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INTRODUCTION
The majority of fishes use body/caudal fin (BCF) undulations for

propulsion. Only about 12% of 450 extant fish families discussed

by Nelson (Nelson, 1984) use undulations of median or pectoral

fins (MPF) as their routine propulsive mode (Videler, 1993).

However, many more species use median or pectoral fins for stability

and maneuverability, especially at low speeds, while many MPF

swimmers use BCF mode to reach high speeds during escape

reactions (Videler, 1993). Within the general MPF and BCF

propulsion modes there are several other sub-modes of steady

straight-line swimming, as initially classified (Breder, 1926) and

later expanded (Lindsey, 1978) (for recent reviews, see Sfakiotakis

et al., 1999; Lauder and Tytell, 2006).

Carangiform swimming is a mode of BCF propulsion in which

the large amplitude of the undulations is mostly restricted to the

one-half or even one-third posterior part of the body and increases

sharply in the caudal area (Lindsey, 1978). This mode of

swimming is used by many fishes such as mackerel Scomber
scombrus (Teleostei: Scombridae). Fishes in the Scombridae

family are characterized by their streamlined body with a

homocercal caudal fin and can achieve high swimming speeds

(Jordan et al., 1930). The two non-dimensional parameters that

characterize the steady inline performance of a carangiform

swimmer are the Reynolds number (Re) of the flow and the

Strouhal number (St) of the undulatory body motion, which can

be defined as follows (Triantafyllou et al., 2000; Lauder and

Tytell, 2006):

Re = UL / �·, (1)

St = fA / U·, (2)

where L is the fish length, U is the steady inline swimming speed,

� is the kinematic viscosity of the water, A is the maximum lateral

excursion of the tail over a cycle and f is the tail beat frequency.

As carangiform swimmers typically achieve high swimming

speeds, their motion is characterized by very high Reynolds

numbers, Re>104 (Triantafyllou et al., 2000). This range of Re values

is well within the so-called inertial regime where viscous forces are

negligible and inertial forces dominate the dynamics of the motion.

As for the Strouhal number St, most fishes have been shown to

swim near a ‘universal’ optimal value Stopt=0.3 (Triantafyllou et

al., 2000). Experimental data with flapping hydrofoils have

suggested that fishes prefer this specific value of St because the

propulsive efficiency is indeed maximized near this optimal St value

(Triantafyllou and Triantafyllou, 1995; Triantafyllou et al., 2000).

However, data for Pacific salmon swimming show that this optimal

St value is not constant, depending strongly on the swimming speed

and, by extension, on the Re of the flow (Lauder and Tytell, 2006).

For instance, at low swimming speeds Pacific salmon swims at St
much greater than Stopt (with values as high as St=0.6), with the

The Journal of Experimental Biology 211, 1541-1558
Published by The Company of Biologists 2008
doi:10.1242/jeb.015644

Numerical investigation of the hydrodynamics of carangiform swimming in the
transitional and inertial flow regimes

Iman Borazjani and Fotis Sotiropoulos*
St Anthony Falls Laboratory, University of Minnesota, Minneapolis, MN 55402, USA

*Author for correspondence (e-mail: fotis@umn.edu)

Accepted 20 February 2008

SUMMARY
We employ numerical simulation to investigate the hydrodynamics of carangiform locomotion as the relative magnitude of
viscous and inertial forces, i.e. the Reynolds number (Re), and the tail-beat frequency, i.e. the Strouhal number (St), are
systematically varied. The model fish is a three-dimensional (3D) mackerel-like flexible body undulating with prescribed
experimental kinematics of carangiform type. Simulations are carried out for three Re spanning the transitional and inertial flow
regimes, Re=300 and 4000 (viscous flow), and � (inviscid flow). For each Re there is a critical Strouhal number, St*, at which the
net mean force becomes zero, making constant-speed self-propulsion possible. St* is a decreasing function of Re and approaches
the range of St at which most carangiform swimmers swim in nature (St~0.25) only as Re approaches infinity. The propulsive
efficiency at St* is an increasing function of Re while the power required for swimming is decreasing with Re. For all Re, however,
the swimming power is shown to be significantly greater than that required to tow the rigid body at the same speed. We also show
that the variation of the total drag and its viscous and form components with St depend on the Re. For Re=300, body undulations
increase the drag over the rigid body level, while significant drag reduction is observed for Re=4000. This difference is shown to
be due to the fact that at sufficiently high Re the drag force variation with St is dominated by its form component variation, which
is reduced by undulatory swimming for St>0.2. Finally, our simulations clarify the 3D structure of various wake patterns observed
in experiments – single and double row vortices – and suggest that the wake structure depends primarily on the St. Our numerical
findings help elucidate the results of previous experiments with live fish, underscore the importance of scale (Re) effects on the
hydrodynamic performance of carangiform swimming, and help explain why in nature this mode of swimming is typically
preferred by fast swimmers.
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optimal value Stopt=0.3 being approached only as swimming speed

increases (Lauder and Tytell, 2006). Lauder and Tytell comment

(Lauder and Tytell, 2006) that such data suggest that fishes at low

speeds may either choose for some unclear reason to swim

inefficiently or that the St alone may not be adequate to explain the

intricacies of fish swimming at low speeds. Clearly available data

point to a complex relationship between swimming St and Re, which

is far from being understood.

Numerous recent experiments with the state-of-the-art particle

image velocimetry (PIV) techniques (Muller et al., 1997; Muller et

al., 2000; Nauen and Lauder, 2001; Drucker and Lauder, 2002;

Nauen and Lauder, 2002; Tytell and Lauder, 2004) have provided

a wealth of data in terms of both swimming kinematics and wake

flow field. Such experiments cannot, however, clarify the

aforementioned relationship between St and Re, mainly because

carrying out controlled experiments in which governing parameters

can be systematically varied with live fish is difficult, if not

impossible. Another related issue stems from the difficulties in

quantifying the swimming efficiency and the locomotive forces from

experiments alone. It has been recently shown (for example, Dabiri,

2005) that wake velocity or vorticity fields alone (the quantities that

are typically measured using PIV) are not sufficient to calculate the

locomotive forces, and a pressure-like measurement is also required

(Dabiri, 2005). Furthermore, calculating the swimming efficiency

based only on wake measurements of a steady swimming fish is

not possible as the net momentum in the wake is zero [for a detailed

discussion, see Schultz and Webb (Schultz and Webb, 2002)].

Therefore, even in the most recent experiments (Muller et al., 1997;

Tytell and Lauder, 2004) the efficiency is calculated based on

hydrodynamic models with the kinematic data as input (Lighthill,

1960; Wu, 1960; Lighthill, 1970; Lighthill, 1971; Wu, 1971; Weihs,

1972; Weihs, 1974). Such models, however, are inviscid and should

work well for Re in the inertial regime but should not be expected

to work at lower Re when viscous effects play a significant role.

The above discussion underscores how difficult it is for

experiments alone to provide conclusive insights into the complex

relationship between Re and St and to explore the energetics of

various modes of aquatic swimming under controlled conditions

and over a wide range of governing parameters. Such insights can

be obtained by combining experimental observations with numerical

simulation to design and carry out controlled numerical experiments.

However, numerical investigations of fish swimming are relatively

scarce, especially when compared with the exploding number of

experimental papers dedicated to the same subject. Perhaps the most

comprehensive numerical studies are by Wolfgang et al. (Wolfgang

et al., 1999) and Zhu et al. (Zhu et al., 2002), who employed an

inviscid method to study the wake structures of a straight-swimming

giant danio. Their work shed new insights into the vorticity

dynamics of the flow, but because of the inviscid assumption of

their numerical model their findings are inherently limited in the

inertial flow regime. Two-dimensional viscous simulations have

been performed in simulated tadpole swimming (Liu and Wassersug,

1996) and simulations of a self-propelled eel (Carling and Williams,

1998). Three-dimensional (3D) viscous simulations have been

reported for tadpole swimming in a grid with about 4�105 points

(Liu and Kawachi, 1999; Liu and Wassersug, 1997). Nevertheless,

these simulations were at a fixed Re=7200 and could not explore

Re and St effects. Similarly, 3D viscous flow simulations were

carried out to investigate the mechanisms of thrust production

associated with the flapping aquatic flight of a bird wrasse at a fixed

swimming speed and flapping rate, i.e. fixed Re and St in a

computational grid with about 1.5�105 points (Ramamurti et al.,

2002). More recently, 3D viscous self-propelled anguilliform

swimming was simulated and optimized at several St on a mesh

with about 3�105 grid nodes (Kern and Koumoutsakos, 2006).

Numerical simulations for swimming and flying in nature have

recently been reviewed by Liu (Liu, 2005). These studies have

produced important results and shed new light into the

hydrodynamics of aquatic swimming. For the most part, however,

all these studies focused on simulating a specific aspect or flow

regime of aquatic swimming, and as such systematic parametric

investigations of the hydrodynamic performance of various modes

of aquatic swimming have yet to be reported in the literature.

In the present study we carried out a systematic investigation of

carangiform swimming over a range of Re and St, spanning the

transitional and inertial flow regimes. We employed an anatomically

realistic model of a mackerel body reconstructed from detailed

measurements of an actual fish body. All minor fins were neglected

due to lack of detailed kinematical data and only the caudal fin was

retained in the model. 

The BCF kinematics is prescribed using the experimental data

of Videler and Hess (Videler and Hess, 1984). The fish is assumed

to be swimming along a straight line at constant speed in a uniform

ambient flow. The flow induced by the body undulations is

calculated by solving the unsteady 3D Navier–Stokes equations

using the sharp-interface, hybrid Cartesian/Immersed-boundary

method described elsewhere (Gilmanov and Sotiropoulos, 2005; Ge

and Sotiropoulos, 2007). Calculations are carried out on fine

computational meshes (5�106–107 grid nodes) to ensure grid-

independent results and accurate resolution of the viscous region

near the fish body. Viscous flow simulations are carried out for two

Re, Re=300 and Re=4000. Inviscid calculations are also carried out

representing the flow in the limit of infinite Re (Re=�). For all three

cases, the St is varied systematically, starting from zero (rigid body

case), while the swimming speed U (i.e. the Re) is held constant.

Note that in order to be able to vary the St while maintaining the

swimming speed U constant, we simulate the flow induced by a

model fish that is attached to and towed by a rigid tether that

translates the fish in a stagnant fluid at a given constant velocity U.

By fixing the speed of the tether U we can obtain the desired value

of Re. The St is adjusted by changing the fish tail beat frequency f,
i.e. by assuming that our virtual swimmer is trained to always

undulate its tail at the desired constant frequency. For any given

combination of the so-obtained Re and St, the simulated flow field

is used to calculate the force F exerted on the fish body by the flow.

If F�0 the excess force is absorbed by the hypothetical tether so

that the net force acting on the fish is always zero and the constant

swimming velocity assumption is satisfied. In such cases, if the

hypothetical tether is instantaneously severed, the fish will either

accelerate forward or decelerate backward under the action of the

excess force F. For a given Re we vary the St until the net mean

force acting on the fish is zero, F=0. In such a case the hypothetical

tether obviously has no effect on the fish, since if it is severed the

fish will continue swimming at constant speed U. Using this

procedure we are able to find for a given Re the St for which steady,

inline swimming is possible. The computed results are analyzed to

elucidate several important aspects of carangiform swimming.

These include, among others, the ability of carangiform kinematics

to produce thrust as a function of Re, the swimming efficiency and

propulsive power requirements in the transitional and inertial

regimes, and the 3D structure of the wake as a function of Re and

St.
The paper is organized as follows. First, we briefly describe the

numerical method and present the details of the fish model and
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prescribed kinematics. We then discuss the numerical experiments

and the results in terms of drag increase/reduction, swimming

efficiency, and the 3D vortical structures in the wake. Finally we

summarize our findings, present the conclusions of this work, and

outline areas for future research.

MATERIALS AND METHODS
The governing equations and boundary conditions

The equations governing the motion of an incompressible

Newtonian viscous fluid are the 3D, unsteady, incompressible

Navier–Stokes equations. Non-dimensionalized by the constant

swimming speed U and the fish length L, the governing equations

read as follows:

�ui/�xi = 0

Dui/Dt = – �p/�xi + 1/Re (�2ui/�xj�xj)·, (3)

where ui are the non-dimensional Cartesian velocity components of

the fluid, p is the pressure divided by the density, and D/Dt is the

material derivative defined as (D/Dt)(.)=(�/�t)(.)+uj(�/�xj)(
.). The

inviscid (Euler) equations, which are also solved in this work, are

recovered from Eqn·3 by letting Rer�. We are interested in solving

these equations in a domain containing an arbitrarily complex 3D

flexible body moving with prescribed kinematics. Therefore, the

governing Eqn·3 needs to be supplemented with appropriate

boundary conditions at the outer boundary of the flow domain, which

could be either occupied by ambient fluid or enclosed by a solid

surface, as well as the inner moving immersed boundaries.

Let the boundary of the fish body be defined by the dynamically

evolving surface �(t). �(t) is discretized with K material points,

which lie on it at all times and can be tracked with their global

Lagrangian position vectors rk(t):

r
k(t) � �(t)    � t > 0·, 

with 

r
k(0) = rk

0 � k > 1,K·, (4)

where rk
0 is the initial location of the kth material point on �(0).

Here, the motion of �(t) is prescribed with known velocities Uk(t)
– the prescribed swimming kinematics. Therefore, the shape of �(t)
at time t can then be obtained by solving the advection equation for

all material points on the surface (for k=1,K):

drk/dt = Uk(t) , with rk(0) = rk
0·. (5)

With the shape of �(t) known for time t, boundary conditions for

the Eulerian fluid velocity vector u(r,t) must be prescribed at all

points of �(t). For viscous flow, the no-slip and no-flux boundary

conditions need to be satisfied as follows:

u[rk(t),t] = drk/dt = Uk(t)    � k = 1,K·. (6)

This boundary condition enforces the link between the Eulerian

description of the fluid motion and the Lagrangian description of

the moving immersed body (for details, see Gilmanov and

Sotiropoulos, 2005).

For inviscid flow only the no-flux condition is satisfied on the

body. That is, the fluid velocity normal to the body is set equal to

the normal velocity of the body while the fluid velocity components

tangent to the body need to be prescribed by interpolation from the

interior fluid nodes. The mathematical formulation of these boundary

conditions reads as follows:

un[r
k(t),t] = n . (drk/dt) = n . Uk(t)    � k = 1,K·, (7)

�/�n{ut[r
k(t),t]} = 0    � k = 1,K·, (8)

where un is the fluid velocity normal to the body, ut is the fluid

velocity vector tangential to the body and n is the normal vector to

the surface.

The numerical method
The flexible fish body is handled as a sharp interface immersed in

the background Cartesian grid using the hybrid Cartesian/immersed-

boundary (HCIB) method, which has been described in detail

(Gilmanov and Sotiropoulos, 2005) and so only a very brief

description of the technique is given herein. The method employs

an unstructured, triangular mesh to discretize and track the position

of a fish body. Boundary conditions for the velocity field at the

Cartesian grid nodes that are exterior to but in the immediate vicinity

of the immersed boundary (IB nodes) are reconstructed by linear

or quadratic interpolating along the local normal to the boundary.

No explicit boundary conditions are required for the pressure field

at the IB nodes due to the hybrid staggered/non-staggered mesh

formulation (Gilmanov and Sotiropoulos, 2005). The HCIB

reconstruction method has been shown to be second-order accurate

on Cartesian grids with moving immersed boundaries (Gilmanov

and Sotiropoulos 2005). The IB nodes at each time step are

identified using an efficient ray-tracing algorithm (Borazjani et al.,

2008)

The method has been validated extensively (Gilmanov and

Sotiropoulos, 2005) for flows with moving boundaries and has also

been applied to simulate fish-like swimming using the mackerel

model we employ in this work. More specifically, inviscid

simulations for various slip ratios U/V (where V is the body

undulatory wave phase velocity) showed that the simulated wake

structures for various slip ratios are in good agreement with

experimental observations: for U/V<1 a reverse Karman street was

obtained, in agreement with the observations (Gilmanov and

Sotiropoulos, 2005). Gilmanov and Sotiropoulos also carried out

viscous flow simulations for Re=3000 and showed that on a

sufficiently refined mesh (3�106 grid nodes) the method can

simulate a thrust-producing wake with a reverse Karman street (for

details, see Gilmanov and Sotiropoulos, 2005).

In Gilmanov and Sotiropoulos’ study (Gilmanov and

Sotiropoulos, 2005), the governing equations were solved with an

explicit dual-time stepping artificial compressibility method. To

further enhance the efficiency of the numerical method, which is a

crucial prerequisite for carrying out highly resolved viscous flow

simulations on grids with 107 grid nodes, we modified the flow

solver by incorporating a recently developed fractional step method

(Ge and Sotiropoulos, 2007). The Poisson equation is solved with

FGMRES (Saad, 2003) and multigrid as preconditioner using

parallel libraries of PETSc (Satish Balay et al., 2001). For more

details the reader is referred elsewhere (Ge and Sotiropoulos, 2007;

Borazjani et al., 2008).

Fish body kinematics and non-dimensional parameters
We employ a fish body shape closely modeled after the actual

anatomy of a mackerel. The emphasis in our work is on the

body/caudal fin mode of aquatic swimming and for that only the

caudal fin is retained in the model fish. The model is meshed with

triangular elements as needed by the HCIB method (Fig.·1).

The kinematics for carangiform swimmers is generally in the form

of a backward traveling wave with the largest wave amplitude at

the fish tail (Gray, 1933; Videler and Hess, 1984). The specific

kinematics used in this work is based on the experimental
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observations of Videler and Hess (Videler and Hess, 1984) who

described the body undulations by a Fourier series for an average

mackerel. The first three coefficients of the Fourier series were

calculated but only the first coefficient was found to be significant

(Videler and Hess, 1984). The final equation describing the lateral

undulations of the fish body (Videler and Hess, 1984) is thus given

as follows (all lengths are non-dimensionalized with the fish length

L):

h(z,t) = a(z)sin(kz–�t)·. (9)

In the above equation, z is the axial (flow) direction measured along

the fish axis from the tip of the fish head; h(z,t) is the lateral excursion

at time t; a(z) is the first Fourier coefficient (Videler and Hess, 1984)

defining the amplitude envelope of lateral motion as a function of

z; k is the wave number of the body undulations that corresponds

to a wavelength 	; and � is the angular frequency.

The four important non-dimensional similarity parameters in

fishlike swimming are: (1) the Reynolds number Re, based on the

fish length L, the swimming speed U and the fluid kinematic

viscosity �: Re=LU/�; (2) the Strouhal number St, based on the

maximum lateral excursion of the tail A=2hmax, and the tail beat

frequency f: St=2fhmax/U; (3) the non-dimensional wavelength 	/L;

and (4) the non-dimensional amplitude envelope a(z/L)/L.
Sometimes the so-called slip velocity or slip ratio, defined as

slip=U/V=U/(ω/k), is used instead of non-dimensional wavelength.

Using either parameter is correct. However, the slip velocity

changes if the tail beat frequency is changed, while the wavelength

and the tail beat frequency are independent.

In all our simulations, the wavelength 	/L and the amplitude

envelope a(z) parameters, named shape parameters hereafter, are

specified such that the fish body motion is similar to the typical

carangiform swimmers’ body motion. The amplitude envelope a(z)

can be well approximated by a quadratic curve of the form:

a(z) = a0 + a1z + a2z2·, (10)

with the coefficients a0=0.02, a1=–0.08 and a2=0.16 to match the

experimental curve of Videler and Hess (Videler and Hess, 1984).

With this amplitude envelope the maximum displacement at the tail

will be amax=0.1, which gives hmax=0.1L, which is similar to that

of an average mackerel. The wave number k in all the simulations

is based on the non-dimensional wavelength 	/L=95%, which is in

the range of 89–110% observed in most carangiform swimmers

(Videler and Wardle, 1991).

In all the simulations, as explained above, the shape parameters

are kept constant, similar to the carangiform swimmers, while the

Re and St are varied. The non-dimensional angular frequency used

in Eqn·9 is calculated based on the St as �=2
fL/U=2
St/2amax.

The above non-dimensional angular frequency � is used along

with the non-dimensional time tU/L in Eqn·9. Fig.·2 shows the

midlines of the fish calculated for one tailbeat cycle using Eqn·9

with the carangiform shape parameters, and the quadratic amplitude

envelope calculated by Eqn·10, which was fitted through the

experimental curve of Videler and Hess (Videler and Hess, 1984).

In this work we have assumed that the fish tail motion (1) exactly

follows the body’s backward traveling wave; and (2) is completely

symmetric. The first assumption is supported by the work of Gibb

et al., who studied in detail the tail kinematics of a chub mackerel

and showed that the traveling wave does indeed pass through the

tail and as such the tail does not move like a rigid plate attached to

the body (Gibb et al., 1999). Gibb et al. also showed, however, that

contrary to our second assumption, the tail of a chub mackerel

undergoes a dorso-ventral (top–bottom) asymmetry during each tail

beat (Gibb et al., 1999). This effect has not been considered in the

present study but could be examined in a future study using the

detailed kinematics reported (Gibb et al., 1999).

Computational grid and other details
As already explained in the Introduction, in all our simulations it is

assumed that the fish is attached to a rigid tether that tows the fish

at constant velocity U. Therefore, all the equations are solved in the

inertial frame moving with constant velocity U attached to the fish.

The computational domain is a 2L�L�7L cuboid similar to that

used by Gilmanov and Sotiropoulos (Gilmanov and Sotiropoulos,

2005), but discretized with a much finer grid including 5.5 million

grid nodes. The domain width 2L and height L are ten times the fish

I. Borazjani and F. Sotiropoulos
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Fig.·1. (A,B) Different views of the virtual carangiform swimmer closely
modeled after a mackerel and meshed with triangular elements as needed
for the sharp-interface immersed boundary numerical method.
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Fig.·2. Midlines of the fish for different instants during one tail beat cycle
(A) and the amplitude envelope profile (B).
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width 0.2L and height 0.1L, respectively. A uniform mesh with

constant spacing h=0.008L is used to discretize a smaller cuboid

enclosing the fish. The mesh is stretched from the faces of this smaller

cuboid to the boundaries of the computational domain using a

hyperbolic tangent stretching function. The fish is placed 1.5L from

the inlet plane in the axial direction and centered in the transverse

and the vertical directions. The boundary conditions on the domain

outer boundaries are uniform flow at the inlet, slip walls on the side

boundaries and convective boundary conditions at the outlet.

To test the sensitivity of the computed solutions to the size of

the computational domain, a set of simulations was also carried out

for a longer domain with dimensions 2L�L�11L. Similar to the

shorter (7L long) domain, a uniform mesh with constant spacing

h=0.008L is used to discretize a smaller cuboid enclosing the fish

and the mesh is stretched from the faces of this smaller cuboid to

the boundaries of the computational domain using a hyperbolic

tangent stretching function. This results in a grid with 11.4 million

nodes. Simulations were carried out for Re=4000 and � (inviscid)

for various St and the computed results were found to be in excellent

agreement with those obtained in the shorter domain both in terms

of instantaneous and time averaged forces and flow structures. Based

on this study it was concluded that the 7L long domain is sufficient

for carrying the parametric studies reported in the remainder of this

paper.

A grid refinement study is also carried out for the Re=4000 case

using a series of successively finer meshes. The results of this study

are reported in the Appendix, where more details on the validation

and verification of the numerical method are provided. Here it

suffices to mention that based on this grid sensitivity study we

concluded that the 5.5 million node grid is adequate for obtaining

grid insensitive results.

The tail beat period τ is divided in 120 time steps, i.e. �t=�/120.

A time refinement study with �t=�/1000 was also carried out and

showed no appreciable differences in the computed flow patterns

and the time averaged net force on the fish body.

Calculation of swimming forces and efficiency
The definition of the efficiency for fish-like swimming is

controversial and ambiguous. For example, as discussed extensively

(Schultz and Webb, 2002), the Froude efficiency  defined based

on the mean net axial F force is zero for steady inline swimming

when the thrust force is exactly equal to the hydrodynamic drag

force. It is useful, however, to define a Froude propulsive efficiency

based on the thrust force for constant speed inline swimming as

follows (see Tytell and Lauder, 2004):

 = TU / (TU+PL)·, (11)

where T is the average over the swimming cycle thrust force, U is

the steady swimming speed, and PL is the average over the

swimming cycle power loss due to lateral undulations. As previously

pointed out (Tytell and Lauder, 2004) the efficiency defined by

Eqn·11 expresses the percentage of the total power that is used to

produce thrust. The main problem with Eqn·11, however, stems from

the fact that the thrust force T cannot be measured directly in

experiments (Schultz and Webb, 2002). However, the thrust and

lateral power loss can be calculated either using a mathematical

model, such as Lighthill’s elongated body theory (EBT) for steady

swimming (Lighthill, 1971), or directly from the results of 3D

numerical simulations. In the remainder of this section we discuss

these two approaches for calculating swimming efficiency.

Although it is known that EBT overestimates the efficiency

(Cheng and Blickhan, 1994), the theory provides a simple and easy

to calculate measure of efficiency and can be readily used to relate

efficiency and Re. In addition, the EBT efficiency can be compared

with the efficiency obtained via direct calculation from numerical

simulations (see below) to evaluate the range of validity of the

theory. The Froude efficiency based on EBT for steady swimming

is given as follows:

EBT = G(1+�)·, (12)

where �=U/V is the slip velocity defined as the ratio of the

swimming speed U to the speed V of the backward undulatory body

wave. An improved EBT efficiency formula (Cheng and Blickhan,

1994) (denoted herein as EBT-2) takes into account the slope of

the fish tail where all the mean quantities are computed:

EBT-2 = G(1+�) – G�2(�2/1+�)·. (13)

In the above equation:

� = (	/2
) � [h�(L)/h(L)]·, (14)

where h(L) is the undulation amplitude and h�(L) is its derivative

(slope) at the tail.

The Froude propulsive efficiency given by Eqn·11 can also be

calculated directly from the results of 3D computations; we refer

to this approach as CFD. To accomplish this, however, we first need

to define and develop an approach for calculating the thrust and

drag forces. Note that for fish-like swimming, such a definition is

not straightforward since the propulsor in this case is the fish body

itself, which produces thrust while producing drag.

In our simulations, the fish swims steadily along the positive x3

direction. The component of the instantaneous hydrodynamic force

along the x3 direction (which for simplicity will be denoted as F)

can be readily computed by integrating the pressure and viscous

forces acting on the body as follows (where repeated indices imply

summation):

where ni is the ith component of the unit normal vector on dA and

τij is the viscous stress tensor. Depending on whether F(t) is negative

or positive, it could contribute to either drag D(t) or thrust T(t). To

separate the two contributions we propose to decompose the

instantaneous force as follows:

Obviously the above force decomposition produces two force time

series that have non-zero values only at those time instants for which

the instantaneous net force F(t) is of thrust or drag type, respectively.

(17)

− D(t)= − Dp + Dv( ) =

          
1

2
− pn3dA

A
∫ − pn3dA

A
∫

⎛

⎝
⎜

⎞

⎠
⎟

        +
1

2
τ3 jnj3dA

A
∫ − τ3 jnjdA

A
∫

⎛

⎝
⎜

⎞

⎠
⎟ .

(16)

T (t)=Tp + Tv =

       
1

2
− pn3dA

A
∫ + pn3dA

A
∫

⎛

⎝
⎜

⎞

⎠
⎟

     +
1

2
τ3 jnj3dA

A
∫ + τ3 jnjdA

A
∫

⎛

⎝
⎜

⎞

⎠
⎟ ,

F (t) = − pn3+ τ3 jnj( )dA (15)
A
∫ ,
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By construction the decomposition given by Eqn·16 and Eqn·17

conserves identically the net force:

The final values of the mean net, drag and thrust forces are obtained

by time-averaging over several swimming cycles the instantaneous

forces given by Eqn·15, Eqn·16 and Eqn·17, respectively.

The power loss due to lateral undulations of the fish body is

calculated as follows:

Pside = �–pn2hdA + ��2jnjhdA·, (19)

where h is the time derivative of the lateral displacement (i=2

direction), i.e. the velocity of the lateral undulations.

It is important to note that the Froude efficiency equation

(Eqn·11) can only be applied under inline, constant-speed swimming

when the thrust force is balanced exactly by the drag force and the

net force acting on the fish body is zero. If this equilibrium condition

is violated, the fish will either accelerate or decelerate, the velocity

U will no longer be constant and Eqn·11 is not meaningful. In our

subsequent simulations with the previously described tethered fish

model, we will only apply Eqn·11 to compute the propulsive

efficiency at the critical Strouhal number St* for which the net force

F acting on the fish body is zero and constant-speed inline swimming

is possible.

RESULTS AND DISCUSSION
Strouhal number and Reynolds number effects

To systematically quantify the effect of governing parameters on

the energetics and associated flow patterns of carangiform swimming

we carry out simulations for three Re and various St. Viscous flow

simulations are carried out for Re=300 and 4000 and inviscid

simulations are carried out to simulate the flow in the limit of Re=�.

For Re=300 and 4000, the St is varied systematically from zero (rigid

body case) in increments of 0.1 until the mean net force on the fish

body becomes greater than zero (see below for details). For Re=�
simulations are carried out over a narrower range of St centered

around the value at which the net force on the fish crosses zero.

To begin our discussion, we show in Fig.·3 the time history of

the instantaneous hydrodynamic force coefficient CF as a function

of St for Re=4000. The force coefficient is defined as follows:

CF = F(t) / �U2L2·. (20)

In the above equation, F(t) is the instantaneous net hydrodynamic

force given by Eqn·15, � is the density of the fluid, U is the

swimming speed, and L is the length of the fish body. Recall that

in our simulation the fish cannot move, and thus the net

hydrodynamic force is absorbed by the hypothetical tether that holds

the fish in place. In other words, the force shown in Fig.·3 is the

net force that would be available to accelerate the fish either forward

or backward (depending on its sign) at the instant when the

hypothetical numerical tether is removed. Given the sign convention

we introduced in the previous section, CF>0 when T>D, i.e. when

the thrust force exceeds the drag force and the net force on the body

is in the direction of the fish motion. To facilitate our discussion

we shall refer to this situation as the net force being of thrust type.

Similarly the situation with CF<0 will be referred to as the net force

being of drag type. Such notation is used herein to characterize the

direction of the net force and should not be confused with the terms

thrust or drag force, which refer only to the thrust or drag portions

of the instantaneous net force (see Eqn·15–17). The values of CF

in Fig.·3 and in all subsequently presented figures have been scaled

(18)F (t)=T (t) − D(t) .

with the force coefficient calculated for the rigid body fish (St=0)

at the same Re. The line corresponding to the resulting rigid body

force CF=–1 is marked in Fig.·3 to help gauge the level of the net

force for each St relative to the rigid body drag. The most important

findings that follow from Fig.·3 can be summarized as follows:

(1) For all simulated St, the force coefficient in each cycle shows

two peaks corresponding to forward and backward tail strokes. This

finding is in agreement with experimental observations (Hess and

Videler, 1984).

(2) As the St increases from zero, the net force remains of drag

type (CF<0) throughout the entire swimming cycle up to a threshold

St (St�0.5) at which the first excursions into the thrust-type regime

(CF>0) are observed.

(3) Further increase of the St above the St�0.5 threshold leads

to longer and larger amplitude excursions into the thrust-type regime,

ultimately yielding a positive mean net force.

(4) For small St, �0.3, the undulations of the body cause a net

force of drag type with magnitude greater than the drag force of the

rigid fish at the same Re. That is, low St body undulations cause

the magnitude of the drag-type net force to increase over that of the

rigid body. For higher St (St>0.3), the undulations of the body cause

a net force that is also of drag type but of lower magnitude than the

corresponding rigid body net force.

The specific St at which the net force changes sign is not universal

but depends on the Re of the flow. A plot similar to that shown in

Fig.·3 for Re=300, for instance, exhibits essentially all qualitative

trends as those observed for Re=4000, but the net force sign

transition occurs at different St. To illustrate the dependence of the

net force variation on the St as a function of the Re, we plot in Fig.·4

the variation of the mean net force coefficient CF (averaged over

several swimming cycles) for all three simulated Re. As before, the

values of CF for each Re are scaled by the corresponding value for

the rigid body at the same Re, i.e. the line CF=–1 marks the rigid

body case (St=0). For the Re=� case, CF is scaled with the value

for the Re=4000 since for inviscid, irrotational flow the net force

on the body is zero. It is observed from Fig.·4 that for Re=300 and

4000 at low St the mean net force is of drag type and its magnitude
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Fig.·3. Time history of the force coefficient normalized by the rigid body
drag for different St at Re=4000. Positive and negative values indicate that
the net force is of thrust- and drag-type, respectively.
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initially increases relative to that of the rigid body. As the St
increases, however, the mean net force, while remaining of drag

type, is gradually diminishing in magnitude and ultimately its

magnitude becomes smaller than the rigid body force. The St at

which this transition occurs appears to be the same for both Re
(St~0.25). As the St is further increased, above a certain St threshold

(denoted by St*) the force becomes positive in the mean, which

indicates the transition from a mean net force of drag type to a mean

net force of thrust type. This general trend is observed for all three

simulated Re. The point when the CF curve crosses zero is the point

when the mean drag force is balanced exactly by the mean thrust

force. As we have already discussed, at this point the fish will swim

at constant velocity if the hypothetical tether in our simulations is

severed. Therefore, the St at which CF crosses zero is the St at which

constant speed, inline swimming is possible for the given Re; we

shall denote this St as St*.

A striking finding from Fig.·4 is that St* is a decreasing function

of Re; St*=1.08, 0.6 and 0.26 for Re=300, 4000 and �, respectively.

Moreover, St* approaches the range of St at which most carangiform

swimmers swim in nature (St ~0.2–0.35) (see Fish and Lauder, 2006)

only in the limit of Re=�. Recall that this is also the range of St at

which optimal thrust production has been reported in flapping foil

experiments (Triantafyllou et al., 1991), which led to the hypothesis

that fishes select this range of St to optimize their propulsive

efficiency (Triantafyllou and Triantafyllou, 1995; Triantafyllou et

al., 2000). Nonetheless, it is clear from Fig.·4 that for each Re there

is a unique St, St*, at which steady inline swimming is possible.

Therefore, our results suggest that in addition to efficiency

considerations, which we will further elaborate on below, for a given

Re carangiform swimmers select the St at which they will undulate

their body because this is the only St at which they can produce

enough thrust to cancel the drag they generate and swim steadily.

This finding also suggests a possible explanation for the data for

Pacific salmon swimming reported (Lauder and Tytell, 2006). As

discussed already in the Introduction, Lauder and Tytell (Lauder

and Tytell, 2006) presented data showing that the swimming St
increases with decreasing swimming speed (i.e. decreasing Re).

Based on these data they pondered whether fish for some unknown

reason choose deliberately to swim inefficiently at low speeds and

also wondered whether the St number is the appropriate parameter

to quantify the intricacies of aquatic swimming across a wide range

of swimming speeds. The results shown in Fig.·4 suggest that at

lower swimming speeds Pacific salmon swims at higher St simply

because St* is a decreasing function of Re.

Swimming efficiency
As we discussed in a previous section, the Froude efficiency given

by Eqn·11 is meaningful to calculate for a given Re only at St*,

when the assumption of constant swimming speed is valid. In

Table·1 the Froude efficiency is given for different Re at the

corresponding value of St* using the EBT (Eqn·12), EBT-2 (Eqn·13)

and direct (CFD) calculation (Eqn·11). It is clearly evident from

this table that regardless of the calculation method, the swimming

efficiency is an increasing function of the Re. That is, even though

carangiform kinematics can achieve constant-speed swimming, i.e.

self-propulsion, at all simulated Re, this mode of swimming is very

inefficient at low Re. Higher propulsive efficiency can only be

achieved in the limit of Re=�, which is the range of Re at which

typical carangiform swimmers swim in nature. To the best of our

knowledge, this is the first that time that the effects of scale (Re)

on propulsive efficiency are so clearly demonstrated. Note that the

fact that the efficiency of the carangiform kinematics is higher at

higher Re is entirely consistent with the fact that St* is decreasing

with Re. Body undulations at higher St generally imply faster lateral

undulations, i.e. higher lateral velocities, which result in higher

lateral power loss and lower efficiency.

It is important to also comment on the consistency of the results

obtained from the three methods used to calculate the Froude

efficiency in Table·1. It is apparent that qualitatively the three

methods yield identical results, all three predicting the same trend

of increasing efficiency with increasing Re. As expected, the EBT

and EBT-2 methods yield similar efficiency values. The slope

correction in the EBT-2 approach becomes more important at higher

Re (i.e. lower St*), which accounts for the increasing discrepancy

between the EBT and EBT-2 with Re. The efficiency values from

the two EBT methods differ significantly from the values calculated

by the CFD method with the discrepancy becoming greater as the

Re is decreased. Such discrepancy, however, is entirely consistent

with the fact that the EBT theory is an inviscid, slender-body theory,

it does not consider 3D effects, and is not at all applicable at Re
sufficiently low for the viscous forces to play a significant role.

The efficiency values we obtain in this work using CFD are

somewhat lower than those reported in the literature in previous

numerical studies. For example, 45% efficiency was reported for a

tadpole swimming at Re=7200 (Liu and Kawachi, 1999) while

efficiencies ranging from 62% to 72% have been reported for

inviscid simulations of tuna swimming (Zhu et al., 2002). It is

important to point out, however, the aforementioned studies

simulated tethered swimmers at conditions that did not correspond
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Fig.·4. Effect of Re and St on the mean force coefficient produced by the
tethered fish. The force coefficient is time-averaged and normalized by the
rigid body drag coefficient. The lower broken line shows the rigid body drag
coefficient and the upper broken line shows the zero mean force
coefficient, i.e. self-propulsion limit.

Table·1. Froude efficiency at critical Strouhal number

Froude efficiency (%)

Re EBT EBT-2 CFD

300 59.3 59.5 18.86
4000 67.25 66.67 22.95
� 92 89.47 47.55

Re, Reynolds number; EBT, elongated body theory; EBT-2, EBT efficiency
formula (Cheng and Blickhan, 1994); CFD, computational fluid dynamics.
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to the self-propulsion state, i.e. in these simulations St�St* and the

net force on the body was not zero (T�D). This is a significant

difference between our work and previous studies, which could very

well account for the differences in the levels of the calculated

swimming efficiencies.

Power requirements of undulatory locomotion
In this section we employ the results of our simulations to calculate

the power requirements of undulatory swimming and compare them

with the power requirement of towing the rigid fish at the same

speed based.

At St* the average axial power is zero since the average axial

force per cycle is zero. Therefore, the total power required at St*
is only the side power calculated by Eqn·19. The power requirement

for the rigid fish to be towed at velocity U is simply the drag force

multiplied by the velocity U. The power requirement has been

calculated and non-dimensionalized by the factor �U3L2 and the

values are reported in Table·2.

The results in Table·2 clearly show that the power requirement

of undulatory swimming decreases as Re increases. In conjunction

with the conclusion reached in the previous section, this finding

shows that at very high Re carangiform kinematics not only become

very efficient but also require less power for propulsion. Given the

previously discussed ambiguities in the definition of a meaningful

and objective measure of swimming efficiency, our results reinforce

the recommendation (Schultz and Webb, 2002) that the power

requirement might be a better measure for quantifying the efficiency

of fish swimming.

Table·2 also shows that for a given Re the power requirement

of the undulatory swimming is higher than towing the rigid fish.

All the kinematic and computational models to date have shown

the same trend (for a review, see Schultz and Webb, 2002).

However, this finding is in contrast to other results (Barrett et

al., 1999), which showed through experimental measurements

with a robotic fish that the power required for the tethered fish

to move at constant speed U with undulatory body motion is less

than that for the rigid body. It is important to point out, however,

that whether body undulations increase or decrease, the power

required for swimming at all Re cannot be deduced with certainty

from the results of Table·2 or other kinematic and computational

models. This is because previous models were either inviscid or

did not consider Re in the range bridging the transitional and

inertial regimes. It still might be possible that at some sufficiently

high Re (4000<Re<�) the undulatory swimming requires less

power than the rigid fish. To demonstrate this possibility, consider

the following argument based on our results. As the Re is

increased, the St* and the power requirement for undulatory

swimming are decreased. The rigid body drag coefficient, on the

other hand (which multiplied by the velocity gives the power

required for towing), tends to asymptote toward a constant value,

similar to other bluff bodies (Panton, 1996). Clearly this important

point cannot be conclusively resolved by our work and simulations

at much higher Re will be required for definitive conclusions.

Is undulatory locomotion drag-reducing or drag-increasing?
Barrett et al. (Barrett et al., 1999) concluded that the undulatory

motion is drag-reducing since the upper bound drag estimate was

found to be less than that of the corresponding rigid body drag.

However, Lighthill’s analytical results (Lighthill, 1971), which were

verified by simulations (Liu and Kawachi, 1999) and experiments

(Anderson et al., 2001), indicate that the friction drag increases by

the undulatory motion. In addition, Fish et al. (Fish et al., 1988;

Fish, 1993) suggested that the pressure component of the drag

increases by the undulatory motion in dolphins and seals, thus

concluding that the undulatory motion is drag-increasing. In

summary, the issue of whether undulatory motion is increasing or

decreasing the drag force is still a subject of debate in the literature,

as often the reported results appear to contradict each other. It is

evident from the above discussion that the main reason for these

contradictory conclusions is the inherent difficulty of experimental

studies and simplified theoretical models to calculate simultaneously

both the total force and its two components. Obviously our numerical

simulations do not suffer from this limitation and can be interrogated

in detail to elucidate the issue of the impact of undulatory body

motion on the hydrodynamic drag force. Using the simulated flow

fields we compute the total drag force D (Eqn·17) and its form and

friction drag components given by Dp and Dv in Eqn·17 as functions

of St for Re=300 and 4000. The results are normalized by the rigid

body total drag and plotted in Fig.·5. This figure reveals several

important trends.

For both Re the total drag force initially increases above that of

the rigid body drag up to St=0.1, with the overall increase level

being higher for the higher Re. At higher St the drag force starts to

decrease and at St�0.25 it decreases below the rigid body drag for

both Re. Beyond that point, however, a distinctly different behavior

is observed for the two Re. For Re=300 the drag starts increasing

again above the rigid body threshold, while for Re=4000 the drag

is reduced monotonically, asymptoting toward a constant value of

approximately 75% of the rigid body drag at St�0.6.

The friction drag force increases monotonically with St for both

Re while the form drag initially increases and then decreases

asymptoting toward zero at St>0.6. As one would anticipate the

friction drag is the major contributor to the total drag force at the

low Re (Re=300) and is responsible for the monotonic increase of

the total drag force for St>0.3. For Re=4000 the friction drag is

higher than the form drag but varies only mildly with St, increasing

from 0.66 for the rigid body to an asymptotic limit of 0.75 for St>0.5.

Consequently the variation of the total drag for this case is dominated

by the non-monotone variation of the form drag, which as mentioned

above initially increases up to St=0.1 and then asymptotes to zero

for St>0.6.

The above results provide new insights that help reconcile the

previous, often conflicting, reports about the effect of body

undulations on the drag force. Clearly for both Re the friction drag

is the major contributor to the total drag and it is increased by the

undulatory motion, a trend that is consistent with previous

simulations (Liu and Kawachi, 1999) and experiments (Anderson

et al., 2001). The form drag on the other hand is initially increased

by body undulations but then decreases toward zero as the St
increases. As the Re is increased, however, the importance of viscous

stresses diminishes and the friction drag tends to become fairly

insensitive to the St and the variation of the total drag mimics

essentially that of the pressure drag. Even though in our simulations,

due to limitations in computational resources, we were not able to

reach the range of Re at which the experiments of Barrett et al.

(Barrett et al., 1999) were carried out, our results suggest that the
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Table 2. Power requirements of undulatory swimming

Re Prigid PSt*

300 2.6165�10–2 1.4157�10–1

4000 4.8921�10–3 1.3671�10–2

Inviscid 0 3.9598�10–4

Re, Reynolds number; P, power; St*, critical Strouhal number.
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total drag reduction observed in these experiments is mainly due to

the ability of the undulatory body motion to drastically reduce the

form drag. Note that the simplified inviscid hydrodynamic models

(Lighthill, 1971; Fish et al., 1988; Fish, 1993) could not explain the

drag reduction observed in experiments since they did not considered

form drag and the assumption was that the thrust overcomes the

drag only due to friction.

As we conclude this section it is appropriate to discuss the

physical mechanisms that lead to the observed reduction in form

drag. It has been hypothesized (Triantafyllou et al., 2000) that in

undulatory swimming the travelling body wave contributes to a

decreased drag force by eliminating separation and suppressing

turbulence. This hypothesis was supported by early experiments

(Taneda and Tomonari, 1974), which visualized the flow past a

waving flat plate and showed that when the wave phase velocity V
is smaller than the flow velocity U, the boundary layer separates at

the back of the wave crest, while when V>U the boundary layer

does not separate. A more recent study (Shen et al., 2003) carried

out direct numerical simulation of flow past a waving plate and

confirmed the earlier findings (Taneda and Tomonari, 1974) by

showing that for V>U separation is indeed eliminated and drag is

reduced, relative to the stationary wavy wall, monotonically with

increasing V. Shen et al. also emphasized the relevance of their

waving flat plate results in understanding drag-reduction

mechanisms in fish-like swimming (Shen et al., 2003).

Our computed results also show that the ratio of the undulatory

wave phase velocity V to the swimming speed U is indeed a critical

parameter insofar as drag reduction is concerned. In our simulations

V exceeds U when St>0.22 and it is evident from Figs·4 and 5 that

for the viscous flow simulations the drag force is first reduced below

that of the rigid body for St>0.25, i.e. when the condition V>U has

been satisfied. In Fig.·6 we show instantaneous streamlines and
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Fig.·5. Variation of the skin (friction) drag, form drag and total drag with
Strouhal number at two Reynolds numbers: Re=300 (A) and Re=4000 (B).
The drag forces are calculated using Eqn·17.

Fig.·6. Pressure contours and streamlines on the midplane of the fish
relative to a frame moving with the body wave phase speed V (Re=300).
(A) Rigid body (St=0). (B) Flow separates for St=0.1, U/V=2.11. (C) Flow
does not separate for St=0.3, U/V=0.7.
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pressure contours at the mid-plane of the virtual swimmer in the

frame of reference moving with the undulatory wave phase velocity

V for Re=300 and St=0 (rigid body), 0.1 (U/V=2.11) and 0.3

(U/V=0.7), respectively. Note that the moving frame of reference

is selected because in the case of a swimming fish flow separation

occurs relative to the undulating body and can only be visualized

clearly in the frame of reference that moves with the body wave

velocity V [see Shen et al. (Shen et al., 2003) for a detailed discussion

of this issue]. As seen from Fig.·6A the flow around the rigid body

(St=0) does not separate, due to the streamlined body shape. As the

body begins to undulate, and as long as V is less than U, the flow

separates at the posterior of the body (see results in Fig.·6B for

St=0.1) due to the fact that the undulatory body wave is such that

it acts to retard the near-wall flow relative to the free stream. The

onset of separation explains the initial increase of the form drag

force relative to the rigid body drag observed in Figs·4 and 5. At

St sufficiently high for the condition V>U to be satisfied (St>0.22

in our case), however, separation is eliminated (see Fig.·6C for

St=0.3) and the drag force is reduced below that of the rigid body

drag at the same Re. Under these conditions (i.e. V>U), the motion

of the undulating fish body is piston-like and acts to accelerate the

slower moving ambient fluid, thus creating a positive (stagnation)

pressure region at the posterior portion of the fish body, which

reduces the form drag; this is clearly evident in the pressure contours

shown in Fig.·6C. It is of course important to note that the reduction

in the form drag at higher St is not for free. The fish has to beat its

tail faster to achieve drag reduction at higher St and thus needs to

expend more power to accomplish this. As discussed in the previous

section the lateral power cost of such drag reduction was found to

be higher than the inline power gained by the undulatory motion in

our simulations.

Three-dimensional wake structure
The wake of carangiform swimmers has been studied extensively

in the laboratory using particle image velocimetry (PIV), which can

provide the velocity field in several 2D planes (Muller et al., 1997;

Wolfgang et al., 1999; Nauen and Lauder, 2002). These experiments

showed the vortices in the wake of free swimming carangiform

fishes organize in a single row such that a jet flow is formed between

the vortices, which has been dubbed a reverse Karman street (Rosen,

1959).

In our simulations we also find a reverse Karman street wake

consisting of a single row of vortices for the self-propelled inviscid

flow case (St*=0.26), which is the case that corresponds more closely

(both in terms of Re and St) to the available in the literature

experiments with live carangiform swimmers. The simulated near-

wake velocity and vorticity fields in the horizontal and vertical planes

for this case are shown in Fig.·7. The flow patterns shown in this

figure are very similar to those obtained experimentally (Nauen and

Lauder, 2002) using PIV on the horizontal and vertical planes near

the caudal fin of a swimming mackerel [see figs·3 and 4 in Nauen

and Lauder (Nauen and Lauder, 2002), corresponding to Fig.·7A

and B in the present study].

Our simulations have also revealed different wake patterns

depending on the Re and St numbers, as shown in Fig.·8, which

depicts three such representative wake patterns. To facilitate the

classification of the various wake patterns observed in our

simulations let us introduce the following wake characterization

convention. (1) Depending on the direction of the common flow

between the wake vortices, the wake can be characterized as being

of thrust (reverse Karman street) or drag (regular Karman street)

type; (2) depending on the layout of the vortical structures the wake

can be characterized as consisting of single or double row vortices.

A single row wake can be either of drag or thrust type, as shown

in Fig.·8A (Re=4000 and St=0.2) and Fig.·8B (Re=� and St=0.26),

respectively. The main characteristic of this wake pattern is that it

remains confined within a relatively narrow parallel strip that is

centered on the axis of the fish body and consists of Karman-street

like vortices. A double row wake that is of thrust type is shown in

Fig.·8C (Re=4000, St=0.7). This wake pattern is distinctly different

than the single row wake as it is characterized by the lateral

divergence and spreading of the vortices away from the body in a

wedge-like arrangement.

Our computed results show that for fixed Re both the single and

double row wake structures can emerge, depending on the St number.

Typically at low St the single row wake structure is observed (see

Fig.·8A,B), while at high St the wake splits laterally and the double

row pattern emerges (Fig.·8C). The dependence of the wake

structure on the St is to be expected since by definition (see Eqn·2)

the St can be viewed as the ratio of the average lateral tail velocity

to the axial swimming velocity. Therefore, at high St the vortices

shed by the tail tend to have a larger lateral velocity component,

which advects them away from the centerline causing them to spread

in the lateral direction.

The exact value of St at which the transition from the single to

the double row wake structure occurs depends on the Re. Due to

limitations in the computational resources at our disposal we did

not attempt to precisely calculate the wake transition St as a function

I. Borazjani and F. Sotiropoulos

Fig.·7. Calculated out-of-plane vorticity contours with velocity vectors for the
Re=�, St=0.26 case (A) on the horizontal (x1–x3) mid-plane and (B) the
vertical (x2–x3) plane.
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of Re. Our results, however, do suggest that for Re=300 the wake

transition occurs within 0.3<St<0.6 while for Re=4000 and � it

occurs at somewhat lower St in the range 0.3<St<0.5.

To illustrate the effect of Re on the wake structure, we plot in

Fig.·9 the instantaneous vorticity field and streamlines on the mid

plane for all three Re for St=0.3. As one would anticipate, for lower

Re the thickness of the viscous regions around the body and overall

width of the wake become greater as the diffusive effects of the

viscous forces begin to dominate. For the Re=300 case, the wake

is of drag type with a single row of vortices. At Re=4000 the wake

is still of drag type but it is clearly more disorganized and complex

than the Re=300 case. The wake pattern is of single row type but

its emerging complexity signals its upcoming (for St>0.3) transition

from the single to double row structure. For the inviscid case the

wake also consists of single row vortices but it is now of thrust

type. In comparison with the inviscid wake shown in Fig.·8B for

St=0.26, the wake for the St=0.3 case has become more complex.

The vortices have intensified, adjacent layers of positive and

Fig.·8. Instantaneous streamlines with vorticity contours showing (A) a single
row regular Karman street (Re=4000, St=0.2); (B) singe row reverse Karman
street (Re=�, St=0.26); and (C) double row reverse Karman street (Re=4000,
St=0.7). The red arrows show the general direction of the wake flow.

Fig.·9. Instantaneous streamlines and vorticity contours at the horizontal
mid-plane for St=0.3 highlighting the effect of Reynolds number on the
wake structure. (A) Re=300; (B) Re=4000 (middle); (C) Re=�.
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negative vorticity are observed in the wake, and two cores of high

vorticity emerge within the primary wake vortices especially at some

distance downstream of the tail. Once again, the emergent

complexity of the wake is also suggestive of the transition to the

double row structure that will occur at somewhat higher St.
To visualize the 3D structure of the wake we show in Fig.·10,

Fig.·11 and Fig.·12 instantaneous iso-surfaces of the q-criterion

(Hunt et al., 1988) for Re=300, 4000 and �, respectively. The

quantity q is defined as q=G(���2–�S�2), where S and � denote the

symmetric and antisymmetic parts of the velocity gradient,

respectively, and �.� is the Euclidean matrix norm. According to

Hunt et al. (Hunt et al., 1988), regions where q>0, i.e. regions where

the rotation rate dominates the strain rate, are occupied by vortical

structures. For each Re we show two St corresponding to the single

and double row vortex patterns. The 3D wake structure of

carangiform swimmers has been approximately reconstructed in the

past from the results of PIV experiments using the velocity data in

conjunction with the Helmhotz theorem for inviscid barotropic

fluids. For carangiform swimmers with a single vortex row wake

structure, a series of connected vortex rings has been suggested

(Lighthill, 1969), while for anguilliform (eel-like) swimmers, which

exhibit a double vortex row, two disconnected vortex rings have

been hypothesized (Muller et al., 2001). As seen in Figs·10–12, both

types of 3D vortical structures are observed in the simulations

depending on the St. Nevertheless, the rather simple wake structure

that was hypothesized in previous experiments is observed in our

simulations only for the lowest Re case (Fig.·10). For this case, the

double row wake consists of laterally dislocated vortex loops while

the single row wake consists of a train of inverted hairpin-like

vortices braided together such that the legs of each vortex are

attached to the head of the preceding vortex. This wake structure

resembles the 3D wake structure observed in laboratory experiments

with vibrating spheres (Govardhan and Williamson, 2005) and

flapping foils (Buchholz and Smits, 2006). For Re=4000 (see

Fig.·11), the wake structure becomes significantly more complex.

The single row wake consists of braided hairpins as for the Re=300

case, but the hairpins in this case have longer and more stretched

legs and more slender heads. In addition, smaller-scale vortical

structures attaching to the hairpin vortices are beginning to emerge

in the wake. The double row pattern is no longer made up of two

rows of simple vortex loops but consists of very complex and highly

3D coherent structures connected together through complex

columnar structures. To further appreciate the enormous complexity

of the wake structure at this combination of Re and St, we show in

Fig.·13 different views of the q iso-surfaces superimposed to out-

of-plane vorticity contours. Finally, for the inviscid case the single

row wake consists of connected vortex loops, which are more flat

in shape and stretched in the streamwise direction. The double row,
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Fig.·10. Three-dimensional (3D) vortical structures visualized using the
q-criterion showing 3D wake structures simulated for the Re=300 case.
(A) Double row wake at St=1.2; (B) single row wake at St=0.3.

Fig.·11. Three-dimensional (3D) vortical structures visualized using the
q-criterion showing 3D wake structures simulated for the Re=4000 case.
(A) Double row wake at St=0.7; (B) single row wake at St=0.2.
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on the other hand, exhibits smaller structures than the Re=4000 case

and the complexity of the wake has increased further.

In addition to the highly 3D structure of the wake vortices,

Figs·10–12 further underscore the effect of St on the wake patterns.

For St outside of the Re-dependent range within which the wake

transition occurs, the St is clearly the dominant parameter that

governs the 3D wake structure regardless of the Re.

While single row, thrust type wakes have been observed in all

experiments involving carangiform swimmers, double row wake

patterns have never been observed experimentally for this mode of

swimming. Recall, however, that carangiform swimmer in nature

undulate (for reasons we have already clarified above) their bodies

at St in the range St=0.2–0.35, which is well within the range of St
for which single row wakes are observed in our simulations. The

double row wake structure has been observed in experiments with

anguilliform swimmers (Muller et al., 2000; Tytell and Lauder, 2004).

Muller et al. tested eels swimming at St=0.31, 0.33 and 0.56, and

postulated that the double vortex row is produced by two

consecutively shed ipsilateral body and tail vortices, which combine

to form a vortex pair that moves away from the mean path of motion

(Muller et al., 2000). However, Tytell and Lauder, who studied eel

swimming at St=0.314 using high-resolution PIV data, suggested that

the body anterior to the tail tip produces relatively low vorticity and

the wake structure results from the instability of the shear layers

separating the lateral jets, reflecting pulses of high vorticity shed at

the tail tip (Tytell and Lauder, 2004). Moreover, Tytell and Lauder

hypothesized that the difference in the wake structure of the

carangiform and anguilliform swimmers comes from their difference

in body shape and not in kinematics, i.e. if a mackerel was going to

swim like an eel, the wake patterns would still be different (Tytell

and Lauder, 2004). This hypothesis can be easily checked by

numerical simulations using our present model, by imposing

anguilliform kinematics on a mackerel body. Such computations are

currently under way and will be reported in a future communication.

Nevertheless, our results do suggest that the wake structure

(double row vs single row) is not that dependent on the body shape,

as both wake structures have been observed from identical body

shapes. Therefore, the wake structure is expected to depend on flow

parameters such as St and Re and primarily on the St. This

conclusion is also supported by a number of recent experimental

and computational studies with flapping foils. For example, the

flapping foil flow visualization experiments (Buchholz and Smits,

2005) for Re=640 also pointed to the St as the key parameter

governing the wake structure. Buchholz and Smits observed that

for St between 0.2 and 0.25 the wake consists of a single row of

vortices, while for higher St the wake splits laterally, forming two

separate trains of vortex structure, i.e. double vortex row (Buchholz

and Smits, 2005). Experimental results (von Ellenrieder et al., 2003)

and computations (Blondeaux et al., 2005) for a rectangular flapping

foil at Re=164 and St in the range 0.175<St<0.4 show that as the

Fig.·12. Three-dimensional (3D) vortical structures visualized using the
q-criterion showing 3D wake structures simulated for the inviscid case.
(A) Double row wake at St=0.7; (B) single row wake at St=0.26.

Fig.·13. The iso-surfaces of q cut with (A) x1–x3 and (B) x2–x3 mid-planes
showing the footprints of the wake structure using the out-of-plane vorticity
contours. The inset (C) gives a closer look at the structures cut with both
x1–x3 and x2–x3 mid-planes (Re=4000, St=0.7).
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St increases within this range, vortex-to-vortex interactions intensify

and the wake becomes more complex but remains a single row

structure. Numerical simulations (Dong et al., 2006) for a flapping

ellipsoidal foil revealed the emergence of both single and double

row wake structures. It is also important to point out that the single

row structure has been produced by the vortex induced vibrations

of a sphere (Govardhan and Williamson, 2005) and, as pointed out

by Buchholz and Smits (Buchholz and Smits, 2006), this is an

excellent example of the ubiquity of this type of wake structure,

despite great differences in geometry.

Concluding remarks
In the present study we constructed a virtual carangiform swimmer

and employed it to elucidate the hydrodynamics of this type of

locomotion and clarify and reconcile the results of laboratory

experiments with live fish. The virtual tethered swimmer allowed

us to perform controlled numerical experiments by systematically

varying the Reynolds and Strouhal numbers while keeping the

swimming kinematics fixed. As such, we were able to pose and

answer questions that cannot be tackled experimentally due to the

inherent difficulties in performing and analyzing the results of

controlled experiments with live fish. The most important findings

of our work are summarized as follows.

For a given Re there is a unique St, St*, at which body undulations

produce sufficient thrust to exactly cancel the hydrodynamic drag,

making constant-speed self-propulsion possible. This is an important

finding as it suggests that fish may not be selecting the St at which

they undulate their bodies solely based on efficiency considerations

but also because this is the only St at which they can swim steadily

at a given speed.

St* is a decreasing function of Re and approaches the range at

which carangiform swimmers swim in nature (~0.2–0.35) only in

the limit Re=�.

The Froude efficiency based on the thrust force at St* increases

with Re, suggesting that carangiform kinematics becomes a more

efficient mode of aquatic locomotion only in the inertial regime.

This finding is consistent with the fact that carangiform kinematics

is the preferred mode of locomotion for fast (high Re) swimmers.

The power required for undulatory swimming, which for steady

swimming is equal to the power of the lateral body undulations,

was found to significantly exceed the power required to tow the

rigid body at the same speed. Furthermore, the swimming power

was found to be a decreasing function of Re. Therefore, the

swimming power can be used instead of the Froude efficiency to

explain why carangiform kinematics is preferred in nature by fast

swimmers. Given the ambiguities involved in the definition and

computation of the Froude efficiency, the swimming power provides

an objective and unambiguous measure for quantifying the

energetics of different modes of swimming and should be used for

this purpose, as also suggested elsewhere (Schultz and Webb, 2002).

At a given Re, undulatory motion is shown to increase the friction

drag above the rigid body level with St while only initially increasing

the form drag. At St~0.25, the form drag falls below the rigid body

form drag level and monotonically decreases with St afterwards. The

friction drag was found to be the dominant portion of the total drag

for all Re in our simulations. At lower Re (~300) the variation of

the total drag with St mimics that of the friction drag i.e. increases

with St. However, at sufficiently high Re (~103 and higher) the total

drag mimics that of the form drag, i.e. initially increases then

decreases with St because at the higher Re the increase of friction

drag by the body undulations is very moderate, with the friction drag

increasing mildly and eventually asymptoting toward a constant value

above a threshold St. Consequently, at sufficiently high Re the total

drag force mimics the form drag, which is effectively reduced below

the rigid body level by the undulatory motion for St>0.2.

The initial increase of the form drag with St above the rigid body

level occurs within the range of St for which the phase velocity of

the undulatory body wave V is less than the flow velocity U
(St<0.22). In this case the undulatory body motion acts to retard the

near-wall flow relative to the free-stream and leads to the onset of

separated flow in the posterior of the body, which accounts for the

increased drag force. As St is increased further the body wave phase

velocity ultimately exceeds the flow velocity (St>0.22). Under these

conditions the fish body acts like a piston that acts to accelerate the

flow backward relative to the free stream flow. Separation is

eliminated and a pocket of positive (stagnation) pressure forms in

the posterior of the body as a result of the transfer of energy from

the beating tail to the flow, which explains the observed monotonic

reduction of form drag for St>0.2.

The 3D structure of the wake is shown to depend primarily on

the St. At all Re a wake with a single row of vortices resulted at

low St. At higher St a more complex and laterally diverging wake

structure with a double row of vortices was observed. The St range

within which the transition from the single to the double row wake

structure occurs was found to depend on the Re. The double row

wake structure has not been observed before for carangiform

swimmers because such fishes tend to swim at low St (~0.2–0.35),

for which the single vortex row wake structure dominates. However,

our results are entirely consistent with numerical simulations and

experiments with flapping foils.

Finally, it important to recognize and comment on the fact that, in

addition to the morphological and kinematical parameters we

considered herein, there are other parameters that could potentially

affect the functional dependence of St* on Re. First, the St* should

be expected to depend on the morphological characteristics of a fish

and as such it should vary among different fishes. Second, the shape

parameters (wavelength and the amplitude envelope), which were

fixed in this study, can also affect the St*. The wavelength 	/L of

carangiform swimmers is in the range of 89% to 110% (Videler and

Wardle, 1991); 	/L=95% was used in this study. Higher wavelengths

can increase the traveling wave speed, which in turn could slightly

reduce St*. Higher tail beat amplitudes (amplitude envelope) may

also lead to lower St*. The assumption that the tail beat amplitude

stays constant and does not change with Re is valid for many

carangiform swimmers, but certain fishes may increase the tail beat

amplitude with speed (Re), e.g. the tail beat amplitude increases with

speed in chub mackerel but not in kawakawa tuna (Donley and

Dickson, 2000). The effect of dorso-ventral asymmetry (top–bottom)

of the tail movement (Gibb et al., 1999) has not been considered in

this study either. Another aspect of carangiform kinematics that we

did not address in this work is the detailed characterization of the

motion of the tail fin, which in certain fishes such as tuna could

introduce additional kinematical parameters (Zhu et al., 2002). While

the amplitude of the root point of the tail is the same as that of the

body at the point of junction, the tail can form a different angle than

the tangent to the body. Also, this angular motion may have a non-

zero phase angle with respect to the body motion. These parameters

have been considered in the inviscid numerical simulations of tuna

swimming (Zhu et al., 2002) and were shown to play an important

role in the dynamic interactions of vortices shed by the body and the

tail fin. Additional studies will be needed to investigate and quantify

the effect of the aforementioned parameters on the hydrodynamics

of carangiform swimmers. These studies are beyond the scope of this

paper and will be pursued as part of our future work.
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APPENDIX
Additional materials and methods

In this Appendix we report results aimed at validating the ability

of our numerical method to accurately predict the forces acting on

a moving body. We also report the results of a grid refinement study

for the fish simulations to quantify the effect of numerical resolution

on the accuracy of the results we reported in this paper.

Validation study: forced inline oscillations of a cylinder in a
fluid initially at rest

The ability of our numerical method to predict forces acting on a

moving body has already been demonstrated (Gilmanov and

Sotiropoulos, 2005). To further validate the ability of our method

to predict the hydrodynamic force given by Eqn·15 and its pressure

and viscous contributions, we consider herein the case of a circular

cylinder starting to oscillate in the horizontal direction in a fluid

initially at rest. Benchmark experimental and computational results

for this case have been reported (Dutsch et al., 1998).

The translational motion of the cylinder is given by a harmonic

oscillation:

xc(t) = Amsin(2
ft)·, (A1)

where xc is the location of the center of the cylinder, f is the oscillation

frequency, and Am is the oscillation amplitude. The flow induced by

such oscillations is governed by two non-dimensional parameters: (1)

the Reynolds number Re=UmD/�, based on the maximum oscillation

velocity Um, cylinder diameter D, and the fluid kinematics viscosity

�; and (2) the Kuelegan–Carpenter number KC=Um/fD. According

to Eqn·A1, the Kuelegan–Carpenter number is equal to KC=2
�m/D.
The computations are performed at Re=100 and KC=5, for which

both experimental and numerical results have been reported (Dutsch

et al., 1998). The domain is discretized with a mesh consisting of

721�481 nodes in the inline (oscillatory) and transverse directions,

respectively. 300�100 nodes are distributed uniformly in a 3D�D
box, which contains the cylinder during the oscillations. The domain

outer boundaries are placed 50D from the initial position of the

cylinder, and Neumann boundary condition (�ui/�nj=0), where nj is

the normal to the outer boundary surface) has been used.

Fig.·A1 compares the calculated (in red) inline hydrodynamic

force (solid lines) and its pressure (dotted lines) and viscous (broken

lines) components with published computations (Dutsch et al., 1998)

(in black). It is clear that the calculated forces are in excellent

agreement with Dutsch et al.’s results (Dutsch et al., 1998).

Fig.·A2 compares the inline velocity profiles at x1=–0.6D at three

different phase angles (�=2
ft) calculated by our method and

measured by Dutsch et al. (Dutsch et al., 1998). As for the force

comparisons, the velocity profiles are in excellent agreement with

the measurements.
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Fig.·A1. Time history of the inline force coefficient
(solid lines) and its pressure (dotted lines) and
viscous (broken lines) components from the present
computations (red lines) compared with the
computations of Dutsch et al. (Dutsch et al., 1998)
(black lines).
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Fig.·A2. Comparison of the inline velocity component (u) profile at position x1=–0.6D for three different phase angles (�=2
ft) obtained from the present
study (CFD; solid line) and the experimental measurements of Dutsch et al. (Dutsch et al., 1998) (Exp; square symbols).
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Finally, Fig.·A3 shows the calculated instantaneous vorticity field

at four different phase angles, which is dominated by two counter-

rotating vortices. The computed results are identical to Dutsch et

al.’s computational results (Dutsch et al., 1998), which are not shown

herein but are reported in the same format in their paper.

Numerical sensitivity studies for the fish swimming
simulations

To investigate the sensitivity of the fish swimming simulations on

the grid spacing, we performed simulations on four, successively

finer meshes. The uniform spacing in the cuboid containing the fish

for the four different meshes is h=0.016, 0.012, 0.008 and 0.0004,

corresponding to 0.7, 2.0, 5.5 and 14.7 million total grid nodes,

respectively; we shall refer to these grids as A, B, C and D,

respectively. The grid sensitivity study is carried out for Re=4000

since this is the most challenging case relative to other two Re we

simulate in this work due to the need to accurately resolve the

boundary layer along the fish body. For each grid, the domain size,

boundary conditions and the time step are the same as those used

for grid C, which is the grid used for all simulations reported so far

in this paper (see Materials and methods). Fig.·A4 shows the effect

of grid size on the time averaged force coefficient. The figure

includes: (1) the results obtained on grid C for all simulated St
reported in Fig.·4; (2) the results obtained on grids A, B and D for

St=0.5; and (3) the results obtained on the finest grid D for St=0.6.

It is evident from this figure that as the grid is refined for the St=0.5

case the computed results converge monotonically toward the grid

independent solution. Grids A and B are too coarse to obtain accurate

results but the results obtained on the two finest meshes (C and D)

are very close to each other. Furthermore, the results for St=0.6

obtained on the two finest meshes show that the values of St*
determined on these two meshes are very close to each other. Based

on these results we conclude that the results obtained on grid C,

even though they are not strictly grid independent, are insensitive
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Fig.·A3. Contours of vorticity at four different phase angles
(�=2
ft): (A) �=0°; (B) �=96°; (C) �=192°; (D) �=288°.
Broken lines indicate negative values.
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log–log scale (Re=4000, St=0.5). The error is reduced with a slope slightly
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to further grid refinement and little is to be gained in terms of overall

accuracy by adopting mesh D.

To demonstrate the rate at which the numerical method converges

toward the grid independent solution, we plot in Fig.·A5 the error

in the total force coefficient as a function of the grid spacing in

log–log scale. The error for each grid is calculated using the solution

on grid D as the ‘exact’ solution. It is evident that the rate of

convergence of our method is slightly better than second order. This

finding confirms again that the HCIB method is 2nd order accurate,

as previously shown (Gilmanov and Sotiropoulos, 2005).

To demonstrate the effect of grid refinement on the instantaneous

force, we plot in Fig.·A6 the total force time history on grids B, C

and D for St=0.5. As already concluded above, grid B is too coarse

to obtain accurate results. The computed force time series on this

grid exhibits spurious high frequency oscillations, which are due to

interpolation errors induced by the very coarse mesh in the vicinity

of the immersed boundary. As expected, the amplitude of these high

frequency oscillations is seen to diminish with grid refinement. The

oscillations are drastically reduced on grid C and practically

eliminated on grid D.
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