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Introduction
Microarrays measure the expression of hundreds or

thousands of genes at a time, offering near global
measurements at the level of the transcript. The importance of
the patterns of expression revealed by this technology has been
questioned (Feder and Walser, 2005). There are good reasons
to wonder about the utility of quantifying the mRNA
expression of specific genes, and most of these concerns have
to do with the multiple biochemical and physiological steps that
modulate gene expression other than at the level of the
transcript (e.g. micro-RNAs, translation, protein turnover,
covalent modifications of enzymes and protein–protein
interactions). To better understand the validity of
transcriptomic data and whether mRNA expression underpins
phenotypic differences, we need to understand how gene
expression varies within and among taxa, whether the variation
in mRNA co-varies with a specific phenotypic character or

biological process and whether these patterns of mRNA
expression are adaptively significant. All three are necessary
for defining the biological importance of gene expression
because they each provide separate information to confirm or
reject the importance of gene expression.

If mRNA expression regulates phenotypic variation, then we
would expect the variation in gene expression to reflect the
differences among populations and species. For example, one
would expect that outbred, highly polymorphic species would
have greater variance than inbred species. One would expect
greater variance among taxa as the genetic distance is increased.
This variation should also correlate with appropriate phenotypic
variation. That is, with an increase in physiological performance,
one would expect a change in the mRNA that affects this
performance. Yet, and this is the crux of the problem, does the
lack of correlation between mRNA and a physiological measure
arise because one does not have the correct gene or because there

Functional genomics research using Fundulus
heteroclitus has focused on variation among individuals
because of the evolutionary importance and value of
Fundulus in explaining the human condition (why
individual humans are different and are affected
differently by stress, disease and drugs). Among different
populations and species of Fundulus, there are
evolutionarily adaptive differences in gene expression.
This natural variation in gene expression seems to affect
cardiac metabolism because up to 81% of the variation in
glucose utilization observed in isolated heart ventricles is
related to specific patterns of gene expression. The
surprising result from this research is that among different
groups of individuals, the expression of mRNA from
different metabolic pathways explains substrate-specific
metabolism. For example, variation in oxidative
phosphorylation mRNAs explains glucose metabolism for
one group of individuals but expression of glucose
metabolism genes explains this metabolism in a different
group of individuals. This variation among individuals has

important implications for studies using inbred strains:
conclusions based on one individual or one strain will not
necessarily reflect a generalized conclusion for a
population or species. Finally, there are surprisingly
strong positive and negative correlations among metabolic
genes, both within and between pathways. These data
suggest that measures of mRNA expression are
meaningful, yet there is a complexity in how gene
expression is related to physiological processes.
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are epistatic interactions, both of which make the patterns
difficult to discern? Finally, if the pattern of mRNA variation is
to be shown as adaptive, then it must affect a phenotype that is
selectively (biologically) important.

Results
Evolutionary variance in gene expression

Much progress has been made in understanding the variation
in gene expression using microarrays in yeast, worms, fish,
mice and humans (Cavalieri et al., 2000; Cheung et al., 2003a;
Denver et al., 2005; Gibson and Weir, 2005; Jin et al., 2001;
Oleksiak et al., 2002; Oleksiak et al., 2005; Pritchard et al.,
2001; Schadt et al., 2003; Townsend et al., 2003; Whitehead
and Crawford, 2005; Whitehead and Crawford, 2006a;
Whitehead and Crawford, 2006b). Evolutionary analyses
indicate that stabilizing selection affects much of gene
expression (Denver et al., 2005; Lemos et al., 2005). Stabilizing
selection distinguishes between individuals with phenotypes
closer to the mean versus those that deviate from the mean and
selects against individuals that deviate. Thus, the observation
that stabilizing selection affects a majority of mRNA indicates
that small changes in gene expression have biological effects.

Although many genes have significant differences in
expression among individual F. heteroclitus within a population,
the magnitude of these differences is small, typically less than
1.5-fold (Oleksiak et al., 2002; Oleksiak et al., 2005; Whitehead
and Crawford, 2005; Whitehead and Crawford, 2006a;
Whitehead and Crawford, 2006b). For Fundulus, it is the many
small changes in metabolic gene expression that together appear
to be responsible for the phenotypic variation in cardiac
metabolism (Oleksiak et al., 2005). Additionally, although
stabilizing selection eliminates many mutations affecting gene
expression because this variation is slightly deleterious, there is
significant additive genetic variation affecting gene expression
that can be the source of adaptive change. In Drosophila
simulans (Wayne et al., 2004), the additive heritable variation is
distributed among chromosomes, with much of the effect acting
in trans (Wayne et al., 2004). Among 14 large human families,
approximately 29% of genes have significant additive variation
due to both cis and trans loci (Morley et al., 2004). Among mice,
19% of all loci have significant additive variation (Cui et al.,
2006). Among Drosophila (Nuzhdin et al., 2004) and primates
(Caceres, 2003; Enard, 2002; Gilad et al., 2005; Gilad et al.,
2006; Khaitovich, 2004a; Khaitovich, 2004b) much of this
additive genetic variation for expression is evolving by natural
selection.

In Fundulus, by applying evolutionary analyses to natural
populations that have experienced the effects of selection, we
were able to document patterns of expression affected by
directional, stabilizing and balancing selection (Crawford et al.,
1999a; Crawford et al., 1999b; Oleksiak et al., 2002; Pierce and
Crawford, 1997a; Whitehead and Crawford, 2006a; Whitehead
and Crawford, 2006b). Our data on Fundulus, as well as other
investigators’ data on Caenorhabditis elegans (Denver et al.,
2005), Drosophila (Lemos et al., 2005; Nuzhdin et al., 2004) and

humans (Caceres, 2003; Enard, 2002; Gilad et al., 2006; Gilad et
al., 2005; Khaitovich, 2004a; Khaitovich, 2004b), suggest that the
variation in gene expression is selectively important; thus, this
variation is biologically important. This is only one, albeit an
important, criterion for establishing the importance of gene
expression. It is also important to define the heritability of gene
expression and how it relates to important phenotypic differences.

Genetics of gene expression

Much of gene expression measured by microarrays is
genetic; it differs between inbred lines, is associated with
quantitative trait loci (QTLs) and has narrow sense heritability
(h2) greater than 30% [narrow sense heritability is due only to
the additive genetic variation (Va), or h2=Va/Vp, where Vp is
phenotypic variation] (Cheung et al., 2003b; Gibson and Weir,
2005; Sharma et al., 2005; Tan et al., 2005). Among F1
generations from two inbred mice strains, approximately two-
thirds of all loci have measurable h2 with a quarter having an
h2 of >50% (Cui et al., 2006). In both humans and mice, the
median h2 is 34% among loci with measurable h2 (Cui et al.,
2006). The variation in regulatory processes affecting gene
expression has been inferred by combining microarray and
QTL studies [expressed QTLs (eQTL)]. These studies identify
both cis- and trans-acting loci that are related to differences in
gene expression in Drosophila (Wang et al., 2004; Wayne and
McIntyre, 2002), yeast (Brem and Kruglyak, 2005; Brem et al.,
2005; Ronald et al., 2005; Yvert et al., 2003), mice (Chesler et
al., 2005; Doss et al., 2005; Ghazalpour et al., 2005; Schadt et
al., 2003) and humans (Monks et al., 2004; Morley et al., 2004;
Schadt et al., 2005). In general, 20–30% of differential
expressions are due to a cis-eQTL (Doss et al., 2005; Ronald
et al., 2005). Yet with more powerful analyses, gene expression
becomes more complex, involving many loci with a few loci
that affect the expression of many genes (Brem and Kruglyak,
2005; Brem et al., 2005; Gibson and Weir, 2005; Schadt et al.,
2005; Stamatoyannopoulos, 2004). These data suggest a
complex regulation of gene expression in which
polymorphisms among several loci affect the variation in gene
expression of a particular gene. It is important to realize that
heritability in gene expression indicates that gene expression is
stable between generations. This stability suggests that random
biological variation or ‘noise’ is not the principal cause of
variation in gene expression.

Although much progress has been made in understanding the
variation in gene expression, we are unsure of its importance
in affecting phenotypic variation. It is the phenotypic variation
on which natural selection acts that defines human populations
and humans’ susceptibility to disease, drugs and stress, and
thus is of scientific importance. To understand the importance
of gene expression and its effect on phenotypic variation, more
attention needs to be paid to the variation among individuals
and whether there is variation in which genes are ‘important’
in effecting a change in phenotype. We present here a summary
of microarray data from Fundulus that supports our contention
that mRNA expression affects physiological performance and
is thus evolutionarily important.
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Cardiac performance
Cardiac metabolism in Fundulus is measured using isolated

heart ventricles (Oleksiak et al., 2005; Podrabsky et al., 2000),
and individual determinations were made by alternating between
populations. Metabolic rates are measured in triplicate by
determining oxygen consumption in a well-mixed chamber for
each of three different substrates: 5·mmol·l–1 glucose, 1·mmol·l–1

fatty acid (FA; palmitic acid–bovine serum albumin) or LKA
[5·mmol·l–1 lactate, ketones (5·mmol·l–1 each hydroxybutyrate
and acetoacetate) and 0.1% ethanol]. Two inhibitors of glucose
metabolism (20·mmol·l–1 2-deoxy-glucose and 10·mmol·l–1

iodoacetic acid) were used when measuring FA and LKA
metabolism. The addition of inhibitors reduces metabolism to less
than 15% of the rate with glucose only. Adding FA or LKA
caused a significant increase in metabolism compared with
metabolic rates of hearts with inhibitors and glucose, indicating
that much of glucose metabolism was inhibited when using both
inhibitors. Although determination of metabolism for all three
substrates took approximately 15·min, isolated heart ventricles
from Fundulus are able to maintain stable metabolic rates for
greater than 45·min. All metabolic rates from isolated heart
ventricles were a function of body mass, which is highly
correlated (r=0.7–0.85) with heart mass (see below). These data
indicate that our measures of metabolism are substrate dependent.

Individual ventricles were splayed open for all metabolic
measures. Fundulus hearts, like those of most small fish, lack
coronary circulation, and thus oxygen is supplied by diffusion
from the internal blood flow (Farrell, 1993). Dissecting or
splaying open the heart provided greater access and more
uniform interfaces for the Ringer solution and the internal
surfaces of the heart.

When measuring oxygen consumption in isolated ventricles,
we were primarily concerned with the variation between
individuals that can arise from genetic, developmental or
physiological mechanisms (e.g. due to acclimation to different
temperatures). All individuals were acclimated to a common
laboratory environment (temperature, salinity, light:dark cycle,
feeding regime, etc.) and were assayed at similar times of day.
Despite minimizing physiological sources of variation, there
can be other biological differences. For example, a fish could
be sick or stressed due to social interactions or ‘unhappy’ for
unknown reasons. These sources of variation are difficult to
ascertain, and their importance remains unknown. Technical
variation can arise due to poor heart preparation, electrical
interference with the oxygen electrode, poor mixing of Ringer
solution or poor maintenance of the oxygen electrode. Multiple
determinations provide some measure of consistency and thus
estimates technical variance. However, because a single heart
cannot be measured on separate days, the replicate measures
are dependent on the status of the electrode, heart preparation
and electronic noise during the 15–20·min measurement
period. One can measure ‘day effects’ among individuals, and
this was not significant (P>0.5). That is, among the 3·days that
F. heteroclitus cardiac ventricles were measured, hearts had
approximately the same mean. However, because there is much
variation among individuals it would be difficult to detect a day

effect. Thus, the lack of day effect does not eliminate this as a
source of variation but only makes it less probable.

Among 16 hearts measured (eight from a southern, Georgia
population and eight from a northern, Maine population), more
oxygen was consumed per time, with an average r2 (explained
variance) of 0.94, 0.86 and 0.84, for glucose, fatty acid or LKA,
respectively. That is, there was little variance within a specific
measure of oxygen consumption. Among the triplicate
measures of oxygen consumption for each substrate, the
coefficient of variation (CV; % standard deviation relative to
the mean) was 12%, 31% or 21% for glucose, FA and LKA,
respectively. This means that 95% of all measures of an
individual heart will fall within 60% of the mean.

Among the 16 individuals, there were 4.9-, 15.9- and 4.8-
fold differences between the highest and lowest metabolic rates
for glucose, FA and LKA, respectively. These individuals
differed in body mass, and body mass affected all three
measures of metabolism (Fig.·1). Thus, this range of
metabolism was due both to differences in body mass and to
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Fig.·1. Metabolism and body mass. Log10 of substrate metabolism was
regressed against log10 body mass. All regressions are significant
(P<0.005). FA, fatty acid; LKA, lactate, ketones and alcohol.
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individual variation. The effect of body mass was removed by
using the residual from the log regression, resulting in 2.0-,
11.2- and 2.5-fold differences between the highest and lowest
metabolic rates for glucose, FA and LKA, respectively. With
the caveats described above concerning technical variation,
replicate measures enabled the statistical testing of inter-
individual differences in substrate-specific metabolism among
16 individuals: P<0.0001, P<0.005 and P<0.02 for glucose-,
FA- and LKA-dependent metabolism, respectively (Fig.·2).
These data suggest that there was significant variation in
metabolism among individuals. These differences also exist if
one compares just the eight individuals within the Maine
population (P<0.05 for all three measures) and glucose-specific
metabolism in the Georgia population (P<0.005). Fig.·2
illustrates these differences, but more importantly is the
variation in the relative use of each substrate within an
individual (Fig. 2B). For most individuals, metabolism fuelled
by FA was greater than with either glucose or LKA (Fig.·2).
For example, for individual ME06, FA metabolism was more
than 10-fold greater than the other two substrates. Yet, in other
individuals (ME10 and ME03), glucose metabolism was
greater than FA metabolism. These measures of substrate-
specific metabolism within an individual are unlikely to be due

to technical variation because they are measured within a short
time (less than 20·min) on the same heart preparation.

Fundulus gene expression and metabolism

For F. heteroclitus, we have demonstrated that gene
expression explained the variation in cardiac metabolism
among 16 male individuals from natural outbred populations
raised in a common environment (Fig.·3) (r2=0.65–0.81)
(Oleksiak et al., 2005). But the relationship was complex, a vast
majority of genes were different between individuals and these
expression patterns cluster the 16 individuals into three groups.
It is within these three groups that one can show an association
between gene expression and metabolic rates.

For mRNA expression, 94% of the genes had expression
levels that were significantly different among individuals
within a population (P<0.01) (Oleksiak et al., 2005). Using a
very conservative multiple correction (Bonferroni’s or Fmax

permutations), 84% were significantly different. These
differences were not due to one or a few individuals: all
possible permutations of six out of eight individuals within
each population had on average 78.9% of genes that were
significantly different among individuals (P<0.01). This high
frequency of differences was among male individuals raised in
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Fig.·2. Substrate-specific metabolic rates. Displayed are the residuals from
log-regression of metabolism versus body mass. The identification number
of each individual is shown on the x-axes (M, Maine population; G, Georgia
population). (A) Substrate-specific metabolism. (B) Metabolism for all
three substrates. Negative values indicate metabolic rate below the value
predicted by log Body mass regression. The numbers at the top of the graph
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alcohol. Data from Oleksiak et al. (Oleksiak et al., 2005).
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a common environment and was unrelated to body mass or any
other obvious physiological or experimental condition
(Oleksiak et al., 2005). What is apparent is that the three groups
of individuals share different patterns of expression (Oleksiak
et al., 2005).

Among the 16 individuals examined, shared gene expression
patterns cluster the 16 individuals into three groups of 5, 5 and
6 individuals. However, there was no difference in the mean or
variation in substrate-specific metabolism among these three
groups (P>0.4 for glucose and FA metabolism, and P>0.05 for
LKA metabolisms) (Fig.·2). Yet, gene expression differences
among the three groups were statistically robust. Differences
in gene expression within each of the three groups were less
than those found within a single population (62–73% vs 94%
of genes are statistically significant) and were significantly less
(P<0.01) than those found in the 2052 random combinations of
five individuals (average 85%). The number of genes that were
significantly different among the three groups (50 genes) was
considerably more than the 12 genes that were different
between populations and significantly greater than the average
of one significant difference found among three random groups
formed by 1000 random permutations. These data indicate that
the three groups were functionally distinctive and the
differences were robust.

To explore the relationship between metabolism and gene
expression within the three groups, the variation in gene
expression was reduced to the principal components (PCs)
for glycolytic, tricarboxylic acid (TCA) and oxidative-

phosphorylation metabolic pathways (Table·1) (see Table·S1 in
supplementary material for a list of genes). A PC is a linear
equation that sums the measures of gene expression where each
gene is multiplied by a coefficient. The weight of the
coefficient is chosen to maximize the explained variation
among individuals without, in this case, reference to
metabolism. For example, the first PC for glucose-related
enzymes explains 54% of the variation among these 15 genes.
Additionally, there were both strong positive and negative
weighting factors [e.g. glyceraldehyde 3-phosphate
dehydrogenase (GAPDH) expression is multiplied by –0.63,
and aldehyde dehydrogenase (ALDH) by 0.37] (Table·1).

These PCs summarize the metabolic pathway-dependent
RNA expression and statistically explain significant
proportions of the variation in cardiac metabolism, but only
within the three defined groups of fish (Fig.·3). For glucose
metabolism, 81% of the variation in group 1 individuals was
explained by changes in expression of genes involved in
glucose. However, in groups 2 and 3, these glycolytic genes
had little power to explain the differences among individual
metabolic rates. Instead, genes of the oxidative-
phosphorylation pathway explained the variation in glucose-
specific metabolic rates. Similarly, gene expression in different
pathways explained FA- and LKA-specific metabolism. These
patterns, where gene expression from a pathway explains
substrate-specific metabolism, only occur if one examines
these groups of individuals. Permutation analyses indicate that
few other random sets of five individuals share a common
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relationship between gene expression and phenotype. There is
no relationship of one or more genes to metabolism among all
16 individuals. Nor do any of the PCs explain metabolism
among all 16 individuals.

What these data suggest is that the genes that are important,
which explain the variation in cardiac metabolism, differ
among individuals. So, for example, altering glycolysis can
affect glucose utilization but it will not do so in all individuals.

Correlated patterns of gene expression

Among the PCs, some genes have greater importance, as
indicated by their larger coefficients. These coefficients are both
negative and positive (Table·1). These coefficients reflect the
strong correlation in expression among metabolic genes within
and between pathways. In Fig.·4, the correlations between two
genes among the 16 individuals are displayed as green and blue
boxes in an all-against-all matrix. A significant positive
correlation (a green cell) indicates that the expression for these
two genes would be similar among all individuals (i.e. both
would be high or low in the same individuals). Surprisingly, the
expressions of most metabolic genes (Fig.·4) are either

negatively or positively correlated. For example, an individual
with a high expression of phosphofructokinase (PFK) also
has high expression of GAPDH but low expression for
phosphoglucoisomerase B (PGI-B) (Fig.·4C). These correlation
patterns repeat themselves in each of the three pathways
(Fig.·4B–D). In the linear pathway of glycolysis, an increase in
aldolase, Ldh-B and enolase among 16 individuals is matched
with a decrease in PFK, GAPDH and pyruvate kinase. These
enzymes are interspersed along the pathway. What is more
difficult to see are the correlations among proteins that form
enzyme complexes or pathways. In the first enzyme complex of
oxidative phosphorylation, NADH dehydrogenase, the subunits
have significant positive or negative correlations for expression
with each other (correlations are significant for 11 of the 20
NADH subunits). This pattern is repeated for complex 4
(cytochrome c oxidase) and complex 5 (ATP synthetase). These
subunits have to form at a stoichiometric ratio for each enzyme,
yet they have negative correlations for expression! Although
these opposite patterns of gene expression present a biochemical
conundrum, an obvious molecular reason is that many of these
enzymes share common transcription factors.

D. L. Crawford and M. F. Oleksiak
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Discussion
Our microarray analyses of cardiac physiology demonstrated

that >80% of the variation in substrate metabolism can be
explained by variation in metabolic gene expression (Fig.·3)
(Oleksiak et al., 2005). The strength of this study and our other
cardiac microarray studies (Oleksiak et al., 2002; Oleksiak et
al., 2005; Whitehead and Crawford, 2005; Whitehead and
Crawford, 2006a; Whitehead and Crawford, 2006b) is that they
used an outbred vertebrate population (such as humans) where
the variation among individuals was substantial enough to
statistically define meaningful patterns. The weakness of these
studies is that they used outbred populations, which left
unresolved the genetic contributions to the variation in gene
expression that explain cardiac metabolism. For the studies
provided here, only males were used, and these individuals
were acclimated to the same environment. Thus,
physiologically induced differences due to temperature,
hypoxia or any other environmental parameter do not explain
the observed differences.

Our conclusions that mRNA expression was statistically
related to cardiac performance, that it is evolving by natural
selection and that it varies in a predictable manner depending

on genetic distance (Oleksiak et al., 2002; Oleksiak et al., 2005;
Whitehead and Crawford, 2006a; Whitehead and Crawford,
2006b) suggest that microarray experiments can be meaningful.
Thus, in contrast to Feder (Feder and Walser, 2005), we argue
that there is much utility in measuring genome-wide patterns
of gene expression. We suggest that these microarrays present
patterns of mRNA expression that are both informative and
provide unexpected relationships. However, they are not
simple and thus are subject to misinterpretation.

Individual variation

We present several observations concerning individual
variation: (1) there are significant differences in cardiac
metabolism among individuals; (2) there are large differences
in which substrate is preferentially used, (3) a vast majority of
genes have significant differences in expression and (4) the
genes that statistically explain the variation in substrate
utilization differ among individuals. Our ability to explain
these patterns depends on the delineation of three distinct
groups among the 16 individuals, each group exhibiting a
distinctive but consistent pattern of gene expression. The
biological importance of these three groups is related to the

Table 1. Principal components for the three major metabolic pathways

Glycolysis/gluconeogenesis genes (PC1, 54.12%; PC2, 15.55%)
Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

E.C. # 1.1.1.27 1.2.1.12 1.2.1.3 2.4.1.1 2.7.1.11 2.7.1.40 2.7.2.3 3.1.3.11 4.1.2.13 4.2.1.11 5.3.1.1 5.3.1.9 5.3.1.9 5.4.2.1 5.4.2.2

Abbrev. LDHB GAPD ALDH9A1 PYGM PFKM PKM2 PGK1 FBP1 ALDOA ENO1 TPI1 GPI GPI PGAM1 PGM1

PC1 0.15 –0.63 0.37 0.01 –0.33 –0.26 0.26 0.09 0.12 0.18 0.1 –0.05 0.09 –0.17 0.3

PC2 –0.11 0.13 0.02 –0.02 0.45 –0.19 0.02 0.75 0.24 0.05 0.04 –0.2 –0.1 –0.04 0.22

TCA genes (PC1, 44.40%; PC2, 35.16%)
Number 1 2 3 4 5 6 7 8 9 10 11 12 13

E.C. # 1.1.1.41 1.1.1.41 1.2.4.1 1.2.4.1 1.2.4.2 1.3.5.1? 1.8.1.4 2.3.1.12 4.1.1.32 4.1.3.7 4.2.1.2 6.2.1.1 6.2.1.4

Abbrev. IDH2 IDH3A PDHA1 PDHB OGDH SDHC DLD DLST PCK2 CS FH ACAS2 SUCLG1

PC1 –0.12 0.36 0.12 0.04 0.18 –0.29 0.01 0.25 0.33 0.07 –0.64 0.3 –0.23

PC2 0.06 –0.28 –0.14 –0.06 0 0.34 –0.05 –0.21 –0.22 –0.15 –0.75 –0.2 0.23

Oxidative phosphorylation genes (PC1, 48.76%; PC2, 16.30%)
Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

E.C. # 1.10.2.2 1.10.2.2 1.10.2.2 1.10.2.2 1.6.5.3 1.6.5.3 1.6.5.3 1.6.5.3 1.6.5.3 1.6.5.3 1.6.5.3 1.6.5.3 1.6.5.3 1.6.5.3 1.6.5.3

Abbrev. UQCRC2 UQCR10 UQCRC1 UQCRFS1 NDUFA4 NDUFA1 NDUFA10 NDUFA9 NDUFB6 MTND2NDUFAB1NDUFS4 NUFS1 NUOG NDUFV2

PC1 0.12 –0.22 –0.07 0.2 –0.15 –0.11 0.01 –0.07 0 –0.2 0.14 0.11 0.17 0.31 –0.07

PC2 –0.04 0.01 –0.03 0.02 –0.03 –0.08 –0.07 –0.07 –0.08 0 –0.04 –0.14 –0.08 0.17 –0.04

Number 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

E.C. # 1.6.5.3 1.6.5.3 1.6.5.3 1.6.5.3 1.6.5.3 1.6.5.3 1.6.5.3 1.6.5.3 1.6.5.3 1.9.3.1 1.9.3.1 1.9.3.1 1.9.3.1 1.9.3.1 1.9.3.1

Abbrev. NDUFA4 MTND5 NDUFS3 NDUFA8 NDUFB2 NDUFB8 NDUFB9 NDUFB1 NDUFB10 COXII COX4I1 COX4I2 COX5A COX6A1 COX6B

PC1 –0.22 –0.01 –0.07 –0.17 –0.24 –0.2 –0.21 –0.07 0.04 –0.13 0.06 0 0.03 –0.2 0.09

PC2 0.12 0 0.02 0.02 –0.29 0.04 0.05 –0.44 –0.09 0.08 –0.26 –0.11 –0.12 –0.06 0.01

Number 31 32 33 34 35 36 37 38 39 40 41 42 43 44

E.C. # 1.9.3.1 1.9.3.1 1.9.3.1 1.9.3.1 3.6.1.34 3.6.1.34 3.6.1.34 3.6.1.34 3.6.1.34 3.6.1.34 3.6.1.34 3.6.1.34 3.6.1.34 3.6.1.35

Abbrev. COX7A2 COX8H COX7C COX8L ATP5B MTATP6 ATP5H ATP5A2 ATP5D ATP5C1 ATP5F1 ATP6V0C ATP6V0D1 ATP6V1C1

PC1 –0.06 –0.18 0.05 0.22 –0.25 –0.21 –0.15 0.15 0.01 –0.23 0.12 5.00% 8.00% 18.00%

PC2 –0.07 –0.03 –0.11 0.15 0.02 0.25 –0.02 –0.14 –0.05 –0.07 –0.57

Factor coefficients for each gene for the first two principal components are listed in parentheses. ‘%’ is the percentage variance in gene
expression explained by each PC. Many enzymes have more than one protein subunit, and numbers are used to identify these subunits. Full
names of all genes are provided in Table·S1 in supplementary material. Data from Oleksiak et al. (Oleksiak et al., 2005).
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correlated patterns of gene expression among all 16 individuals
(Fig.·4). Most genes were positively or negatively correlated.
Thus, individuals with high expression of genes ‘A’ to ‘E’ also
had low expression of genes ‘W’ to ‘Z’, and the opposite
pattern happened for other individuals (high expression of W–Z
and low expression of A–E). Thus, the groups (especially
groups 2 and 3) represent individuals with opposite patterns of
gene expression. The surprising observation is that these
patterns occur within pathways. Thus, individuals in any one
group share patterns of expression within a pathway that are
different (opposite) from those in other groups. For example,
among individuals in group 2, relative to group 3, there was
greater expression of GAPDH and PFK but lower expression
of aldolase, aldehyde dehydrogenase, pyruvate kinase and PGI.

What is the meaning of these large differences among
individuals?

There were significant differences among individuals in (1)
metabolism, (2) which metabolic substrate was preferentially
used, (3) the pattern of metabolic gene expression and,
consequently, (4) the relationship between gene expression and
metabolism. The greater metabolic rate among some
individuals was due to a greater utilization of glucose whilst in
others it was the utilization of FA. The variation in specific
substrates was explained by the expression of different
metabolic pathways, but these explanations differ among
groups of individuals. For example, fatty acid utilization can
be explained by changes in oxidative, TCA or glycolytic
enzyme expression depending on which group of individuals is
examined.

These data have several implications. The first is that to
examine one or a few inbred individuals could lead to
misleading conclusions. Imagine having an inbred line from
one F. heteroclitus individual. Cardiac metabolism in this
imaginary strain could be primarily dependent on glucose and
not on fatty acid utilization. Thus, one would conclude that
glucose was the primary energy source for the heart. Yet, this
is only correct for a subset of individuals. Similarly, the
investigation of fatty acid utilization in cardiac tissue using one
individual would reveal that gene expression in glycolytic
enzymes regulates FA utilization as opposed to the TCA
pathway, which would be found using another individual.
Neither conclusion is incorrect, just misleading because it
makes conclusions based on too few individuals.

The second implication from these data is that many genes
or different pathways can affect substrate-specific metabolism.
It is not surprising that the expression of glycolytic enzymes
explains glucose metabolism (Fig.·3, group 1). However, the
observation that the relative expression of genes in the
oxidative phosphorylation pathway explained glucose
metabolism among some individuals is somewhat surprising.
More surprising was that glycolytic enzyme expression
explained 75% of the variation in fatty acid utilization in group
3 individuals (Fig.·3). If these data are correct, it suggests that
the activity of one pathway affects the flux through other
pathways. Thus, we cannot measure one or a few enzymes and

expect it to always explain metabolic variation among many
different individuals.

The third implication is that it is unlikely that one gene, or
a set of genes, is responsible for the phenotypic variation
among all individuals. For example, if cardiac metabolism is
related to health or fitness, then which genes affect the health
of an individual is dependent on the status of other genes and
pathways, an outcome that is entirely consistent with studies of
metabolic epistasis, where metabolism is dependent on
variation at other loci (Clark and Wang, 1997; Segrè et al.,
2005). Thus, we should not expect a ‘magic bullet’ that will
cure everyone of a specific disease. Instead, there will need to
be different cures for different individuals, supporting the
concept of personalized medicine that is currently driving many
pharmaceutical research programs (Nadeau and Topol, 2006).

Finally, the lack of correlation between gene expression and
phenotype is not necessarily due to the lack of importance of
gene expression. Instead, if the importance of gene expression
is context dependent then a significant relationship will only be
discernable from within a specific context. Thus, the inability
to accept an alternative hypothesis that there is a relationship
between gene expression and phenotype does not support the
null hypothesis. Instead, one has failed to address the proper
hypothesis.
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