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SUMMARY
Futile cycling of protons across the mitochondrial inner membrane contributes significantly to standard metabolic rate in a variety
of ectothermic and endothermic animals, but adaptations of the mitochondrial bioenergetics to different environmental conditions
have rarely been studied in ectotherms. Changes in ambient temperature and nutritional status have a great effect on the
physiological demands of ectothermic amphibians and may require the adjustment of mitochondrial efficiency. In order to
investigate the effect of temperature and nutritional status on the mitochondrial level, we exposed male cane toads to either 10°C
or 30°C and fasted half of the animals in each group. Cold exposure resulted in a fourfold reduction of the resting metabolic rate
whereas nutritional status had only minor effects. The mitochondrial adjustments to each condition were observed by comparing
the proton leak kinetics of isolated liver and skeletal muscle mitochondria at 25°C. In response to cold exposure, liver
mitochondria showed a decrease in proton conductance while skeletal muscle mitochondria were unchanged. Additional food
deprivation had minor effects in skeletal muscle, but in liver we uncovered surprising differences in energy saving mechanisms
between the acclimation temperatures: in warm-acclimated toads, fasting resulted in a decrease of the proton conductance
whereas in cold-acclimated toads, the activity of the respiratory chain was reduced. To investigate the molecular mechanism
underlying mitochondrial proton leakage, we determined the adenine-nucleotide transporter (ANT) content, which explained
tissue-specific differences in the basal proton leak, but neither the ANT nor uncoupling protein (UCP) gene expression correlated

with alterations of the proton leak in response to physiological stimuli.

Supplementary material available online at http://jeb.biologists.org/cgi/content/full/211/12/1911/DC1
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INTRODUCTION

In contrast to a high and constant metabolic rate in endothermic
mammals, the metabolism of ectothermic vertebrates is rather low.
A study comparing the metabolism of an ectothermic desert lizard
to an endothermic rodent at the same ambient temperature observed
a sevenfold lower resting metabolic rate (RMR) of the ectotherm
(Brand et al., 1991). The metabolic rate of ectotherms varies with
environmental temperature and is extremely reduced at low ambient
temperatures. For example, the amphibian Rana temporaria
hibernates in ice-covered ponds and is exposed to cold temperatures
ranging from 0.5 to 4°C (Bradford, 1983), limited food intake and
low oxygen supply. In the cold, the metabolic rate of the frog is
decreased up to 50% (Boutilier et al., 1997), which could be further
decreased up to 75% in anoxic conditions (Donohoe and Boutilier,
1998). Under these harsh conditions, a high metabolic depression
was required that prevented the depletion of body substrate stores
by two- to threefold.

At the cellular level, the metabolic rate of frog myocytes and of
turtle hepatocytes exposed to short-term anoxia fell to 20% of
normoxic conditions (Buck et al., 1993; West and Boutilier, 1998).
This metabolic depression in ectotherms can be achieved by
decreasing ATP-consuming processes such as protein synthesis and
ionic balance, and by increasing the efficiency of the energy producing
pathways (Hochachka, 1986). Some ectothermic vertebrates are able
to reallocate ATP demands between essential and non-essential

processes. In the freshwater turtle, anoxia leads to a decrease in protein
synthesis, increasing the energetic proportion of the cellular ionic
balance mediated by the Na™-K™-ATPase (Buttgereit, 1995).

The metabolic adjustments in cells from ectotherms are highly
reflected at the mitochondrial level. Mitochodria are in the very centre
of conversion from substrate energy to cellular energy (in the form
of ATP). Changes in mitochondrial efficiency allow an organism to
respond to different physiological conditions. The proton motive force
generated by the respiratory chain is not fully used to drive the ATP
synthase as protons also leak back to the matrix without the
generation of ATP. Mitochondrial proton leakage contributes
significantly (about 20%) to standard metabolic rate in endothermic
(Brand et al., 1994; Porter and Brand, 1995; Rolfe et al., 1999) and
ectothermic vertebrates (Brand et al., 1991; Bishop and Brand, 2000).

Isolated skeletal muscle mitochondria of frogs submerged in
anoxic cold water showed a decreased phosphorylating (state 3) and
a decreased leak (state 4) respiration (Boutilier and St-Pierre, 2002).
In these frogs, a decreased leak was not achieved by a lowered proton
conductance but by a reduction in the electron transport chain activity
(Boutilier and St-Pierre, 2002). Similar results were obtained in the
aestivating snail Helix aspersa (Bishop and Brand, 2000).
Adjustments of mitochondrial proton leakage seem to be a general
strategy to adapt an organism to changes in metabolic rate. Even in
endothermic mammals, temporary hypometabolic states such as daily
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torpor and hibernation require modulations of the mitochondrial
oxidative phosphorylation in selected organs. Liver mitochondria of
hibernating ground squirrels showed a decreased respiration and
displayed a lowered membrane potential while no difference was
found in skeletal muscle mitochondria (Barger et al., 2003). Notably,
the decreased proton leak in liver mitochondria was achieved by
lowering the activity of the respiratory chain and not via a decreased
proton conductance of the mitochondrial inner membrane. Similar
effects on the mitochondrial respiration were reported in liver
mitochondria of daily heterotherms such as the Djungarian hamster
(Brown et al., 2007).

The molecular nature of the mitochondrial proton leak and its
regulation is not fully understood. Protons can either cross the
phospholipid bilayer directly, or they are transported back into the
mitochondrial matrix by membrane-integrated transport proteins.
The direct proton leak through the phospholipid bilayer accounts
for only 5% of the total proton leak (Brookes et al., 1997).
Therefore, specific proteins in the mitochondrial inner membrane
contribute primarily to proton leakage. Two groups of mitochondrial
carrier proteins have been reported to contribute significantly to the
proton leak: the adenine nucleotide translocator (ANT) and
uncoupling proteins (UCPs).

The basal proton leak is significantly affected by the presence of
the ANT, independent of its ATP/ADP-exchange function. Studies
on skeletal muscle mitochondria in ANT1-ablated mice and in fruit
flies expressing different amounts of ANT suggested that the ANT
causes about 50% of the basal proton leak (Brand et al., 2005).

Inducible proton leak can be provoked by activators of the ANT
and UCPs. Mammalian UCP1 in brown adipose tissue uncouples
the mitochondrial respiration and dissipates the proton motive force
as heat when activated with free fatty acids. The uncoupling
function of all mammalian UCPs and the ANT can be induced by
superoxides and intermediate products of lipid peroxidation to
prevent their de novo production.

Recently, orthologous proteins of all three mammalian UCPs have
been identified in ectothermic vertebrates (Jastroch et al., 2005) and
an inducible uncoupling function in liver mitochondria coincides
with high levels of carp UCP1 (Jastroch et al., 2007). Whether UCPs
other than UCP1 affect the basal proton leak in ectotherms and
elucidation of their physiological role, requires further studies.

Taken together, the regulation and molecular mechanisms of the
mitochondrial proton leak in ectothermic vertebrates is not
understood but may increase our knowledge of how mitochondrial
adjustments contribute to physiological adaptations.

In our approach, we aimed to characterize the interdependence
of metabolic depression and mitochondrial adjustments in an
ectothermic vertebrate. Therefore, we investigated the effects of
ambient temperature and fasting on metabolic rate and mitochondrial
bioenergetics in the cane toad Bufo marinus. This species is
indigenous to northern South America, where temperatures range
from 7°C to 40°C throughout the whole year. In its natural habitat
(subtropical forests close to freshwater) Bufo marinus feeds on
almost every terrestrial animal (Hinckley, 1963), but also
experiences food shortage and temperature variations, making it an
appropriate organism for this study.

MATERIALS AND METHODS
Animal experiments
Adult male Bufo marinus Linnaeus 1758 (44 individuals,
approximate body mass 100g each) were obtained from a local
supplier (Peter Douche, Mareeba, Queensland, Australia) and
housed in the animal facility of the University of Southern

Queensland, Toowoomba, Queensland, Australia. All cane toads
were kept at 22°C for 7 days and force-fed daily with 1.0+0.1 g cat
food (KiteKat, chicken) which is equivalent to 1+0.1% of body mass.
After 7 days, one group of toads (16 individuals) was acclimated
to 10°C (cold-acclimated; CA) in a constant temperature chamber
and the other group (18 individuals) was acclimated to 30°C (warm-
acclimated; WA) in an air-conditioned room for 9 days. Half of the
cane toads in each temperature group were fed daily, while the other
half was fasted. All animals were held ona 12h:12h light:dark cycle
(12:12 L:D). Cane toads acclimated to 10°C were bathed in
rainwater for 30 min, and toads acclimated to 30°C for 1 h each day,
to prevent dehydration of the skin. Cane toads at 10°C had access
to water for a shorter period to reduce the risk of drowning. A
Xenopus laevis for the northern blot of multiple tissues was kindly
provided by G. Schemken, Faculty of Medicine, Philipps-Universitét
Marburg. All animals were killed by double pithing. Experimental
protocols for the use of the toads were approved by the Animal
Ethics Committee of the University of Southern Queensland (permit
no. 06REA299) and Environment Australia and were in accordance
with the German Animal Welfare Laws.

Measurement of metabolic rate

The metabolic rate of each toad was determined at its acclimation
temperature using an open flow system. Each toad was placed in a
0.51 metabolic chamber inside a temperature controlled cabinet at
T.=10+0.5°C or 30+0.5°C without food or water. The rate of airflow
was maintained at 65mlmin~'. Metabolic rate was determined as
the mean minimum relatively constant rate of oxygen consumption
for three 10 min periods. Metabolic rate was determined using an
Ametek S-3A/1 oxygen analyser and an FMA 1812 mass flowmeter
(Omega, Stamford, CT, USA) interfaced with an Osbourne FX16
computer by a PLC-814B modular DA & C card (Advantech,
Milpita, CA, USA). A system of solenoid valves enabled the oxygen
concentration of air from a calibration chamber to be measured,
between measurements of air from the animal chamber. Rate of
oxygen consumption was calculated using eqn3a of Withers
(Withers, 1977), assuming an RQ of 0.85. Animals were weighed
before and after experiments and mean body mass used to calculate
mass-specific metabolic rate.

Isolation of mitochondria
Mitochondria for proton conductance measurements were always
isolated simultaneously from two cane toads from different
experimental groups to minimize possible day-by-day variability in
the quality of mitochondrial preparations. For skeletal-muscle
mitochondria, the hind-leg skeletal muscle was finely diced in CP-
1 medium (100mmoll™' KCI, 50mmoll™" Tris/HCI, pH7.4, and
2mmol I"' EGTA), digested on ice for 10min in CP-2 medium [CP-
1, to which was added 0.5% (w/v) BSA, S5mmoll™ MgCl,,
I mmol ™' ATP and 2.45 unitsml™' Protease Type VIII (Sigma P
5380)] and homogenized 15 times using a dounce homogenizer with
a clearance of 0.2 mm between the glass tube and the pestle. The
homogenate was transferred to a temperature-controlled centrifuge
and spun at 500g for 10 min at 4°C. The resulting supernatant was
subjected to a high-speed spin cycle (10600g, 10 min, 4°C) and the
resulting pellet was resuspended in CP-1. The high-speed spin cycle
was repeated and the resuspension finally centrifuged at 3800 g for
10min at 4°C. The final pellet was resuspended in a minimum
volume of CP-1 buffer. For the isolation of liver mitochondria, the
liver was removed, immediately placed in ice-cold isolation medium
(250 mmol ™' sucrose, 5mmol ™! Tris/HCI, pH 7.4, and 2 mmol ™!
EGTA), minced with scissors and disrupted eight times with the
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dounce homogenizer. The homogenate was spun at 1000 g for 3 min
at 4°C, and the supernatant centrifuged at 10600 g for 10 min, 4°C.
The high-speed spin cycle was repeated twice and the final pellet
resuspended in a minimal volume of isolation medium. The protein
concentration of mitochondrial suspensions was determined by the
biuret method using BSA as standard (Gornall et al., 1949).

Mitochondrial respiration

Oxygen consumption was measured using a Clarke-type electrode
(Rank Brothers Ltd, Cambridge, UK) maintained at 25°C and
calibrated with air-saturated medium [120 mmol 1! KCI, 5 mmol !
K,HPO,, 3mmol 1! Hepes, 1 mmoll™! EGTA, 0.3% (w/v) defatted
BSA, 7umoll™! rotenone (to inhibit complex I of the respiratory
chain), adjusted to pH7.2], which was assumed to contain
479nmolOml™" (Reynafarje et al., 1985). Mitochondria were
resuspended to a concentration of 3mgproteinml™ (liver) and
1.05mgproteinml™! (muscle) in the assay medium. Mitochondrial
respiration was started by adding 4mmoll™! succinate. The
respiratory control ratio (RCR), determined by dividing state 3
respiration by state 4 respiration, was measured once to ascertain
the integrity of the mitochondria.

Proton leak kinetics
The kinetics of the mitochondrial proton leak was measured by
determining the respiration rate required to drive the proton leak
(measured in the presence of 1pgml™! oligomycin). The
mitochondrial membrane potential was measured simultaneously
with mitochondrial respiration by using an electrode sensitive to
the potential-sensitive probe, TPMP" (triphenylmethylphos-
phonium), in the presence of 150nmol ™" nigericin to dissipate the
pH gradient, as described previously (Cadenas and Brand, 2000).
The TPMP*-sensitive electrode was calibrated with sequential
additions of TPMP" up to 2.5 umol 1™}, and succinate was added to
initiate mitochondrial respiration. Membrane potential and
respiration were progressively inhibited through successive steady
states with the complex II inhibitor, malonate, up to 2mmoll™.
Finally FCCP (carbonyl cyanide p-trifluoromethoxyphenyl-
hydrazone; 0.8umoll™!) was added to dissipate the membrane
potential and release all the TPMP" from the mitochondria, allowing
correction for any small baseline drift. Respiration at each steady
state was plotted against the corresponding membrane potential to
verify the dependence of proton leak rate on the membrane potential.

Measurement of ANT content by CAT titre

CAT (carboxyatractylate) is a specific inhibitor of ANT, so the
minimum amount of CAT required to lower state 3 respiration to
the state 4 rate equals the amount of ANT present. To determine
the CAT titre, excess ADP (300 umoll™") was added to establish
state 3, and then respiration was successively inhibited by small
additions of CAT (0.5umoll™! steps) until state 4 was well
established. Respiration rate was plotted against CAT added and
the minimum CAT titre was calculated as the intercept between the
steepest slope and the state 4 rate (plus CAT). Results are presented
as nmol CAT mg ™! protein; it is generally thought that one CAT
molecule binds per ANT dimer (Streicher-Scott et al., 1993).

Comparative genomics
We conducted a comprehensive search for amphibian UCP genes
by blasting the Xenopus tropicalis genome (Ensembl Genome
Browser, http://www.ensembl.org) with full-length coding
sequences of mammalian UCPs. As described previously (Jastroch
et al., 2004), physical gene maps of verified UCP loci were scaled
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based on assemblies of the Ensembl Genome Browser. Genes
located up- and downstream of UCP genes in these loci were blasted
against human, mouse and zebrafish genomes for the highest score.

RNA isolation and northern blot analysis

Total RNA was isolated using TRIzol (Gibco BRL), quantified and
subjected to northern blot analysis as described previously (Jastroch
et al., 2004). The membranes were hybridized using Xenopus
laevis 251 bp UCP1 and 550bp UCP2 cDNA probes derived with
Xenopus tropicalis gene specific primers (UCP1: forward 5'-
GGCTCCAGAGACAGATGAGCTTCGC-3', reverse 5'-GGC-
TATGGTTTTATAGGCGTCCATAGTGCC-3’; UCP2: forward
5'-GGTTCGGTTCCAAGCTCAGGCC-3’, reverse 5'-ATGGC-
ACAGTTGATGGCGCTGG-3").

Post-hybridization, the blots were washed with 2X SSC/0.1%
SDS for 10min, 1X SSC/0.1% SDS for 10min, 0.5X SSC/0.1%
SDS for 10min and 0.1X SSC/0.1% SDS for 10min at room
temperature. Signal intensities were then monitored by exposure to
a PhosphorScreen (Molecular Dynamics, Sunnyvale, CA, USA).
The hybridized probes were then detected by phosphor imaging
(Storm 860, Molecular Dynamics), and signal intensities were
quantified using ArrayVision 7.0 (Imaging Research, St Catherines,
ON, Canada). Ethidium bromide staining of total RNA served to
normalize gel loading.

Statistical analysis
All values are reported as means + standard error (s.e.m.). Statistical
analysis was performed using Student’s #-test for two group
comparisons and two-way ANOVA (dietXacclimation temperature)
for multiple group comparisons followed by Holm-Sidak post-hoc
test. Results were considered statistically significant at P<0.05
(indicated with an asterisk).

RESULTS
Temperature effect on resting metabolic rate

The resting metabolic rates (RMR) of fed and fasted B. marinus
were measured at their respective acclimation temperature. The
mass-specific RMR in WA toads (fed: 0.083£0.008mlO,g'h!;
fasted: 0.078+0.008 ml O, g™ h™!) was about four times higher than
in CA toads (fed: 0.019+0.001mlO,g 'h™!; fasted: 0.018+
0.004ml0,g'h™!; P<0.05, Fig.1). The body mass of the toads
barely differed and therefore, a similar difference in whole animal
metabolic rates was observed (see supplementary material Fig. S1).
The nutritional status had minor effects on the metabolic rate but
tended to be slightly lower in fasted cane toads. The RMR of WA
toads was similar to that reported in other studies of B. marinus
(0.081mlO>g'h™") (Brookes et al., 1998), but lower than that
in other amphibians such as the African clawed frog
(0.279ml0, g 'h™") (Brookes et al., 1998), or reptiles such as the
bearded dragon (0.109mlO, g ™' h™!) (Brand et al., 1991) or mammals
such as the rat (0.779mlO,g ' h™") (Brand et al., 1991).

State 4 respiration and proton leak kinetics of liver and
skeletal muscle mitochondria

We first compared the state 4 respiration rates measured at 25°C
between liver and skeletal muscle mitochondria of all toads. Fig.2
shows the respiration of liver and skeletal muscle mitochondria
of WA fed toads as a representative result for all the other
conditions. We found that skeletal muscle mitochondria displayed
five times higher state 4 (leak) respiration rates than liver
mitochondria (liver: 1.86£0.19 nmol O min™' mg™! protein; muscle:
9.64+1.06 nmol O min~! mg! protein).
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Fig. 1. Mass-specific resting metabolic rate (RMR; in mlO2g™" h™") of fed
and fasted cane toads acclimated to either 30°C (WA) or 10°C (CA),
measured at their respective acclimation temperature. Values are means +
s.e.m., N=9 for warm acclimated and N=8 for cold acclimated toads.
*P<0.05 (two-way ANOVA).

We next compared the full kinetic response of the proton leak
rate (measured as oxygen consumption) to changes in membrane
potential of liver and skeletal muscle mitochondria of WA toads
(Fig.2). The proton leak of the toad mitochondria is a nonlinear
function of membrane potential and the proton leak rate between
two mitochondrial populations should usually be compared at a
common membrane potential. In our leak titrations, the proton leak
curves of liver and skeletal muscle mitochondria do not overlap, as
a result of methodological restrictions. However, a rough
extrapolation of the skeletal muscle and the liver curve would
suggest that the lower liver proton leak is not achieved by a lower
proton conductance but by a decrease in the respiratory chain
activity.

Effect of cold acclimation on basal proton conductance of
liver and skeletal muscle mitochondria
In liver mitochondria, cold acclimation did not change the state 4
respiration but increased the membrane potential significantly (WA:
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Fig. 2. Full kinetic response of the proton leak rate to changes in
membrane potential of liver and skeletal muscle mitochondria of fed WA
cane toads. Liver mitochondria have a lower basal proton leak than skeletal
muscle mitochondria. A rough extrapolation of the skeletal muscle and the
liver curve would suggest that the lower liver proton leak is achieved by a
decrease in the respiratory chain activity and not via a change in the proton
leak kinetic function. Values are means + s.e.m., N=9.

88.025+5.07mV; CA: 109.58+8.16mV, P<0.05, Fig.3A). This
results in a shift of the proton leak curve to the right, which can be
interpreted as a reduction of proton conductance in response to cold
exposure. In contrast to the liver, cold exposure had no effect on
the proton leak kinetics of skeletal muscle mitochondria (Fig.3B).

The effect of food deprivation on proton conductance of liver
and skeletal muscle
In liver mitochondria of WA toads, fasting shifted the proton leak
curve to the right, without changing state 4 respiration (see
supplementary material Fig.S2). Therefore, this decrease in the
proton leak is achieved by a reduction of proton conductance while
the respiratory chain activity is unaffected (fed state 4 potential:
88.025+£5.07mV, fasted state 4 potential: 123.39+£3.67mV, Fig.4A).
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Fig. 3. Effect of acclimation temperature on proton leak kinetics of isolated liver (A) and skeletal muscle mitochondria (B) of fed cane toads. Experiments
were carried out using liver mitochondria of CA (open circles) and WA (filled circles) and skeletal muscle mitochondria of CA (open squares) and WA (filled
squares) cane toads. A shift of the proton leak curve to the right indicates a lower proton conductance of CA liver mitochondria (A), while the acclimation
temperature has no effect in skeletal muscle mitochondria (B). Values are means + s.e.m. from eight (CA group) or nine (WA group) independent

preparations. *P<0.05 (two-way ANOVA).
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Fig. 4. Effect of fasting on proton leak kinetics of isolated liver and skeletal muscle mitochondria of WA (A) and CA (B) cane toads. Fasting revealed two
different mechanisms of decreasing the proton leak in liver mitochondria (fasted toads, grey circles; WA fed toads, filled circles; CA fed toads, open circles),
dependent on acclimation temperature. In WA toads (A), fasting caused a shift of the proton leak curve to the right, with no change in state 4 respiration but
increased state 4 potential, thus suggesting a decrease in proton conductance (similar to Fig. 3; P<0.05 comparing state 4 membrane potential). In contrast,
fasting in CA cane toads (B) resulted not only in a significant decrease of membrane potential (P<0.05) but also in a strong tendency towards lower state 4
respiration rates, suggesting a decreased respiratory chain activity. In skeletal muscle mitochondria, fasting has no effect on proton leakage at either
acclimation temperatures (fasted toads, grey circles; WA fed toads, filled squares;, CA fed toads, open squares). Values are means + s.e.m., N=8 for CA
toads and N=9 for WA toads.

In contrast, fasting in the cold-acclimated toads shifted the curve toads was towards a higher proton conductance, but a lower state 4
to the left, but with a strong trend towards a decreased state 4 respiration would suggest a lower basal leak during fasting in the cold.
respiration (fed: 1.93£0.35nmol O min~' mg! protein, fasted:
1.47+0.23 nmol O min~' mg~! protein, see supplementary material Determination of the ANT content
Fig.S2). Furthermore, the membrane potential was significantly To determine the molecular nature of the differences in the basal
decreased in the fasted toads (fed: 109.58+8.16mV; fasted: proton leak in different organs and under different physiological
70.35+4.78mV, P<0.05, Fig.4B). These results indicate that the conditions, we investigated mitochondrial carrier proteins affecting
decreased proton leak in fasted CA toads is achieved by a reduction the mitochondrial proton leak. It has been shown that the ANT
of the respiratory chain activity or substrate oxidation. catalyses up to two-thirds of the basal proton leak in insects and
In skeletal muscle mitochondria, fasting had only minor effects on mammals (Brand et al., 2005). Therefore, we measured the ANT
the proton leak curves. The trend of the leak kinetics of the fasted CA content in toad liver and skeletal muscle mitochondria by CAT
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Fig.5. Determination of the ANT content in isolated mitochondria by CAT titration. (A) CAT titre of respiration. State 3 respiration was titrated by successive
additions of CAT to achieve state 4 respiration. ANT content was measured as the CAT titre where the steepest slope in the titration crosses the state 4
rate (broken lines). Results of a single representative determination are shown for liver mitochondria from fed cane toads acclimated to 30°C. (B,C) ANT
contents of liver and skeletal muscle mitochondria of all experimental conditions measured by CAT titre (B, WA cane toads; C, CA cane toads). ANT content
is about five times lower in liver mitochondria compared to skeletal muscle (P<0.05, two-way ANOVA.) but neither the temperature nor the nutritional status
have an effect. Values are means + s.e.m. from 4 independent preparations.*P<0.05 (two-way ANOVA).
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titration (Fig. SA). The titre of CAT needed to fully inhibit state 3
respiration rate to the state 4 rate was about fivefold greater in all
skeletal muscle mitochondria as compared to liver (P<0.05,
Fig.5B,C). In liver mitochondria, the ANT content tended to be
reduced by fasting in the WA toad (fed: 0.44+0.03; fasted:
0.29+0.01), while neither cold acclimation nor fasting in CA toads
revealed a significant effect. In skeletal muscle mitochondria, a
significant decrease in the ANT content was only found in response
to fasting of CA toads (fed CA, 2.54+0.31 nmol CAT mg protein™';
fasted CA, 1.58+0.14nmol CAT mgprotein™!, P<0.05). We
calculated that the ANT contributes to ~2.5% of total mitochondrial
protein in liver mitochondria and ~13% in skeletal muscle. The
ANT content of liver mitochondria from B. marinus
(0.375+0.03 nmol CAT mgprotein™!) is in the same range of ANT
concentration as found for mammalian liver. Mouse and rat liver
mitochondria possess about 0.5 nmol CAT mg™! protein' and larger
mammals such as pigs and bovine both have lower ANT contents
of about 0.25nmol CATmg ' protein™' (Brand et al., 2005). The
ANT content of toad skeletal muscle mitochondria (1.99+
0.198 nmol CAT mgprotein") is also comparable to mammals (mice
and rats: ~3nmol CATmgprotein™!; pigs 1.75nmol CAT mg
protein') (Brand et al., 2005). Our results demonstrate that the ANT
content of liver and skeletal muscle mitochondria is similar in endo-
and ectotherms.

Characterization of UCPs in the cane toad

Besides the ANT, UCPs may also contribute to the proton leak but
these proteins have to be activated, at least in mammals (Echtay, 2007).
First, we identified a UCP1 and a UCP2/3 ortholog in the genome
of the African clawed frog Xenopus tropicalis by conserved synteny,
as described previously (see supplementary material Fig. S3) (Jastroch
et al., 2005). Note that one of the neighbouring UCP2-UCP3
paralogous genes is extinguished in the amphibian lineage. Compared
with their human orthologous proteins, frog UCP1 exhibits a similarity
0of 61% and frog UCP2/3 exhibits a similarity of 81% to human UCP2
and 69% to human UCP3. We cloned UCP1 and UCP2/3 cDNA
fragments from Xenopus laevis liver and investigated the tissue-
specific expression using northern blot analysis. While UCP1 mRNA
levels were below detection levels of the northern blot analysis and
could only be amplified using polymerase chain reaction, UCP2/3
mRNA was detected ubiquitously, with the highest amounts in
intestine, spleen and kidneys (Fig. 6A). We then studied the regulation
of UCP2/3 gene expression in liver and skeletal muscle of the cane
toad. The northern blot signals were normalized and set to the value
1.0 for fed animals kept at 30°C, assuming that these conditions reflect
their natural tropical habitat. In the liver, the acclimation of the toads
to 10°C led to a significant sixfold increase of the UCP2/3 mRNA
levels (P<0.05; Fig.6B) while fasting had no effect. Cold exposure
under fasted conditions, however, resulted in only 1.5-fold increase
(P<0.05; Fig.6B). In skeletal muscle, the UCP2/3 signals on the
northern blot differed individually and did not show any pattern
concerning regulation in response to acclimation temperatures and
nutritional state (Fig.6B).

DISCUSSION
In the present study, we demonstrate that the mitochondrial proton
leak is highly regulated in response to ambient temperature and
nutritional status in the ectothermic amphibian B. marinus, the cane
toad. Our data strongly suggest that in periods of metabolic
depression (low ambient temperature and food deprivation),
mitochondrial efficiency in the toad is increased by lowering the
proton leak in liver mitochondria to save energy. Cold exposure or

food deprivation leads to a shift of the proton leak curve to the right,
indicating a decrease in proton conductance of the mitochondrial
inner membrane. Interestingly, within the CA animals, additional
fasting shifts the curve to the left, suggesting a higher proton
conductance. We observed, however, a reduction of state 4
respiration during fasting in the cold, indicating a decrease of the
respiratory chain activity to lower the proton leak as has been
previously observed in skeletal muscle mitochondria of hibernating
frogs (Boutilier and St-Pierre, 2002).

We first showed that low ambient temperatures provoked a
decrease of the resting metabolic rate in the ectothermic toad
demonstrating that the metabolism is not maintained in the cold, as
found for endotherms. Not surprisingly, metabolic rate dropped in
the cold based on a Q10 of about 2. Although our toads were
measured only at 30°C, their resting metabolic rate fell in the range
measured for other ectotherms at 37°C and is comparable to values
determined in other studies of the cane toad (Brand et al., 1991;
Wang et al., 1995).

Mitochondria are the most important contributors to energy
production and an adaption of mitochondrial efficiency may allow
the animal to respond to physiological challenges. A strong
correlation between metabolic rate and mitochondrial respiration
and leak was reported previously (Brookes et al., 1998; Porter and
Brand, 1993), and in the present study we investigated the effect
of cold exposure and fasting on liver and skeletal muscle
mitochondria in the cane toad. We found five times higher
respiration rates in skeletal muscle mitochondria compared to liver
mitochondria. This was expected, as among other vertebrates the
aerobic capacity in muscle tissue is higher than in liver (Duong
et al., 2006; Muleme et al., 2006). Although the liver and skeletal
muscle leak curves do not overlap, a rough extrapolation suggests
that the significantly lower basal proton leak in the liver is caused
by a difference in the respiratory capacity. Cold exposure depressed
the proton conductance in the liver while only minor effects were
observed in skeletal muscle, suggesting other mechanisms of
metabolic depression, such as reduced blood flow. In the liver,
the decreased proton leak would result in a higher efficiency of
energy conversion from nutrient to cellular energy. In amphibians,
low ambient temperature leads to inactivity and reduces foraging
(Paladino, 1985). Therefore, nutrient energy availability for the
toad is greatly reduced, and a high mitochondrial efficiency would
extend the depletion time of intrinsic body energy stores. The
decrease of proton conductance seems to be a general energy
saving mechanism, as similar effects were observed in lower
vertebrates such as the cold-exposed common carp (Jastroch et
al., 2007), and in higher vertebrates such as hibernating mammals
(Barger et al., 2003). Similar to hibernating mammals, we found
cold-depression on the mitochondrial proton leak in liver but not
in skeletal muscle of the cane toad. Fasting of WA toads also had
reducing effects on the liver mitochondrial proton leak by shifting
the proton leak curve towards higher membrane potentials. Fasting
of CA toads did not further shift the proton leak curve to the right,
as would be expected when metabolic depression of cold and
fasting were additive. Surprisingly, we observed a shift to the left,
suggesting a higher proton leak. In contrast to other conditions,
however, this shift of the curve was accompanied by a trend
towards a reduced state 4 respiration, indicating a decrease in the
respiratory chain activity. A strong reduction of the proton motive
force (measured as membrane potential) can also be well
interpreted as ‘inactivity’ of the mitochondrion as the driving force
for mitochondrial metabolite exchange and energy turnover is
minimized.
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Fig. 6. Regulation of UCP2/3 gene expression in amphibians in response to cold and food deprivation. 5 pg total RNA were hybridized with homologous
Xenopus laevis UCP2/3 probes. (A) Northern blot analysis showing tissue-specific expression of UCP2/3 in X. laevis. (B) UCP2/3 mRNA expression levels in
liver and skeletal muscle of B. marinus in response to cold and fasting. In the liver, cold caused a significant upregulation of UCP2/3 mRNA expression levels
while fasting had no effect. In skeletal muscle, no effect of acclimation temperature and fasting was found due to high individual differences. (C) The scatter
plot overlaying the bar charts shows the individual values for B. marinus liver. Values are means of four animals per group; *P<0.05, two-way ANOVA.

Furthermore, the skeletal muscle proton leak kinetics of the fasted
CA cane toad also pointed towards a reduction in respiratory chain
activity, as state 4 respiration and membrane potential tended to be
lower. In accordance with our results, a study on hibernating
submerged frogs, also food-deprived and cold-acclimated for about
4 months, found a decrease of the skeletal muscle proton leak mainly
caused by a reduction of the respiratory chain activity (Boutilier
and St-Pierre, 2002).

However, a closer look at the proton leak kinetics in skeletal
muscle exposed a slight increase in proton conductance in response
to fasting. The additional proton leakage, apparent in liver and
skeletal muscle of fasted CA toads, may serve to mildly uncouple
the mitochondrial respiration and therefore reduce the oxidative
stress by prevention of superoxide production. Previous studies
demonstrate that oxidative stress may be dependent on substrate
utilization and temperature (Muller et al., 2008; Farmer and Sohal,
1987). Further experimentation, including measurements of

mitochondrial superoxide production and substrate utilization,
particularly on fed and fasted CA toads, is required to substantiate
the surprising results in fasted CA toads.

Our results suggest that two strategies are used to decrease the
mitochondrial proton leak in the liver of the cane toad: (i) changing
the proton conductance (which results in a shift of the proton leak
curve to the right), and (ii) lowering the activity of the electron
transport chain, which may not change the proton leak kinetic
function but results in a lower state 4 respiration and membrane
potential (summarized in Fig. 7).

In order to investigate the molecular mechanism underlying
changes in basal proton conductance, we determined the ANT
content of isolated mitochodria by CAT titration. The ANT
concentration explains the basal proton leak difference between liver
and skeletal muscle where a four- to fivefold difference in ANT
content reflects the four- to fivefold difference in respiration.
Furthermore, the tendency towards a reduced ANT content in fasted

Liver Skeletal muscle
WA PMF d CA WA PMF »| CA
Fed gamy | R [ »| Fed 110 mV Fed 1i7imv | R > Fed 170 mV
PMF R PMF R PMF R PMF R
1 \ 4 u iL \ 4 \ 4 iL \ 4
WA CA WA CA
Fasted 123 mV Fasted 70 mV Fasted 168mv Fasted 156 mV

Fig. 7. Model summarizing mitochondrial bioenergetics in response to cold exposure and fasting. Effects on proton motive force (PMF, measured as
membrane potential) and respiration (R, measured as state 4 respiration) in liver and skeletal muscle mitochondria. The boxes show the four conditions
analyzed and include the state 4 membrane potentials (mV). Arrows indicate the changes in membrane potential and/or respiration in response to cold
and/or fasting: black arrows, an increase; white arrows, a decrease; broken arrows, no change. In the liver, cold or fasting lead to an increase in membrane
potential, while additional fasting in the cold causes an decrease in state 4 membrane potential and respiration rate. In skeletal muscle of cold-acclimated

toads, fasting leads to a decrease in state 4 membrane potential.
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WA toads is in accordance with a reduced basal proton conductance
in response to fasting, but does not explain the adjustments of the
proton leak observed during cold acclimation. Under these
conditions, the molecular mechanism underlying adjustment of the
proton leak is unknown and requires further investigation.
Parameters of interest may be the ANT uncoupling activity and/or
the membrane composition, which will also affect the basal proton
leak (Shabalina et al., 2006; Brookes et al., 1998).

Some of the best-characterised proteins modulating the proton
conductance in mitochondria are UCPs. In this study, we demonstrate
the presence of UCP1 and a UCP2/UCP3 ortholog in amphibians.
While UCP1 mRNA levels were barely detectable in liver and skeletal
muscle, UCP2/3 mRNA was found by northern blot analysis. Most
likely, amphibian UCP2/3 does not contribute to basal proton leak
as cold acclimation increases mRNA levels, but lowers the proton
leak. In fish and mammals, proton transport by UCP2 and UCP3 is
attenuated and requires activators such as fatty acids, 4-
hydroxynonenal and superoxides. It may well be that amphibian UCPs
catalyse proton transport that may provide protection from reactive
oxygen species by mild uncoupling, as predicted for mammalian
UCP2 and UCP3 orthologs (Affourtit et al., 2007).

This study demonstrates the high plasticity of mitochondrial
proton leakage in ectotherms exposed to physiological challenges
such as cold exposure and food deprivation. Four possibe ways to
change the proton leak have already been listed: (1) altering the
proton leak kinetics, (2) changing the activity of the electron
transport chain activity, (3) altering the volume density in cells, and
(4) altering the cristae surface within the mitochondria (Boutilier
and St-Pierre, 2002). In the cane toad, we observed two of these
strategies, the alteration of the proton leak kinetics and the decrease
of the respiratory chain activity. The molecular mechanism
underlying these adjustments remains unknown and the presence
of alternative strategies [listed as (3) and (4)] to alter the proton
leak require further investigation.

LIST OF ABBREVIATIONS
ANT adenine nucleotide translocator
CA cold acclimated
CAT carboxyatractylate
FCCP carbonyl cyanide p-trifluoromethoxyphenylhydrazone
PMF proton motive force
RCR respiratory control ratio
RMR resting metabolic rate
SMR standard metabolic rate
T, ambient temperature
TPMP* triphenylmethylphosphonium
uUcCP uncoupling protein
WA warm acclimated
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