (42.2km) is nearly 23% faster than it was in
1920. Increases in speed among women are even more dramatic:
21% faster in the 1500m race since 1944 and more than 60% faster
in the marathon since 1963. If maximum running speed changes
through time, it is difficult to use it as a standard for comparison.

The same problem applies to other well-studied species. Horses
and dogs have raced competitively for centuries, and one might
suppose that their maximum speeds would be well established. But,
as with humans, the speed of horses and dogs has increased through
time. The winning speed in the Kentucky Derby (a race for
thoroughbred horses) increased by more than 13% in the 65years
from 1908 to 1973. The winning speed in the greyhound English
Grand National has increased by nearly 15% in the 80years since
its inception in 1927.

The temporal variability in maximum running speeds of dogs,
horses and humans raises two central questions. (1) Is there a
definable maximum speed for a species running a given distance?
The upward trend through time in race speeds for dogs, horses and
humans demonstrates that advances in training and equipment, and
evolution of the species itself (through either natural selection or
selective breeding), can increase running performance. But
improvements of the magnitude observed over the last century
cannot continue indefinitely: for any given distance, any species

The Journal of Experimental Biology 211, 3836-3849
Published by The Company of Biologists 2008
doi:10.1242/jeb.024968

Limits to running speed in dogs, horses and humans

Mark W. Denny
Hopkins Marine Station of Stanford University, Pacific Grove, CA 93950, USA

e-mail: mwdenny@stanford.edu

Accepted 20 October 2008

SUMMARY
Are there absolute limits to the speed at which animals can run? If so, how close are present-day individuals to these limits?
I approach these questions by using three statistical models and data from competitive races to estimate maximum running
speeds for greyhounds, thoroughbred horses and elite human athletes. In each case, an absolute speed limit is definable, and the
current record approaches that predicted maximum. While all such extrapolations must be used cautiously, these data suggest
that there are limits to the ability of either natural or artificial selection to produce ever faster dogs, horses and humans.
Quantification of the limits to running speed may aid in formulating and testing models of locomotion.

Key words: running, terrestrial locomotion, horse, dog, thoroughbred, greyhound, track and field, speed limits, maximum speed, evolution, world
record, human.

THE JOURNAL OF EXPERIMENTAL BIOLOGY



3837Limits to running speed

will eventually reach its limits. However, it remains to be seen
whether this limit can be reliably and accurately measured. (2) If
there is a limit to speed, how does it compare with the speed of
extant animals? Greyhounds and thoroughbreds have been the
subject of intensive selective breeding. How successful has this
breeding been in producing fleet animals? Humans are not bred for
speed (at least not in the formal fashion of dogs and horses), but
what they lack in breeding they have attempted to make up for with
improvements in training, nutrition and equipment, and through the
use of performance-enhancing drugs. How successful have these
efforts been in producing faster humans?

Past attempts at predicting progress in running performance
(primarily in humans) have been less than satisfying. Early attempts
documented historical trends and extrapolated these trends linearly
into the future (e.g. Whipp and Ward, 1992; Tatem et al., 2004).
However, these analyses provide no hint of the absolute limits that
must exist. Taken to their logical extremes they make absurd
predictions: negative race times, speeds in excess of Mach 1. More
recent efforts fit historical trends to exponential and logistic
equations, models capable of explicitly estimating maximum speeds
(e.g. Nevill and Whyte, 2005). However, these models have been
applied only to humans running a few distances and, even then,
only to world records, a small subset of the available data.

Here I use the statistics of extremes and three statistical modeling
approaches to estimate maximum running speeds for greyhounds,
thoroughbred horses and elite human athletes.

MATERIALS AND METHODS
I define ‘speed’ as the average speed that an organism maintains
over a fixed distance on level ground (=event distance/total elapsed
time). This definition avoids the complications inherent in measuring
instantaneous speed (e.g. Tibshirani, 1997). For thoroughbreds and
greyhounds, extensive reliable data are available for only narrow
ranges of distance (1911–2414m for horses and 460–500m for
greyhounds), but for humans, data are available for distances
varying by more than two orders of magnitude (100–42,195m).

Historical records
Horses

Data were obtained for the US Triple Crown races (the Kentucky
Derby, Preakness Stakes and Belmont Stakes), contested by 2year
olds. The Kentucky Derby has been run annually since 1875, but the
current race distance (1.25miles, 2012m) was not set until 1896. I
obtained winning race times for the years 1896–2008 from the race’s
official web site (www.kentuckyderby.com/2008/history/ statistics).
The Preakness Stakes has been run annually since 1873, and at the
current race distance (1.1875miles, 1911m) since 1925. Data for
1925–2008 were obtained from the race’s official web site
(www.preakness-stakes.info/winners.php). The Belmont Stakes has
been contested annually since 1867. The current race distance
(1.5miles, 2414m) was set in 1926, and I obtained data for 1926–2008
from the official web site of the New York Racing Association
(www.nyra.com/Belmont/Stakes/Belmont.shtml). Unlike racing dogs
and humans, racing horses carry a jockey. The weight of the jockey
and saddle in the Triple Crown races is typically 55–58kg.

Dogs
Professional greyhound racing was established in Great Britain in
1927, and three races have been contested annually since that date
(with a gap during World War II). Winning race times for three
premier dog races (the English Derby, English Grand National and
English Oaks, named after horse races) were obtained from

www.greyhound-data.com. The length of each race has varied
occasionally; only data for races of 460–480m were used.

Humans
The ATFS (Association of Track and Field Statisticians, 1951–2006),
Quercetani and Magnusson (Quercetani and Magnusson, 1988),
Magnusson and colleagues (Magnusson et al., 1991), Kök and
colleagues (Kök et al., 1995; Kök et al., 1999) and the International
Association of Athletics Federations (http://www.iaaf.org/
statistics/records/inout=O/index.html; accessed June 2008) document
annual world’s best race times for both men and women for races
varying from 100m to the marathon (42,195m). Unlike thoroughbreds
(for which races are typically among individuals of a single year class),
humans often race competitively for several years. On occasion, a
single individual has recorded the world’s best time in more than one
year. This year-to-year connection is a problem for the methods
applied here to the analysis of maximum speeds (extreme-value
analysis, see below), which assume that individual data points are
independent. To minimize this factor, only an individual’s best time
was used; other years in which that individual recorded the world’s
best time were deleted from the record. In cases where an individual
recorded identical best times in separate years, the first occurrence
of the time was used.

Data for men’s races are available for some distances beginning
in 1900, and for all distances from 1921. Except in the 100m and
200m races and the marathon (which include data from 2008), all
records extend to 2007. Data for women’s races from 100m to 800m
are available from 1921 to 2007, but data for longer distances are
more constrained. Data for the 1500m race begin in 1944, with a
gap from 1949 to 1966, sufficient for the present purposes. Data
for the 3000m, 5000m and 10,000m races are too scarce to be useful
for this analysis. Records for the women’s marathon are available
from 1963 to 2007, and are sufficient for analysis.

Several minor adjustments and corrections were made to the
human historical record (see Appendix 1).

Analytical approaches
Extreme-value analysis

Each data point in these historical race records is the annual
maximum speed recorded from a select group of highly trained
athletes in a given race. As such, each record is a sample of the
extreme abilities of the species in question. The statistics of
extremes (Gaines and Denny, 1993; Denny and Gaines, 2000; Coles,
2001; Katz et al., 2005) asserts that the distribution of these extreme
values should conform asymptotically to a generalized extreme-
value (GEV) distribution:

Here, P(V) is the probability that an annual maximum speed chosen
at random is ≤V. The shape of this cumulative probability curve is
set by three parameters: a, a shape parameter; b, a location
parameter; and c, a scale parameter. Parameters a and b can take
on any value; c is constrained to be >0. If a is ≥0, the shape of the
distribution of extreme values is such that there is no defined limit
to the extremes that can potentially be reached (Coles, 2001). In
contrast, if a<0, P=1 when V=b–(c/a). In such a case, the distribution
of extreme values has a defined absolute maximal value:
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Because of this ability to define and quantify absolute maxima,
the statistics of extremes is a promising approach for the study of
maximum running speeds. All extreme-value analyses were carried
out using extRemes software (E. Gilleland and R. W. Katz, NCAR
Research Applications Laboratory, Boulder, CO, USA), an
implementation in the R language of the routines devised by Coles
(Coles, 2001). When fitting Eqn1 to data, there is inevitably some
uncertainty in the estimated value of each parameter and of Vmax.
Confidence limits for these values were determined using the profile
likelihood method (Coles, 2001).

Method 1: no trend
Appropriate application of Eqn 1 to the estimate of maximum
speeds depends on whether or not there is a trend in race data,
either with time or with population size. For some races, speeds
appear to have plateaued in recent years. The existence and extent
of such a plateau was determined by sequentially calculating the
correlation between year and maximum speed starting with data
for the most recent 30 years and then extending point by point
back in time. If there was no statistically significant trend in speed,
a plateau was deemed to exist, and the beginning of the plateau
was taken as the year associated with the lowest correlation
coefficient. For the data in such a plateau, application of Eqn 1 is
straightforward: parameters a, b and c are chosen to provide the
best fit to the raw speed data in the plateau, the degree of fit being
judged by a maximum likelihood criterion. If a is significantly
less than 0 (that is, if its upper 95% confidence limit is <0), the
absolute maximum is calculated according to Eqn2 and confidence
limits for this estimate are obtained. In cases where a≥0, no
absolute maximum value can be determined. In these cases, I
arbitrarily use the estimated maximum value for a return time of
100 years as a practical substitute for the absolute maximum.

Method 2: the logistic model
For cases in which trends are present in race data, the trend must
first be modeled before the analysis of extremes can begin. Two
models were used. The first model is the logistic equation mentioned
in the Introduction:

which provides a flexible means to model values that, through time,
approach an upper limit (Nevill and Whyte, 2005). Eqn3 is a natural
fit to a basic assumption made here: that an absolute limit must exist
to the speed at which animals can run. In Eqn3, V(y) is the fastest
speed recorded in year y, mn is the model’s minimum fastest speed
and mx is the model’s maximum fastest speed (the parameter of most
interest in the current context). k is a shape parameter determining
how rapidly values transition from minimum to maximum, and t is
a location parameter that sets the year at which the rate of increase
is most rapid. Note that although the logistic equation incorporates
the assumption that a maximum speed exists, it does not assume that
speeds measured to date are anywhere near that maximum.

Historical race data were fitted to Eqn 3 using a non-linear
fitting routine with a least-squares criterion of fit (Systat, SPSS,
Chicago, IL, USA), providing an estimate (±95% confidence
limit) for mx. Note that the confidence limits for mx indicate the
range in which we expect to find this parameter of the model,
but that this range does not necessarily encompass the variation
of the data around the model. A heuristic example is shown in
Fig. 1. For this example, I created a hypothetical set of race data

V ( y) = mn + (mx − mn)
exp k ( y − t)⎡⎣ ⎤⎦

exp 1 + k ( y − t)⎡⎣ ⎤⎦

⎛

⎝
⎜

⎞

⎠
⎟ , (3)
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by specifying a logistic curve (mn=14, mx=17, k=0.1, t=1940)
for y=1900 to 2020 and adding to each deterministically modeled
annual maximum speed a random speed selected uniformly from
the range –0.35 to 0.35 m s–1. When provided with these
hypothetical data, the fitting routine very accurately estimated
the true values for the parameters of the model, but the estimated
mx (17.00 m s–1, with 95% confidence limits ±0.06 m s–1) does not
include the maximum speed in the data set (17.32 m s–1). To
accurately estimate the overall maximum (rather than the
maximum of the trend), it is necessary to characterize the effect
of variation around the fitted logistic model.

To do so, the temporal trend in extreme values is first incorporated
into the analysis by subtracting the best-fit logistic model from the
measured annual maximum race speeds (Gaines and Denny, 1993;
Denny and Gaines, 2000). The distribution of the resulting deviations
– trend-adjusted extreme values – is then analyzed using Eqn1. If
a for the distribution of trend-adjusted extremes is <0, there is a
defined absolute maximum deviation from the logistic model
(Eqn2), and this absolute maximum deviation is added to the
estimated upper limit of the logistic model (the best-fit mx) to yield
an estimate of the overall absolute maximum speed. As before, if
a≥0, I estimate a practical maximum by adding the 100year return
value to mx. In both cases, 95% confidence limits on the predicted
maximum deviation give an indication of the statistical confidence
in the overall estimate of maximum speed.

Unlike the logistic analysis of Nevill and Whyte (Nevill and
Whyte, 2005), which used only world-record speeds, the analysis
here uses the much more extensive measurements of annual
maximum speed. The variation of these annual maxima around the
underlying trend provides insight into the random variation in
maximum speed present in the population of animals under
consideration. And unlike the analysis of data in just the plateau
portion of a record (method1), analysis using deviations from the
logistic equation utilizes all the data in the historical record.

Method 3: population-driven analysis
The larger the population from which racing dogs, horses or
humans are selected each year, the higher the probability that an
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Fig. 1. Hypothetical data and the fit to them using the logistic equation
(Eqn 3). The red line is the best-fit logistic model, and the black lines are
the confidence limits on that fit, drawn using the best-fit values for the
shape parameter k and the location parameter t and the 95% ranges for
the minimum fastest speed mn and the maximum fastest speed mx. Note
that the modelʼs confidence interval does not incorporate the highest
speeds.
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exceptional runner will be found by chance alone (Yang, 1975).
Thus, if population size grows through time, maximum recorded
speed may increase. To assess the effect of this interaction between
speed and population, I used the following analysis, illustrated here
using human females as an example.

I begin by assuming that there exists an idealized distribution of
the speeds at which individual women run a certain distance. Every
time a woman runs a race at that distance, her speed is a sample
from this distribution. I then suppose that in a given year S0 women
run the race, and we record V, the fastest of these speeds. V is thus
one sample from a different distribution – the distribution of
maximum speeds for women running this distance. A different
random sample of S0 individual speeds would probably yield a
different V. In this fashion, repeated sampling provides information
about the distribution of maximum speeds. Our job is to analyze
the measured values of V to ascertain whether the distribution of
these maximum speeds has a defined upper bound. Statistical theory
of extremes (Coles, 2001) suggests that if we confine our exploration
to maximum speeds above a sufficiently high threshold u, the
cumulative distribution of our sampled maxima asymptotes to the
generalized Pareto family of equations (GPE):

Here G(V) is the probability that the maximum speed of a sample
of S0 women is >V.

Parameters ε and u can take on any value, σ is constrained to be
>0. Note, if ε<0, G(V)=0 when V=u–(σ/ε). In other words, if ε is
negative:

Thus, if we have empirical data for V and G(V), we can estimate
u, σ and ε, and potentially calculate Vmax (Fig.2A).

We have historical data for annual maximum speeds, but how can
we estimate the corresponding probabilities, G? Here population size
comes into play. The larger the population of running women
available to be sampled in a given year, the greater the chance of
having a woman run at an exceptionally high speed. Put another way,
the larger the S, the population of female runners, the faster the V
that we are likely to record. The faster the V we record in a large
sample, the lower the probability that we would have exceeded that
high V in a small sample. [Recall that G(V) is defined specifically
for sample size S0.] Thus, V recorded at large S should have a relatively
low G. The sense of this relationship between population size and
G(V) is depicted in Fig.2A (note the ordinate on the right). The
theoretical relationship between population size and annual maximum
velocity is described by a modification of the GPE:

Here N(V) is world population size in the year in which V was
measured and N0 is world population size at the beginning of the
historical record. For a derivation of this equation, see Appendix 2.

Note that total world population is used in Eqn 6 solely as an
index of the population of runners. The actual number of runners
is some unknown fraction f of the total population. Both as a practical
matter and for the sake of simplicity, I assume that f is constant
through time, in which case it cancels out of the equation when the
ratio of population sizes is taken. I recognize the likelihood that, in
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fact, f has varied through time, and the potential effects of variation
in f are addressed in the Discussion.

I apply this approach to the historical records of running speeds
for races in which speed is correlated with population size. From
records of population size and annual maximum speed, I construct
an exceedance distribution of annual maximum speeds as described
by Eqn6, for which I then calculate the best fit values of ε, u, and
σ using a least-squares criterion of fit. (Note that in this analysis,
the value of the threshold u is chosen to give the best fit to the GPE
rather than being chosen a priori.) The 95% confidence limits, for
both individual parameters and the overall distribution, are calculated
using 2000 iterations of a bootstrap sampling of the data with
accelerated bias correction (Efron and Tibshirani, 1993). If ε≤0, the
annual maximum speed estimated for an infinite population (G=0)
provides an estimate of absolute maximum speed (Eqn5), similar
in principle (although not necessarily in magnitude) to the maximum
speed estimated from the logistic equation (method2).

To account for random variation about this best-fit population-
driven model, deviations in speed from the best-fit GPE model are
analyzed using Eqn1. If the best-fit a for this distribution is <0, an
absolute maximum deviation exists (Eqn2), and this maximum
deviation is added to the expected value for the population-driven
model.

The similarity between the population-based model of maximum
speed and the time-based logistic model is highlighted in Fig.2B where
the information of Fig.2A has been replotted to show how modeled
speed (the red line) varies as a function of population size.
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Fig. 2. (A) The generalized Pareto equation (GPE, Eqn 6) can be used to
estimate absolute maximum speed. Hypothetical measured data are shown
as black dots, and the best-fit GPE fitted to these data (the red line) can be
extrapolated to an exceedance probability of G=0, thereby estimating the
maximum possible speed. Note from the ordinate on the right that G=1
corresponds to population size S0, and G=0 corresponds to infinite
population size. (B) The information from A, presented in terms of
population size rather than probability. The extrapolation of the GPE model
to infinite population size gives an estimate of maximum speed, shown by
the red dot.
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As an alternative to the approach used here, the effect of
population size on running speed could be addressed by
incorporating population size as a covariate in a GEV analysis
similar to that used in method1 (see Coles, 2001; Katz et al., 2005).
For many human races, speed increases approximately linearly with
the logarithm of population size. Using log population size as a linear
covariate produces results essentially similar to those obtained with
method1 described above. However, this alternative method has
not been fully explored, and its results are not reported here.

Population size
To implement the population-driven model, information is required
regarding the year-by-year population of potential contestants. The
combined number of thoroughbred foals born each year in the United
States, Canada and Puerto Rico has been recorded by the US Jockey
Club (www.jockeyclub.com/factbook08/foalcrop-nabd.html), and I
assume that this represents a good approximation of the potential
population from which Triple Crown runners are chosen. Horses
racing the Triple Crown are 2yearolds, so the foal crop from a given
year represents the potential racing population of the following year.

A request to the English Stud Book for records of racing
greyhounds born in the UK each year was not answered, so an
estimate of the trend in the potential population of racing greyhounds
was obtained from records of the Irish Stud Book. This substitution
was deemed acceptable for two reasons. First, many (perhaps most)
greyhounds racing in Britain are born in Ireland. Second, Eqn6 uses
the ratio of initial population size to that in a given year. Thus, as
long as the number of Irish greyhound births is proportional to that
in the UK, the use of the Irish data is valid. Greyhounds begin racing
at age 18months to 2years; I assume here that the number of dogs
registered in a given year is approximately the number available to
race in the following year.

Estimates of the world’s human population were garnered from
Cohen (Cohen, 1995) and the US Census Bureau (http://
www.census.gov/ipc/www/idb/worldpop.html; ‘Total midyear
population for the world: 1950–2050’; accessed June, 2008).
Population size N for a given year from 1850 to 2008 was estimated
as:

N = –6.423X 5 + 40.144X 4 – 93.372X 3 + 
102.39X 2 – 52.147X + 11.054 ,     (7)

where N is measured in billions and X is centuries since 1800
(r2>0.999). I assume a 1:1 gender ratio for humans; the potential
runners’ population for men and women is thus each half the total
world population. Note that this equation yields spurious values if
used outside the years 1850–2008.

RESULTS
Thoroughbreds

Temporal patterns of winning speeds for the US Triple Crown are
shown in Fig.3. There is no significant correlation between year
and winning speed in the Kentucky Derby for the period 1949 to

M. W. Denny

2008. An apparent plateau was reached later in the Preakness Stakes
(1971) and Belmont Stakes (1973). Significance levels for the
correlation of speed with time in these plateau years are given in
Appendix 3, TableA1.

Extreme-value analysis of race speeds during each plateau
suggests that there is an absolute upper limit to speeds in each of
these races (a is significantly less than 0 in each case), and the
predictions are shown in Table1 (no-trend model).

The temporal pattern of speed for each race is closely modeled by
the logistic equation (Appendix 2 and TableA2) and, in each case,
horses appear to have reached a plateau in speed (Fig.3). Predictions
of maximum speed made using a logistic model fitted to the entire
data set for each race (Table1, logistic model) are statistically
indistinguishable from those obtained from the subset of plateau data.

For each race, the predicted absolute maximum running speed
(averaged across methods) is only slightly (0.52% to 1.05%) faster
than the current record.
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Fig. 3. Temporal patterns of winning speeds in the Triple Crown races.
Black dots are winning speeds in the years shown. Green lines are
regressions for data in the plateau of each record; any slope of these
regression lines is statistically insignificant. Red lines are the best-fit logistic
models.

Table 1. Predicted and current record maximum speeds for thoroughbreds running a distance of 1911–2414m

Predicted maximum speed (m s–1)

Plateau year Logistic model No-trend model Current record Average increase (%)

Kentucky Derby 1949 17.071 16.966 16.842 1.05
Preakness Stakes 1971 17.090 16.914 16.853 0.88
Belmont Stakes 1973 16.899 17.031 16.877 0.52

During the current plateau in speeds, there is no significant correlation between speed and year. 
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The potential population of Triple Crown runners increased
dramatically from the 1880s until the mid-1980s, but has decreased
since (Fig.4A). Plots of speed as a function of population size (e.g.
Fig.5A) demonstrate that changes in population size are not the
controlling factor in winning speeds in these horse races. Speed in
the Kentucky Derby is not correlated with population size when the
population is above 8400 (P>0.882, Fig.5A), in the Preakness Stakes
when the population is greater than 24,300 (P>0.867), and in the
Belmont Stakes when the population is greater than 25,700
(P>0.253). Because of the lack of correlation between population
size and speed above certain population limits, the population-driven
model of speeds was not applied to horses.

Greyhounds
In a pattern similar to that seen with horses, race speeds for
greyhounds appear to have plateaued (Fig.6). The plateau in the
English Oaks began in approximately 1966 and in the English Grand
National and English Derby in approximately 1971. The significance
levels of the regression of speed on time during these plateaus are
given in Appendix 3 (TableA3). The temporal pattern of speeds for
each race is closely modeled by the logistic equation (details are
given in Appendix 3, TableA4), and predicted maximum speeds
calculated using this method (Table2, logistic model) are very
similar to those calculated from the plateaus alone.

Averaged across methods, predictions of maximum running speed
for each race are only 0.29% to 0.92% higher than existing records
(Table2).

The estimated population of racing dogs increased gradually from
1950 (the earliest year in which records are available) to 2007
(Fig.4B), with substantial year-to-year variation. Speed in the

English Oaks is not correlated with population size when the
population is above 14,000 (P>0.354), in the English Grand National
when the population is greater than 19,300 (P>0.332), and in the
English Derby when the population is greater than 19,565 (P>0.232).
A representative example of the relationship between Irish
greyhound population size and speed is shown in Fig.5B. The fact
that race speeds apparently plateaued while the population increased
suggests that population size is not a substantial factor in the control
of maximal speed in greyhounds, and the population-driven method
of analysis was not applied to dogs.

Humans
Temporal patterns of human running speed are shown in Figs7–9.
For women running 100m to 1500m, speeds appear to have
plateaued during the 1970s. Approximate onset years for each
plateau and the corresponding probability level are given in
Appendix 3 (TableA5). For these races, I applied extreme-value
analysis directly to the data in each plateau. In the 200m and 800m
races, an absolute maximum speed could be calculated (a was
significantly <0, TableA5). In the 100m, 400m and 1500m races,
no absolute limit is defined for women’s speeds; 100year return
values are given here (Table3) and absolute maxima (if they exist)
will be somewhat higher.

Data for all human races could be accurately fitted with a logistic
model (for details see Appendix 3, TableA6). Results from the
logistic models of human running speed are given in Table3. In all
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Fig. 4. Population trends in (A) US thoroughbreds, (B) Irish greyhounds and
(C) humans. The red line in B is a 5 year running average of the data to
emphasize the trend. The red line in C is from Eqn 7.
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Fig. 5. Representative examples of variation in running speeds as a
function of population size. For sufficiently large populations, there is no
correlation between population size and speed in (A) thoroughbreds and
(B) greyhounds. In contrast, human speeds (exemplified here by C, the
menʼs 1500 m race) are correlated with population size throughout the
historical range of population size.
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cases except the women’s 400m and 1500m races, a in the GEV
fit was <0, and absolute maximum speeds could be predicted
(Appendix 3, TableA6). For the women’s 400m and 1500m races,
values for 100year return times are used. For the races in which
speeds appear to have plateaued, predictions made using the logistic
equation and the entire historical record are slightly higher than those
from the analysis of the plateaus alone (Table3).

The human population has exploded over the last century
(Fig.4C). In those races in which women’s speeds have reached a
plateau in recent years, a similar plateau is present in the relationship
between speed and population (see Appendix 3, TableA7), and
therefore it is unlikely that population is driving speed in these races.
In all non-plateau races, however, a plot of speed versus population
size shows a correlation throughout the record (a representative
example is shown in Fig.5C), and the population-driven model was
applied. Due to large year-to-year variation in speeds recorded early
in the twentieth century, the GPE fitted to data from men’s 100m

M. W. Denny

and 200m races had exceptionally large confidence intervals (e.g.
the 95% confidence interval for predicted absolute maximum speed
included 0ms–1), and these questionable results are not included
here. In the other races analyzed, the GPE provided an acceptable
fit. Results from a representative example are shown in Fig.10, and
all results from this model are given in Table3. In all non-plateau
races, a was <0 (Appendix 3, TableA8), and an absolute maximum
deviation from the fitted trend was calculated. Estimates from the
population-driven model for non-plateau races closely match those
obtained from other analytical approaches (Table3), suggesting that
increasing human population size will not be a major factor in future
track records.

The results from all human races are summarized in Fig.11 and
Table4. Speeds for which 100year maxima are used (rather than
absolute maxima) are shown as open symbols. Average predicted
maximum speeds for men and women are only modestly faster than
current world records (1.06% to 5.09% for men, 0.36% to 2.38%
for women). The predicted potential for an increase in speed is not
significantly correlated with race distance for men (P>0.93). There
is a marginally significant negative correlation between the potential
for increase and race distance in women (P=0.037), but this
correlation is driven solely by the low predicted increase in speed
in the marathon. Predicted maximum speeds for women are 9.3%
to 13.4% slower than those for men, and in all but one instance (the
400m race) the predicted maximum speed for women (including
the confidence intervals) is less than the current record speed for
men. There is a significant difference in the mean scope for increase
(predicted maximum speed divided by current world record speed,
minus 1) between men and women. For data pooled across all
speeds, the mean scope for increase in predicted speed is 3.17% for
men and 1.55% for women (Student’s t-test, unequal variances,
d.f.=12, P=0.008).

DISCUSSION
These results provide tentative answers to the questions posed in
the Introduction. For greyhounds, thoroughbreds and humans, there
appear to be definable limits to the speed at which they can cover
a given distance, and current record speeds approach these predicted
limits. If present-day dogs, horses and humans are indeed near their
locomotory limits, these animals (and the limits they approach) can
serve as appropriate standards against which to compare predictions
from mechanics and physiology.

The case for defined limits in horses and dogs is particularly
strong. Despite intensive programs to breed faster thoroughbreds
and greyhounds, despite increasing populations from which to
choose exceptional individuals, and despite the use of any undetected
performance-enhancing drugs, race speeds in these animals have
not increased in the last 40–60 years. Thus, for horses and dogs, a
limit appears to have been reached, subject only to a slight (and
bounded) further increase due to random sampling. The situation
is less clear cut for humans, in particular for men. Logistic and

Table 2. Predicted and current record maximum speeds for dogs running a distance of 460–480m

Predicted maximum speed (m s–1)

Plateau year Logistic model No-trend model Current record Average increase (%)

English Derby 1971 17.056 17.048 17.003 0.29
English Grand National 1971 16.826 16.826 16.673 0.92
English Oaks 1966 16.958 16.838 16.813 0.51

During the current plateau in speeds, there is no significant correlation between speed and year.
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Fig. 6. Temporal patterns of winning speeds in English greyhound races.
Black dots are winning speeds in the years shown. Green lines are
regressions for data in the plateau of each record; any slope of these
regression lines is statistically insignificant. Red lines are the best-fit logistic
models. Gaps in the 1970s and 1980s for the English Grand National and
English Derby are due to changes in the course length in these races
during that period.
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population-driven models of the historical data suggest that a limit
to male human speed exists, and that this speed is only a few per
cent greater than that observed to date. But unlike speeds in horses
and dogs, and sprint speeds for women, speeds for men have not
yet reached a plateau.

An excellent example of the potential for a continued increase
in men’s speeds is provided by the recent world records set in the
100m and 200m races by Usain Bolt of Jamaica. Over a span of
3days in the Olympic games of 2008, Bolt ‘shattered’ the then
existing records, lowering the record in the 100m from 9.72 to 9.69s
and in the 200m from 19.32 to 19.30s. Because Bolt is exceptionally
tall for a sprinter (6�5�, 1.96m), he was hailed by the press as a
physical ‘freak’ and the harbinger of a new era of sprinting.

Should Bolt’s records cast doubt on the predictions made here?
The answer is no. Bolt’s records are only small improvements on
the existing records for the 100m and 200m races, 0.3% and 0.1%,
respectively, and Bolt’s records are not out of line with the logistic
fit to the historical data (Figs7 and 8, pink dots). Furthermore, there
have previously been similar jumps in record speed. Thus, as
admirable as they are, there is nothing in Bolt’s records to suggest
that the predictions made here are inaccurate or that human speeds
in the 100m and 200m races are limitless.
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Fig. 7. Temporal patterns of annual fastest speeds for humans running
100 m. Dots are winning speeds in the years shown. The green line is the
regression for data in the plateau of the womenʼs record. Red lines are the
best-fit logistic models. Menʼs speeds appear not to have plateaued. The
recent world record set by Usain Bolt (2008 Olympics) is shown as the pink
dot.

Women short events

Year

1900 1920 1940 1960 1980 2000 2020

S
pe

ed
 (

m
 s

–1
)

4

5

6

7

8

9

10

200 m

200 m

400 m

800 m
1500 m

Men’s short events

1880 1900 1920 1940 1960 1980 2000 2020
6

7

8

9

10

11

400 m

1500 m

A

B

800 m

Fig. 8. Temporal patterns of annual fastest speeds for humans running
200 m to 1500 m; (A) men, (B) women. Dots are winning speeds in the
years shown. Womenʼs speeds appear to have plateaued, and the green
lines are the regressions for data in these plateaus. Any slope of these
regression lines is statistically insignificant. Red lines are the best-fit logistic
models. Menʼs speeds appear not to have plateaued. The recent world
record set by Usain Bolt in the 200 m race is shown as the pink dot.
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3000 m to 41,195 m (the marathon); (A) men, (B) women. Dots are winning
speeds in the years shown. Red lines are the best-fit logistic models.
Speeds in these distance races appear not to have plateaued.
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For distances of 100m to 1500m, women’s speeds appear to have
plateaued (Figs7 and 8), superficially giving added confidence in
the logistic model of the data. These plateaus (and this confidence)
should be viewed with some skepticism, however. In each of these
races, the current world record was set in the early to mid-1980s,
a time when performance-enhancing drugs were becoming prevalent
in women track athletes but before reliable mechanisms were in
place to detect these drugs (Holden, 2004; Vogel, 2004). If speeds
were artificially high in the 1980s due to drug use, and drug use
was absent in subsequent years, one might suspect that the apparent
plateau in the historical record could be an artifact. However,
removing the annual maximum speeds from the 1980s does not
substantially alter the results of the logistic analyses. Thus, the
temporal plateaus in speeds at these distances appear to be real.
There is an interesting corollary to this conclusion: if performance-
enhancing drugs are still being used by women, the effect of the
drugs has itself reached an apparent plateau.

In contrast to times in the shorter races, women’s speeds in the
marathon have continued to increase in recent years; like men, women
in this race have not reached a demonstrable plateau. In this case,
however, the current world record (5.19ms–1 set by Paula Radcliffe
in 2005) is very close to the average predicted absolute maximum
speed (5.21ms–1); indeed, the current world record exceeds the
maximum predicted from the population-driven model (although it
lies within the confidence interval of this estimate). Given the upward
trend in recent marathon speeds and the small difference between the
current record and the predicted limit, this race is likely to provide
the first test of the methods and predictions used here.

Maximum speeds predicted here are on average 1.63% higher
than those predicted by Nevill and Whyte (Nevill and Whyte, 2005).
The difference is probably due to the fact that the implementation
of the logistic method here takes into account sampling variation
in the maximum speeds.

My results for humans bolster the conclusion reached by Sparling
and colleagues (Sparling et al., 1998) and Holden (Holden, 2004)
that the present gender gap between men and women will never be
closed for race distances between 100m and the marathon. Note

M. W. Denny

that none of the data presented here speak to the possibility that
women may someday out-run men at longer distances (Bam et al.,

Table 3. Predicted and current record maximum speeds for human beings running races of various distance

Predicted maximum speed (m s–1)

Distance (m) Plateau year Logistic model No-trend model Population-driven model Current record (m s–1)

Men 100 10.55 10.32
200 10.73 10.35
400 9.42 9.31 9.26
800 8.41 7.93 7.91
1500 7.36 7.53 7.28
3000 7.07 7.00 6.81
5000 6.86 7.02 6.60

10,000 6.64 6.66 6.34
42,195 5.88 5.77 5.67

Women 100 1977 9.81 9.49 9.43
200 1973 9.67 9.40 9.37
400 1974 8.54 8.55 8.40
800 1973 7.31 7.10 7.06
1500 1978 6.55 6.61 6.51
3000 6.17
5000 5.84

10,000 5.64
42,195 5.30 5.12 5.19

Maximum speed predicted for the womenʼs marathon using the population-driven method is slightly slower than the current world record speed, but the current
world record is within the confidence limits of the estimate (see Fig. 11).
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driven model; data for the menʼs 1500 m race. The red line is the best-fit
GPE (Eqn 6), and the black lines are the bootstrap 95% confidence limits
on this model. The green line depicts the addition of the absolute maximum
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(B) Data from A translated to show speed as a function of population size.
Line colors are as in A. Dots on the ordinate at infinite population size
show the estimated maxima of the various lines.
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1997). Similarly, my results are consistent with the conclusion
reached by Yang (Yang, 1975) that increases in human population
will have only a minor effect on speed.

Evolution
Is it reasonable to suppose that the evolution of speed in horses has
reached its limits? In a restricted sense, the answer is yes. The
equipment used in horse racing, and the surfaces of the tracks on
which these races are contested, did not change appreciably during
the years when speeds were increasing in the Triple Crown races,
and they have not changed since. Nor were there any apparent
breakthroughs in training or nutrition that led to the increases in speed
in thoroughbreds in the first half of the twentieth century. It seems

likely, then, that the initial increase in speed in horses was due
primarily to selective breeding. If this is true, evidence from the Triple
Crown races suggests that the process of selective breeding of
thoroughbreds (as practiced in the US) is incapable of producing a
substantially faster horse: despite the efforts of the breeders, speeds
are not increasing, and current attempts to breed faster horses may
instead be producing horses that are more fragile (Drape, 2008). The
fastest speed in two of the Triple Crown races was set in 1973 by the
same horse, Secretariat, and he was initially credited with a speed
equal to the record in the third race (the Preakness Stakes) as well.
(The timer malfunctioned in that race, however, and Secretariat’s
subsequently established official speed is slightly slower.) Thus,
Secretariat approached the predicted absolute maximum speeds in all
three of his Triple Crown races and therefore may represent a good
approximation of the ultimate individual thoroughbred in races
1.25–1.5miles long.

In a larger sense, however, the equine data presented here are
preliminary at best. It may well be possible that different criteria
for selective breeding of horses could produce a faster animal.
Thoroughbreds have been recognized as a separate breed since
the 1700s, and regulation of the breed has constrained its gene
pool: thoroughbreds are less genetically diverse than other breeds
of horses (Cunningham et al., 2001). The breed is effectively a
closed lineage descended from as few as 12–29 individuals
(Cunningham et al., 2001; Hill et al., 2002), and 95% of the
paternal lineages in present-day thoroughbreds can be traced to
a single stallion, The Darley Arabian. Selective breeding starting
with different equine stock could perhaps yield faster horses. In
this sense, then, the results presented here do not necessarily
address the question of the maximum speed for the species Equus
cabillus.

The same arguments apply to greyhounds. Greyhounds have been
bred for speed since antiquity, and the results presented here show
a clear plateau in the ability of current selective breeding to produce
a faster greyhound. However, given the extraordinary malleability
of canine morphology (which includes everything from Chihuahuas
to Great Danes), it is quite possible that different breeding strategies
(perhaps starting with a different breed of dog) could produce a
faster Canus familiaris.

Human running
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Fig. 11. Summary of human running data for distances 100 m to 42,195 m.
Solid lines are the current world records for men (blue) and women (red).
Estimates from the no-trend approach are shown by the circles; estimates
from the logistic approach are shown by the squares; and estimates from
the population-driven approach are shown by the diamonds. Error bars
show the 95% range of the extreme-value estimate of absolute deviations.
Estimates based on 100 year return values (rather than absolute maxima)
are denoted with open symbols. For clarity, symbols are staggered slightly
along the abscissa.

Table 4. Current and predicted human records for standard race distances

Average predicted Current record Average predicted absolute Average increase 
Distance (m) Current world record absolute world record speed (m s–1) maximum speed (m s–1) in speed (%)

Men 100 9.69 s 9.48 s 10.32 10.55 2.22
200 19.30 s 18.63 s 10.35 10.73 3.68
400 43.18 s 42.73 s 9.26 9.36 1.06
800 1:41.11 1:38.04 7.91 8.17 3.22
1500 3:26.00 3:21.42 7.28 7.45 2.29
3000 7:20.67 7:06.42 6.81 7.04 3.34
5000 12:37.35 12:00.8 6.60 6.94 5.09

10,000 26:17.53 25:03.4 6.34 6.65 4.93
42,195 2:03.59 2:00.47 5.67 5.83 2.72

Women 100 10.61 s* 10.39 s 9.43 9.65 2.38
200 21.34 s 20.99 s 9.37 9.53 1.73
400 47.60 s 46.75 s 8.40 8.54 1.65
800 1:53.28 1:50.83 7.06 7.20 2.01 
1500 3:50.46 3:47.92 6.51 6.58 1.12 
3000 8:06.11 6.17   
5000 14:16.63 5.84   

10,000 29:31.78 5.64  
42,195 2:15.25 2:14.97 5.19 5.21 0.36 

*The official world record is 10.49 s, but there is compelling evidence that that race was wind aided (Pritchard and Pritchard, 1994).
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Once again, the situation is less clear for humans. Unlike the
apparent case in horses and dogs, human runners have recently
benefited from substantial improvements in training, equipment and
nutrition. In some cases (women’s sprints), these benefits may have
reached their own limits. But in other races, continued improvement
in training, equipment and nutrition may well be contributing to the
continued increase in race speeds. Because these effects are
inextricably entwined with the historical race data, the predictions I
make here may be biased. In essence, these predictions assume that
historical trends in training, equipment and nutrition (whatever they
are) will continue into the future. It is always dangerous to make such
assumptions. Competitive swimming provides an example of this
potential effect: improvement in the design of full-body swimsuits (a
breakthrough not contemplated 10years ago) contributed to a rash of
recent world records, 25 in the Olympics of 2008 alone. Until we
know more about the mechanisms of improvement in training,
equipment and nutrition, and more about their actual role in the
historical running record, the magnitude of their effects on future
running speeds will remain uncertain, and the predictions made here
must be used cautiously.

And then there is the subject of artificial performance enhancement,
which inevitably leads to philosophical questions pertaining to the
definition of absolute maximum speed. For example, how should we
define ‘male’, ‘female’ and even ‘human’ for the purposes of this
study? If a woman artificially enhances the concentration of
testosterone in her body, a large number of changes accrue that make
her physiologically more like a man and capable of higher speeds
(e.g. Holden, 2004). In this altered state, she may exceed any limits
that might exist for unaltered individuals. At what point should such
a hormonally enhanced woman no longer count as a woman in the
analysis of maximum female human speed? Stanislawa Walasiewicz
(Stella Walsh) provides an intriguing example. She was the preeminent
female sprinter of the 1930s, posting times that were not matched
until the 1950s. She married in 1956 and was subsequently shot and
killed during a supermarket robbery, where she was an innocent
bystander. An autopsy revealed that (unbeknownst to her) she was a
hermaphrodite, possessing both ovaries and testes. Presumably the
anabolic steroids produced by her testes contributed to her athletic
success (Lawson, 1997), but had she not been murdered, we would
never have known. Where should she be placed in the record books?
Even more vexing questions await us in the future. For example, the
potential exists to genetically engineer human athletes for enhanced
performance (e.g. Vogel, 2004). At what point does a genetically
altered person no longer count as human? (Similar questions can be
raised regarding drugs and gender in greyhounds and horses.)

For scientific purposes, these sticky questions can in large part
be circumvented through the use of arbitrary definitions. As long
as one defines practical criteria for ‘female’, ‘male’ or ‘human’
in formulating a mechanical/physiological model of locomotion,
the predictions of that model can be compared with an appropriate
set of test organisms. For present purposes, let us define a
greyhound, thoroughbred or human (male or female) as an
individual performing without drug or genetic enhancement. If
drugs have contributed to the winning speeds in the races used
here, speeds in the absence of these drugs would presumably have
been slower. Thus, if we could definitively account for the effect
of drugs in the historical record, the estimated maximum speeds
I predict for unadulterated animals would, if anything, be slower,
and my estimates are in this sense conservatively fast.

A similar conclusion applies to possible variation in the fraction
of the overall human population that participates in running races.
Recall that the analysis of the effect of population size on maximum
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speed assumed that f, a fixed (although unspecified) fraction of all
men and women, runs each year. In reality, it seems likely that f has
increased through time as awareness of the sport has spread and more
prize money has been made available. In particular, the fraction of
women competing in running races has probably increased in recent
decades. However, if we could take the presumed increase in f into
account in this analysis, the effect would be to reduce the predicted
maximum speed. (See Appendix 2 for an explanation.) In this respect,
my results are again conservatively fast.

Some cynics have suggested that the problem of artificial
enhancement in sports should be ‘solved’ by simply making drug
and genetic enhancement legal. If such enhancement is allowed,
the question of maximum human running speed becomes much
more difficult to answer. On the one hand, it seems likely that
humans have been, and still are, clandestinely employing
performance-enhancing drugs despite the ban on their use. If so,
the efficacy of these drugs is questionable: e.g. women’s speeds
in sprint races appear to have plateaued. On the other hand, it is
impossible to rule out the possibility that new drugs or genetic
enhancement could do for running what full-body swim suits have
done for swimming: provide the means for dramatic improvement.
In that case, the maximum speeds estimated here could be low.

What limits speed?
The analysis presented here deals solely with the results of
competitive races, not with the factors that caused a certain
individual to win or lose. In this respect, my results are as
unsatisfying as those of previous statistical analyses: they tell us
that speed has limits, but not what accounts for these limits.
Nonetheless, the pattern of estimated maximal speeds provides
information of potential value to physiologists and biomechanicians.
It seems unlikely that a single mechanical or physiological factor
could account for the limit to speed at all distances. The height and
mass of elite runners differs among race distances (Weyand and
Davis, 2005) as does the ability of aerobic capacity to predict speeds
(Weyand et al., 1994; Weyand et al., 1999). It is striking, then, that
the predicted scope for increased speed in humans is similar across
distances ranging from 100m to 42,195m (Fig.11; Table4). This
distance-independent scope for increase suggests that some sort of
higher order constraint may act on the suite of physiological and
mechanical factors to limit speed.

Context
The likelihood that there are limits to speed should not diminish
the awe with which we view the performance of dogs, horses and
humans. For example, a women running the estimated absolute
fastest speed for 100m would have beaten the world’s fastest male
in 1955, a feat that would have astounded contemporary spectators.
The predicted maximum speed (5.83ms–1) for a man running a
marathon (42.2km) would have been fast enough to beat the great
Emil Zatopek in his world’s best 10km race in 1954. Those in the
stands watching that race could not have imagined someone besting
Zatopek by 16s, and then simply continuing at that winning pace
for another 32.2km.

APPENDIX 1
Notes on the historical records

Horses
Until 1991, Triple Crown races were timed by hand to the nearest
0.2s; since then they have been timed electronically to the nearest
0.01s. I have made no correction for the shift from hand to electronic
timing.
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Humans
In some women’s races, the earliest data are extremely variable,
perhaps because so few women participated in the sport at that time.
For the 100m race, women’s data prior to 1931 were not used. For
the 400m race, data prior to 1928 were not used.

World’s best times by a individual later proven to be using
performance-enhancing drugs were deleted from the record; in
those years, the second-best time was used. Times posted by
individuals of uncertain gender (as noted by the ATFS) were not
used; second-best times were substituted. The current women’s
100 m world record (10.49 s) was set by Florence Griffith Joyner
in 1984, but there is compelling evidence that that race was wind
aided (Pritchard and Pritchard, 1994). I have replaced this world’s
best for 1984 with a time of 10.61 s (Griffith Joyner’s second-best
time for that year).

Until the 1970s, human races were timed by hand. Because of
the slight delay in starting a watch (due to human response time)
and the potential for an early stop as an official anticipates the finish,
hand times are slightly shorter than corresponding electronic times
by approximately 0.165s. This difference is negligible for races of
400m and longer, but can be a substantial factor in 100m and 200m
races. Here, I have added 0.165s to hand-timed 100m and 200m
times. For 2–3years during the switch-over from hand to electronic
timing, world’s best times were recorded for both methods, and both
hand-timed results (plus 0.165s) and electronic results have been
included here.

A race of 220yards is very similar in length to a race of 200m
(220yards=201.168m). The ATFS has reconciled the two races by
recording 220yard times minus 0.1s as equivalent to 200m times
for both men and women, and I follow this convention here.
Similarly, I accept 440yard times minus 0.3s as equivalent to 400m
times.

APPENDIX 2
Relating population size to exceedance probability

The generalized Pareto equation (GPE) is traditionally expressed
as a cumulative probability distribution:

where P(V) is the probability that the maximum speed in a randomly
chosen sample of size S0 is ≤V (Coles, 2001). For the present
purposes, it is more convenient to work with 1–P(V)=G(V), where
G(V) is the chance of getting a sample maximum speed >V:

How many samples of size S0 would one have to take (on average)
to get a maximum speed >V? From the laws of probability (Feller,
1968; Denny and Gaines, 2000) it can be shown that this exceedance
number E is:

If each sample has S0 individuals and we need E samples (on
average) to get a maximum speed >V, the overall number of
individuals we need to sample to exceed V is:

S = ES0 =
S0

G(V )
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Rearranging, we solve Eqn A4 for G(V):

Upon inserting Eqn A5 into Eqn A2, we see that:

If, in a given year, the world population of (for example) women
is N and fraction f are runners, S=fN women run the race that year.
When measured in units of S0, the number of ‘samples’ of maximum
speed we take in a given year is therefore S/S0. If f is constant across
years, S0/S=N0/N where N0 is the world population in the year in
which S0 was measured. Thus:

In this fashion, N0/N (and hence G) can be estimated from records
of world population for each measured V. Plotting G as a function
of V provides an estimate of the exceedance function described by
Eqn 6 in the text. This is the recipe for estimating u, σ and ε discussed
in the text.

It is possible that the fraction of the human population sampled
by competition (especially the fraction of women) has increased
over the last century. If so, maximum speeds predicted using the
population-driven model are too high: estimates of cumulative
probability incorporating an increasing fraction of runners would
yield lower G values for recent years than those shown here, thereby
lowering the estimates for extrapolated maximum speed (see
Fig.A1).

APPENDIX 3
Details of the statistical results

Details of the statistical results are given in Tables A1 to A8.
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Fig. A1. If f, the fraction of individuals that run a particular race,
increases through time, the actual population of runners associated with
a given measured maximum speed (open dots) is higher than that
supposed by the calculations made here (solid dots). A larger population
corresponds to a smaller probability of exceedance (e.g. the green
arrow). Thus, if probabilities were to be adjusted for an increase in f
(open dots) the estimated absolute maximum speed would be reduced
(the blue arrow).
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Table A1. Parameters for the GEV (Eqn 1) for the plateau portion of the historical record for US Triple Crown races

Plateau begins Probability a b c

Kentucky Derby 1949 >0.882 –0.2826 16.4077 0.1577
Preakness Stakes 1971 >0.867 –0.4390 16.5970 0.1392
Belmont Stakes 1973 >0.232 –0.2004 16.2169 0.1631

GEV, generalized extreme value; a, shape parameter; b, location parameter; and c, scale parameter (see Eqn 1). All values for a are significantly less than 0
(P<0.05). The probability cited here is the likelihood that any calculated correlation between speed and year is due to chance alone.

Table A2. Parameters of the logistic model for the US Triple Crown races

Race mx Low 95% High 95% mn k t a b c

Kentucky Derby 16.498 16.387 16.609 14.925 0.056 1913.13 –0.4503 –0.0725 0.2906
Preakness Stakes 16.644 16.575 16.713 15.913 0.121 1954.51 –0.3288 –0.0520 0.1637
Belmont Stakes 16.281 16.230 16.333 3.145 0.053 1862.24 –0.2421 –0.0586 0.1640

The 95% confidence limits are given for mx, the estimated maximum of the logistic model. Values for mn (minimum fastest speed), k (shape parameter) and t
(location parameter) of the logistic model are best-fit estimates. Values shown for a, b and c of the GEV (Eqn 1) are best-fit estimates. All values for a are
significantly less than 0 (P<0.05).

Table A3. Parameters for the GEV (Eqn 1) for the plateau portion of the historical record for greyhound races

Plateau begins Probability a b c

English Oaks 1971 >0.132 –0.5230 16.526 0.1631
English Grand National 1971 >0.606 –0.3023 16.105 0.2180
English Derby 1966 >0.922 –0.4165 16.662 0.1607

All values for a are significantly less than 0 (P<0.05). The probability cited here is the likelihood that any calculated correlation between speed and year is due
to chance alone.

Table A4. Parameters of the logistic model for greyhound races

Race mx Low 95% High 95% mn k t a b c

English Oaks 16.602 16.454 16.750 5.751 0.051 1879.21 –0.4734 –0.0468 0.1689
English Grand National 16.205 16.059 16.351 8.401 0.055 1889.88 –0.2597 –0.0650 0.1791
English Derby 16.713 16.636 16.789 8.489 0.079 1901.25 –0.3630 –0.0426 0.1402

The 95% confidence limits are given for mx, the estimated maximum of the logistic model. Values for mn, k and t of the logistic model are best-fit estimates.
Values shown for a, b and c of the GEV (Eqn 1) are best-fit estimates. All values for a are significantly less than 0 (P<0.05). 

Table A5. Parameters for the GEV (Eqn 1) for the plateau portion of the historical record for womenʼs races

Distance (m) Plateau begins Probability a b c

100 1977 >0.801 0.1506 9.2278 0.0400
200 1973 >0.846 –0.1516 9.1046 0.0901
400 1974 >0.695 0.0293 8.0870 0.0935
800 1973 >0.869 –0.1541 6.9078 0.0580
1500 1978 >0.987 0.1495 6.3156 0.0450

For the 200 m and 800 m races, all values for a are significantly less than 0 (P<0.05); a is significantly >0 for the 100 m and 1500 m races and indistinguishable
from 0 for the 400 m race. The probability cited here is the likelihood that any calculated correlation between speed and year is due to chance alone.

Table A6. Parameters of the logistic model for various human races

Distance (m) mx Low 95% High 95% mn k t a b c

Men 100 10.330 10.165 10.495 9.439 0.063 1971.65 –0.3156 –0.0256 0.0771
200 10.186 10.050 10.322 9.340 0.073 1962.95 –0.1859 –0.0486 0.1107
400 9.160 9.035 9.285 8.262 0.057 1949.31 –0.3090 –0.0298 0.0884
800 7.839 7.758 7.920 6.977 0.059 1947.94 –0.0940 –0.0274 0.0053
1500 7.251 7.147 7.356 6.313 0.061 1955.12 –0.5325 –0.0141 0.0676
3000 6.868 6.610 7.127 5.353 0.036 1942.45 –0.2803 –0.0221 0.0619
5000 6.589 6.454 6.724 5.533 0.052 1956.90 –0.1796 –0.0226 0.0519

10,000 6.350 6.208 6.492 5.114 0.048 1953.78 –0.1678 –0.0233 0.0528
42,195 5.612 5.518 5.706 4.234 0.065 1948.28 –0.3599 –0.0315 0.1070

Women 100 9.297 9.222 9.373 8.277 0.109 1963.27 –0.1568 –0.0378 0.0858
200 9.214 9.112 9.317 7.699 0.090 1955.42 –0.2468 –0.0457 0.1227
400 8.174 8.097 8.251 6.732 0.127 1960.64 0.0303 –0.0512 0.0838
800 7.006 6.909 7.103 5.425 0.086 1952.14 –0.3525 –0.0368 0.1200
1500 6.355 6.325 6.385 5.372 0.277 1967.45 0.0020 –0.0281 0.0482

42,195 5.028 4.974 5.082 0.775 0.121 1959.98 –0.3159 –0.0324 0.0967

The 95% confidence limits are given for mx, the estimated maximum of the logistic model. Values for mn, k and t of the logistic model are best-fit estimates.
Values shown for a, b and c of the GEV (Eqn 1) are best-fit estimates. With the exception of the 400 m and 1500 m races for women, all values for a are
significantly less than 0 (P<0.05). For womenʼs 400 m and 1500 m races, a is indistinguishable from 0.
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Table A8. Parameters of the population-driven model for various human races

Estimated
Distance (m) model max. Low 95% High 95% ε σ u a b c

Men 400 9.31 9.13 9.71 –1.314 1.358 8.273 –0.3140 –0.0299 0.0892
800 7.93 7.85 8.08 –1.566 1.367 7.055 –0.0918 –0.0277 0.0560
1500 7.53 7.32 8.08 –1.024 1.183 6.377 –0.5427 –0.0138 0.0679
3000 7.00 6.82 7.31 –1.088 1.217 5.885 –0.2873 –0.0222 0.0633
5000 7.02 6.70 7.84 –0.775 1.082 5.624 –0.1919 –0.0223 0.0522

10,000 6.66 6.40 7.27 –0.933 1.303 5.264 –0.1850 –0.0229 0.0535
42,195 5.77 5.65 5.99 –1.616 2.428 4.269 –0.3555 –0.0317 0.1058

Women 42,195 5.12 5.03 5.30 –4.266 7.948 3.259 –0.3334 –0.0325 0.1012

The 95% confidence limits are given for the estimated maximum of the model [u–(σ/ε)]. Values for σ, ε and u of the GPE are best-fit estimates. Values shown
for a, b and c of the GEV (Eqn 1) are best-fit estimates. All values for ε and a are significantly less than 0 (P<0.05). 
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