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Summary

Probably all heritable traits, including disease
susceptibility, are affected by interactions between
mutations in multiple genes. We understand little,
however, about how genes interact to produce phenotypes,
and there is little power to detect interactions between
genes in human population studies. An alternative
approach towards understanding how mutations combine
to produce phenotypes is to construct systematic genetic
interaction networks in model organisms. Here I describe
the methods that are being used to map genetic
interactions in yeast and C. elegans, and the insights that

these networks provide for human disease. I also discuss
the mechanistic interpretation of genetic interaction
networks, how genetic interactions can be wused to
understand gene function, and methods that have been
developed to predict genetic interactions on a genome-wide
scale.

Glossary available online at
http://jeb.biologists.org/cgi/content/full/210/9/1559/DC1
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Introduction

The relationship between the genotype of an organism and
its phenotype is not a simple one-to-one mapping between
genes and phenotypes. Rather phenotypes result from the
interactions between the products of many different genes. The
complexity of this relationship is well illustrated by the
genetics of disease in humans: probably all hereditary diseases
in humans are genetically complex, resulting not from
mutations in a single gene, but from the combination of
mutations in multiple different genes (Badano and Katsanis,
2002). For example even in the case of the simple ‘Mendelian’
disease, cystic fibrosis, it is not possible to predict the clinical
phenotype of a patient based solely on knowledge of the exact
mutation in the ‘Cystic Fibrosis Gene’, CFTR. In fact at least
seven different modifier genes have been described that alter
the clinical phenotype of this genetically simple disease
(Badano and Katsanis, 2002).

Most hereditary diseases are genetically much more complex
than cystic fibrosis; although an increasing number of genes
have been identified as mutated in common pathologies such
as  cardiovascular  disease, cancer, diabetes and
neurodegenerative diseases, these mutations only account for a
small proportion of the total genetic predisposition to these
conditions (Badano and Katsanis, 2002). One reason why

causal mutations have proved so difficult to identify may be
the problem of synthetic interactions between genes: mutations
that have little effect on disease phenotypes alone can have
strong synthetic effects when combined (Hartman et al., 2001).
Indeed in most linkage or association studies there is
insufficient statistical power to identify these interactions
between genes (Badano and Katsanis, 2002). Therefore the
extent and importance of genetic interactions in human disease
remains largely unknown.

An alternative approach to understand how genes interact to
produce phenotypes is to identify genetic interactions between
mutations in model organisms (Hartman et al., 2001). The idea
of this approach is to take a simple phenotype (typically the
simplest, viability) and to identify comprehensively how
combinations of mutations in genes can affect this phenotype.
Although there are many important types of aggravating and
alleviating genetic interactions that can occur between genes
(Drees et al., 2005), to date most work has concentrated on
synthetic lethal interactions. A synthetic (or synergistic) lethal
interaction is formally defined when the survival resulting
from combining mutations in two genes is less than the
product of the survival resulting from each mutation
individually (Drees et al., 2005). Most commonly synthetic
lethal interactions are identified experimentally when the
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Fig. 1. Synthetic genetic interactions. A synthetic lethal interaction
between two genes is defined when the survival of the combined
mutation is less than the product of the survival of the two single
mutations. In yeast, genetic interactions are defined by combining
mutant strains using systematic mating protocols (A), and synthetic
lethal or sick phenotypes are defined where a double mutant strain
displays a phenotype that is not seen with either single mutant strain.
In C. elegans, genetic interations are defined by combining genetic
mutations with RNAi to target a second gene (B), or by using
combinatorial RNAI to target two genes simultaneously (C) (Tischler
et al., 2006). Synthetic aggravating phenotypes can be similarly
defined for other phenotypes such as sterility or growth (Lehner et al.,
2006b), and many more possible combinations of aggravating or
alleviating interactions are also possible (Drees et al., 2005).

combination of mutations in two non-essential genes produces
a lethal phenotype (Fig. 1).

Mapping genetic interaction networks in yeast

Currently the most extensively mapped genetic interaction
network exists for the budding yeast Saccharomyces cerevisiae
(Ooi et al., 2006; Pan et al., 2006; Schuldiner et al., 2005; Tong
et al., 2001; Tong et al., 2004). Two general strategies have
been devised that make use of the library of yeast gene deletion
strains (Giaever et al., 2002) to identify genetic interactions
systematically in this haploid organism. In the first approach,
double mutants are constructed and assayed for viability in
parallel by mating a yeast strain carrying a query mutation to
the complete library of viable deletion strains in an arrayed
format [‘synthetic genetic array’ analysis, SGA (Tong et al.,
2001)]. In contrast, in the second approach double mutants are
constructed and assayed as a single pool, and the relative
growth rates of each strain are determined using DNA
microarrays that can detect the presence of each strain in the
pool [‘synthetic lethal analysis by microarray’, SLAM (Ooi et
al., 2003)]. I will first outline these two methods, and then will
discuss the genetic interaction networks that have been
produced using them.

SGA

In the SGA approach (Tong et al., 2001), a haploid yeast
strain carrying a ‘query’ mutation in a gene of interest is mated
to a library of yeast deletion strains in an arrayed format using
replicating tools and robotics. The diploid yeast are then
sporulated, and double mutant haploid progeny are selected
using a cleverly designed reporter construct (the ‘SGA
reporter’, canlA::MFAIpr-HIS3, that is present in the
MATalpha query strain, but in the absence of histidine only
allows growth of haploids of mating type MATa, i.e. only the
double mutant progeny). Synthetic sick or nonviable double
mutants are identified by weakly growing or absent double
mutant colonies, and their identity is determined by their
position on the array. Potential synthetic lethal or sick
interactions are then individually confirmed by tetrad or
random spore analysis (Tong et al., 2001).

SLAM

In the SLAM approach, a query mutation is introduced into
the pool of haploid deletion strains by direct integrative
transformation (QOoi et al., 2003). The double mutants are then
grown competitively in a single vessel, and non-growing or
slow growing double mutant strains are identified using
microarrays. This approach is possible because of the two
‘barcode’ DNA sequences that uniquely identify each deletion
strain. These barcodes allow the deletion strains that are
present in a pool to be individually identified by hybridisation
of genomic DNA to a microarray containing sequences
complementary to each of the barcodes. In contrast to the
qualitative SGA approach, in the SLAM procedure the
definition of a synthetic interaction depends upon a
quantitative cut-off in hybridisation intensity to identify slow
growing or absent strains. A modification of the SLAM
procedure uses heterozygous diploid deletion strains as a
starting point [‘diploid-based SLAM’ or dSLAM (Pan et al.,
2004)]. Maintaining the deletion strains as heterozygous
diploids protects them from selection for compensatory or
reversion mutations that overcome fitness defects, so reducing
the false negative rate of the approach. As a result, the dSSLAM
approach probably has a lower false negative rate than SGA
(Tong et al., 2004). One disadvantage of the dSLAM approach
is that some barcode tags have low hybridisation-signal
intensities (for example because of mutations in the tag
sequences) with the result that there is little reliable
information for some genes (Eason et al., 2004). However this
limitation has been addressed by redesigning the microarrays
used to detect the barcodes (Pierce et al., 2006; Yuan et al.,
2005).

Both the SGA and dSLAM approaches have been used to
construct extensive genetic interaction networks in yeast. Using
the SGA approach, Tong et al. screened 132 query strains
(carrying mutations in genes with diverse functions in cell
polarity, cell wall biosynthesis, chromosome segregation and
DNA synthesis and repair) against the complete library of
~4700 viable haploid deletion strains, and identified a total of
2012 synthetic lethal and 2113 synthetic sick interactions
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involving ~1000 genes (Tong et al., 2004). Both deletions of
non-essential genes and point mutations in essential genes were
used as query genes, and synthetic lethal interactions were
detected for 80% of query strains, with a mean of 34
interactions per query gene (and a range of 1-146 interactions
per gene). Using the dSLAM approach Pan et al. screened 74
query strains known to function in DNA replication and repair
against the same deletion library and identified a total of 4956
synthetic fitness or lethality defects involving 875 genes (Pan
et al., 2006). Over 91% of these interactions were entirely novel
(Pan et al., 2006).

Mapping genetic interactions for essential genes

Both the Tong et al. and Pan et al. studies screened query
strains against the ~4700 viable yeast deletion strains, so
interactions with the ~1000 essential genes in the yeast genome
could not be detected. Two approaches have been developed to
identify genetic interactions with essential genes (Davierwala
et al., 2005; Schuldiner et al., 2005). In the first approach,
Davierwala et al. constructed a library of yeast strains that carry
promoter-replacement alleles. These alleles allow the
expression of each gene to be switched off by the addition of
the small molecule doxycycline to the media (the ‘tet-off’
system). Addition of intermediate levels of doxycycline can
therefore be used to reduce the expression of each essential
gene, so producing hypomorphic (reduction in function) alleles
of each gene. The authors created a library consisting of
promoter replacement alleles for 575 essential genes
(representing about half of the total number of essential genes)
and screened it against 30 query strains that were either
conditional alleles of essential genes or deletions of non-
essential genes, identifying a total of 567 interactions.
Interestingly the mean number of interactions detected for each
essential gene was about sixfold more than for non-essential
genes (Davierwala et al., 2005).

The second strategy that has been used to identify
interactions for essential genes is to generate hypomorphic
alleles by replacing the 3'UTR of each gene with an antibiotic
resistance cassette [‘decreased abundance by mRNA
perturbation’, DAmP (Schuldiner et al., 2005)]. In this
approach, the antibiotic resistance cassette serves to destabilise
the expression of an mRNA, so reducing the expression of each
essential gene. The DAmP approach was used to identify
genetic interactions between genes that function in the early
secretory pathway (Schuldiner et al., 2005) (see below).

In theory, all of these methods for identifying interactions
between pairs of genes could also be used to identify higher
order interactions between more than two genes. For example,
Tong et al. also used SGA to screen two different double
mutant strains for interactions with a third gene to identify
trigenic interactions (Tong et al., 2004). The authors identified
a total of 171 and 156 interactions in these screens, although
only 4 and 29 of the interactions were attributable to a triple
mutant effect (the rest were also seen in one of the three
possible double mutant combinations alone). However,
because there are ~2000-fold more possible gene triplets than
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gene pairs in the S. cerevisiae genome, the total number of
trigenic synthetic lethal interactions may still be greater than
the number of digenic interactions.

Quantitative genetic interaction screens

The SGA and dSLAM approaches have been used to identify
synthetic lethal and sick phenotypes on a genomic-scale.
However there are many other classes of interactions that can
occur between genes, and approaches have also been devised
to begin to identify these interactions systematically (Collins et
al., 2006; Drees et al., 2005; Hartman and Tippery, 2004;
Schuldiner et al., 2005). For example, Schuldiner et al. used
digital imaging to quantify the growth of yeast colonies such
that they could measure both aggravating and alleviating
interactions between 424 yeast genes that function in the early
secretory pathway (Schuldiner et al., 2005). Rather than
categorizing the observed interactions into different types of
genetic interaction, they used a continuous score to describe the
strength of an interaction and to cluster genes according to their
interaction profiles. The authors demonstrated that using
quantitative measurements of interaction strength helped to
identify modules of genes that share precise molecular
functions (Schuldiner et al., 2005).

Mapping genetic interaction networks in C. elegans

These studies in S. cerevisiae have provided unprecedented
insight into the extent and properties of genetic interaction
networks. However, S. cerevisiae is a unicellular yeast that
does not contain many of the genes and pathways that are
present in multicellular organisms. In particular, many of the
signalling pathways implicated in human diseases such as
cancer are not encoded in the genome of yeast. Therefore to
understand how genes will interact in humans, it is essential
that we should also systematically identify genetic interactions
in a multicellular animal.

Systematically identifying genetic interactions by crossing
mutant strains is not logistically practical in multicellular
organisms — comprehensive collections of deletion strains are
not available, and the diploidy of these organisms requires
cumbersome multigenerational mating and selection screens to
be used. An alternative approach for identifying genetic
interactions in metazoans is to use RNA interference (RNA1)
to inhibit gene expression (Baugh et al., 2005; Holway et al.,
2005; Lehner et al., 2006a; Lehner et al., 2006b; Lehner et al.,
2006¢c; Suzuki and Han, 2006; Tischler et al., 2006; van
Haaften et al., 2004). Here either a genetic mutant is combined
with RNAI against a second gene (Fig. 1B), or RNAi can be
used to inhibit the expression of two genes simultaneously
(Fig. 1C) (Tischler et al., 2006). One advantage of using RNAi
compared to deletion strains is that, because RNAi normally
produces a ‘knock-down’ rather than a ‘knock-out’, it is also
possible to identify interactions for essential genes.

C. elegans is a unique model animal in which genetic
interactions can be identified in vivo in the context of a
developing organism; the expression of any gene can be
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systemically inhibited using long dsRNAs delivered by
bacterial feeding (Timmons and Fire, 1998). Although it should
be possible to identify genetic interactions between genes using
RNAI in cell culture for mammalian or fly cells, C. elegans is
currently the only model organism in which this approach can
be used in vivo on a comprehensive scale. In C. elegans, RNAi
screens can be performed in liquid culture in 96-well plates
(Lehner et al., 2006c; van Haaften et al., 2004) using the
bacterial feeding library (Kamath et al., 2003). This allows
RNAI screens to be performed at sufficient throughput to be
able to test tens of thousands of gene pairs for their ability to
interact genetically in vivo.

Using high-throughput RNAi screens in C. elegans, we
recently constructed the first systematic genetic interaction
network for any animal (Lehner et al., 2006b). We focussed on
genes that function in signalling pathways, and tested >65 000
pairs of genes for their ability to interact in vivo using both
genetic mutant query strains and combinatorial RNAI. In total
we identified 351 pairs of genes that when inactivated in
combination produced a synthetic nonviable phenotype.

Mechanistic interpretation of genetic interaction networks

Synthetic lethal interactions from small-scale studies have
normally been interpreted as providing supporting evidence for
two gene products acting either in the same biochemical
pathway or in two parallel pathways that can functionally
compensate for each other (Hartman et al., 2001). In their
original paper, Tong et al. noted that although ~27% of the
genetic interactions that they identified link genes with similar
Gene Ontology (GO) annotations, only ~1% of synthetic lethal
interactions occur between genes whose products reside in the
same protein complex (Tong et al, 2004). Rather, they
demonstrated that genes encoding products that function in the
same protein complex or pathway often have similar profiles
of genetic interactions (i.e. genes from a single pathway tend
to interact with the same genes, rather than with each other).
Indeed the more genetic interactions two genes share, the more
likely those two gene products are to interact physically (see
below) (Tong et al., 2004).

By combining genetic interaction data with comprehensive
protein—protein, protein—-DNA and metabolic network data,
Kelley and Ideker systematically compared the ability of
‘within-pathway’ models (also called ‘intra-pathway’ or
‘series’ models, Fig.2A) or ‘between-pathway’ (‘inter-
pathway’ or ‘paralle]’) models (Fig.2B) to explain
systematically compiled genetic interaction data (Kelley and
Ideker, 2005). Using a probabilistic model, they found that
between-pathway models could explain three-and-a-half times
as many interactions as within-pathway models. They were,
however, unable to provide a mechanistic interpretation for
~60% of the observed genetic interactions in yeast. Indeed the
extensive genetic interactions identified from both the SGA and
dSLAM studies suggest that many complex compensatory
relationships can occur between seemingly unrelated cellular
pathways. For example Pan et al. observed extensive functional
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Fig. 2. Within- and between-pathway models for genetic interactions.
Synthetic lethal interactions (broken lines) can occur both between
two components of a single biochemical pathway (A), or between
components of two parallel pathways that can functionally
compensate for each other (B). Kelley and Ideker found that the
combination of within- and between-pathway models could explain
about 40% of synthetic lethal or sick interactions in yeast, with
between-pathway models predominating. Examples of within-
pathway interactions include interactions among components of the
spliceosome, and interactions among components of the casein kinase
2 complex. Between-pathway interactions include extensive
interactions between components of the Dynactin complex and
components of the Prefoldin complex (Kelley and Ideker, 2005). For
interactions between partial loss-of-function mutations, however,
within-pathway models may predominate. Genes/proteins are shown
as nodes, protein interactions as solid edges, and genetic interactions
as broken edges.

compensation between loss of DNA damage response pathway
genes and genes involved in mRNA transcription, mRNA
processing and Golgi integrity (Pan et al., 2006). Therefore the
mechanistic interpretation of genetic interactions remains an
important area for future work.

In contrast to the situation in yeast, in the C. elegans genetic
interaction network (Lehner et al., 2006b), within-pathway
interactions appear to account for more interactions than
between-pathway interactions: focussing on known components
of signalling pathways, twice as many interactions are seen
between components of the same pathway than between
components of separate pathways (B.L., unpublished
observation). The explanation for this probably lies in the
difference in experimental approaches used: in yeast the
interactions analysed are primarily between null alleles, whereas
in C. elegans most interactions are between an hypomorphic
allele and RNAi knockdown of a second gene. This makes
intuitive sense: whereas the phenotypic consequences of a null
mutation in a gene in a linear pathway cannot be further
enhanced by a second mutation in that pathway, two partial loss-
of-function mutations in a single pathway can be combined to
inhibit that pathway completely (Fig. 2). Therefore with null
alleles, many interactions probably represent interactions
between the complete inactivation of two non-essential
pathways that can functionally compensate for each other,
whereas with hypomorphic alleles many of the interactions may
represent interactions between the partial inactivation of two
genes that act in the same essential pathway.

A further simple class of synthetic lethal interaction is seen
between two duplicated genes that encode homologous
proteins. Although many duplicated genes clearly do encode
redundant functions that are maintained over considerable
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evolutionary periods (Tischler et al., 2006), careful analysis of
single gene mutant phenotypes (Wagner, 2005) and the SGA
synthetic lethal data (Tong et al., 2004) suggests that gene
duplications explain only a very small minority of synthetic
lethal interactions [<2% of the interactions identified by SGA
encode homologous proteins (Tong et al., 2004)].

Using genetic interactions to understand gene function

The tendency for genes acting either within- or between-
pathways to interact genetically means that genetic interactions
can be used to predict gene functions. As first noted by Tong
et al., components of the same pathway tend to share similar
synthetic lethal partners (Tong et al., 2004; Ye et al., 2005).
Therefore the number of shared genetic interaction partners for
two genes can be used to rank the probability of the two gene
products physically interacting and sharing a biological
function. The similarity of the interaction profiles of two genes
can be mathematically defined by their ‘congruence’ (Ye et al.,
2005). Congruence can be defined as the negative log of the
hypergeometric P-value of the number of shared genetic
interaction neighbours of two genes (Ye et al., 2005), which
accounts for both the number of interactions each gene makes
and the total size of the interaction network. Using yeast
genetic interaction data, congruence performs better as a
predictor of physical interactions and shared function than
either direct genetic interactions or counting the number of
interaction partners shared by two genes (Ye et al., 2005). Pan
et al. were able to use congruence to define 16 functionally
homogenous modules of DNA damage response genes (Pan et
al., 2006) and were able to use the genetic interaction profiles
of novel genes to predict their functions in the DNA damage
response (Pan et al., 2006).

In the C. elegans genetic interaction network, because more
interactions occur within a pathway than between pathways,
knowledge of the direct interaction partners of a gene can be
used to predict its function. For example, we systematically
tested whether all of the genes that were found to interact with
two or more known components of the EGF/RassMAPK
pathway acted as general modulators of that pathway. For 9/16
of such cases tested, we found that the genes could indeed
modulate EGF signalling in a precise developmental setting,
suggesting that they do indeed act as general modulators of this
pathway (Lehner et al., 2006b).

One way in which the accuracy of gene function prediction
from genetic interaction networks can probably be improved is
to identify both aggravating and alleviating interactions, and to
quantify the strength of interactions. Indeed Schuldiner et al.
found that including quantitative interaction data helped to
define modules of genes that share precise molecular functions
in the early secretory pathway (Schuldiner et al., 2005).

Predicting genetic interactions

Ideally we would like to construct a comprehensive genetic
interaction network for humans. This network would then serve
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as a framework for directly predicting modifier genes in
hereditary and somatic diseases, as well as providing a resource
to predict human gene function on a genomic scale. However,
identifying genetic interactions in multicellular organisms
other than C. elegans is extremely laborious. Although it is
possible to use RNAI to identify genetic interactions in cultured
mammalian or fly cells (Wheeler et al., 2004), the inefficiency
and expense of RNAi in mammalian cells (Pei and Tuschl,
2006), and the prevalence of off-target effects in both systems
(Kulkarni et al., 2006; Lehner et al., 2004; Ma et al., 2006), has
to date limited the application of this approach. Moreover it is
not entirely clear how synthetic lethal interactions identified in
single cells will relate to interactions in whole organisms.

An alternative to identifying genetic interactions using large-
scale experimental approaches is to use computational methods
to predict genetic interactions between genes. This is analogous
to protein interaction networks, where methods that
computationally predict protein interactions are now developed
to the point that they are at least as accurate as most high-
throughput experimental protocols or interactions derived from
the literature (Jansen et al., 2003; Lee et al., 2004; Troyanskaya
et al., 2003). Here I discuss three approaches that have been
used for predicting genetic interactions: (i) using existing
genetic interactions and the local network structure to predict
new interactions, (ii) using the integration of other genomic
datasets to predict genetic interactions, and (iii) using
interactions from one species to predict interactions in a second
species.

Predicting genetic interactions using network structure

One property of the yeast genetic interaction network is that
two genes that share a genetic interaction with a common
partner are likely to interact with each other (Tong et al., 2004).
Tong et al. first exploited this ‘small world’ feature of genetic
interaction networks to predict further interactions and found
that in ~20% of cases the neighbours of a query gene could also
interact with each other (compared to <1% of random gene
pairs).

Predicting genetic interactions using other genomic datasets

Genes that share known functions are likely to have similar
genetic interaction profiles. Genetic interactions can therefore
be predicted using additional genomic datasets that link genes
according to their functions. For example, genetic interactions
for genes encoding proteins that physically interact have been
successfully predicted (Kelley and Ideker, 2005; Ye et al.,
2005). However a more powerful approach is to combine
multiple different datasets that connect functionally related
genes, and to use these to predict genetic interactions. Here I
discuss the two approaches that have been applied to date:
decision trees, and Bayesian integration.

Decision trees provide a method for classifying data into two
or more classes (here ‘interacting’ and ‘non-interacting’) using
multiple different evidence types. At each step in the tree a list
of genes is divided into those that do or do not possess a
particular characteristic. At the top of the tree the gene list is
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first split using the characteristic that is most informative for
predicting the property of interest (here the ability to predict a
genetic interaction). Additional characteristics are then used to
make additional subdivisions of the gene list until no additional
characteristic is informative and a branch is terminated. An
advantage of decision trees over ‘black box’ methods such as
neural networks and support vector machines is that they
explicitly reveal the characteristics used to classify the data.
They also do not assume independence between predictive
evidence types, which allows multiple related datasets to be
used even if they contain correlations with each other. Wong
et al. used decision trees to integrate protein localisation,
mRNA expression, physical interaction, known function and
network topology data in order to predict synthetic lethal or
sick interactions between yeast genes (Wong et al., 2004).
Using cross-validation tests, they found that decision trees
could reliably predict genetic interactions between yeast genes.
They also tested the predictions for eight new SGA screens not
seen in training; 49/318 predictions were verified, compared to
2/318 expected by chance (Wong et al., 2004). The top
predictor in the decision tree was the previously noted network
property that genes that share genetic interaction partners are
also likely to interact genetically. ‘Between-pathway’ models
were also found to be useful predictors of interactions.
However, individually omitting other kinds of functional data
alone had little effect on the quality of predictions (Wong et
al., 2004).

An alternative method for integrating genomic datasets to
predict genetic interactions is Bayesian integration. In this
approach predictions made using different data types are
weighted according to the ability of each data type to predict
known genetic interactions, as opposed to genes that are known
not to interact (Jansen et al., 2003; Lee et al.,, 2004;
Troyanskaya et al., 2003). Zhong and Sternberg recently used
this approach to predict genetic interactions for ~10% of C.
elegans genes, using information on anatomical expression
patterns, phenotypes, functional annotations, microarray
coexpression and protein interactions to predict genetic
interactions (Zhong and Sternberg, 2006). The authors used
their network to identify twelve subtle modifiers of mutations
in the let-60 Ras gene and two novel suppressors of mutations
in the itr-1 gene. Using a modified Bayesian integration, we
have extended this approach to construct a network of
>100 000 interactions that covers >60% of C. elegans genes,
and have used this network to identify new suppressors of
mutations in the Retinoblastoma pathway and cross-talk
between the Dystrophin complex and the EGF/Ras/MAPK
pathway (I. Lee, B.L., C. Crombie, A. Fraser and E. M.
Marcotte, unpublished data).

Predicting genetic interactions using orthology relationships

A final approach for predicting genetic interactions is to use
genetic interactions identified in one species to predict genetic
interactions in a second species. The evolutionary conservation
of protein—protein interactions between species (Matthews et
al., 2001), means that human protein—protein interactions can

be successfully predicted by using data from model organisms
(Lehner and Fraser, 2004). To test whether genetic interactions
can also be successfully transferred between species, we have
tested whether the orthologs of genes that are synthetically
lethal in S. cerevisiae are also synthetically lethal in C. elegans.
In total we have tested >1000 predicted interactions, but have
found that <1% are conserved (J. Tischler, B.L. and A. Fraser,
unpublished data). This is in contrast to mutations in single
genes; >60% of the orthologs of genes that are essential in S.
cerevisiae are also essential in C. elegans (Kamath et al., 2003).
Therefore at least for synthetic lethal interactions, interactions
are probably not directly conserved between unicellular and
multicellular organisms. This may reflect the presence of
additional compensatory pathways in higher eukaryotes, or
alternatively suggests that there is little evolutionary selection
for ‘higher order’ interactions between mutations in pairs of
genes. This does not mean, however, that synthetic lethal
interactions between yeast genes are uninformative for
predicting human gene function — clearly the synthetic lethal
profiles of yeast genes are highly informative for predicting the
molecular functions of orthologous human genes (Pan et al.,
2006), and this information could be used to predict genetic
interactions in humans. In future work it will be important to
test whether genetic interactions can be successfully transferred
between more related species (for example between C. elegans
and humans). Anecdotal examples from the literature [for
example the conservation of genetic interactions between
components of the EGF/Ras/MAPK pathway between worms
and flies (Sundaram, 2005)], suggest that this should be more
successful. In addition it is possible to envisage more
sophisticated approaches, whereby interactions between
pathways, rather than genes, are predicted.

The implications of genetic interaction networks for
human disease: hubs, buffers and new paradigms for
human disease

What are the implications of model organism genetic
interaction networks for human genetic diseases? The most
immediate observation is that genetic interaction networks are
very dense — there are many more ways to produce a phenotype
by combining mutations in two genes than by mutating a single
gene (Tong et al., 2004). This suggests that most hereditary
diseases are also likely to result primarily from interactions
between mutations in multiple genes rather than from
mutations in single genes (Badano and Katsanis, 2002). Indeed
the prevalence of synthetic interactions between genes may
explain the relative lack of success in identifying the causal
mutations in most common hereditary diseases — each disease
may result from many different combinations of mutations in
many different genes, each of which has only a minor or zero
effect on the disease alone. This paints a rather pessimistic
picture for the practicalities of genetically dissecting and
treating complex genetic diseases.

However the structure of model organism genetic interaction
networks also has a positive implication for human disease
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Fig. 3. Genetic hubs and genetic disease in humans. Genetic hubs are
genes that when inactivated can enhance the phenotypic consequence
of mutations in many different genes. Often hub genes can enhance
the consequences of mutations in genes acting in diverse functionally
unrelated pathways. Examples include a set of chromatin-modifying
genes in C. elegans (the genes mys-1, trr-1, dpy-22, hmg-1.2, din-1,
and egl-27) (Lehner et al., 2006b), the Prefoldin complex in S.
cerevisiae (Tong et al., 2004), and the gene hsp90 in yeast (Zhao et
al., 2005), flies (Rutherford and Lindquist, 1998) and plants (Queitsch
et al,, 2002). Here the red node represents a hub gene, and the
remaining nodes are coloured according to their function.
Protein—protein interactions are shown as solid lines and genetic
interactions as broken lines.

genetics — the existence of highly connected ‘hub’ genes in the
networks suggests that there will be common modifiers of
genetic mutations in humans. For example, in the C. elegans
genetic interaction network we identified a class of genes that
interact genetically with many diverse genes. Inactivation of
each of these ‘hub’ genes can enhance the loss-of-function
phenotype resulting from mutations in many different genes
with diverse molecular functions (Fig. 3). Indeed, loss of a hub
gene can enhance many different phenotypes, depending upon
the other gene that is mutated in combination. In this way they
can be thought of as ‘buffering’ an organism from the
phenotypic consequences of mutations. Remarkably all of the
most connected hub genes that we identified function in
chromatin-modifying complexes (Lehner et al., 2006b).

There are probably many more hub genes in addition to these
chromatin-modifying genes. For example, in the SGA yeast
genetic interaction network, four of the top five most connected
genes encode components of the prefoldin chaperone complex
(Tong et al., 2004). Moreover the chaperone Asp90 can also be
classed as a hub gene, because of its ability to enhance the
phenotypic consequences of mutations in multiple genes when
inactivated in flies, plants and yeast (Queitsch et al., 2002;
Rutherford and Lindquist, 1998; Zhao et al., 2005). Thus at
least two classes of genes can function as genetic hubs:
chromatin-modifiers and chaperones. Interestingly Asp90 may
bridge these two functional classes; although it is well known
as a chaperone, it may also affect phenotypic variation via its
effects on chromatin structure (Sollars et al., 2003).

Although there are likely many other hub genes that remain
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to be identified, their implication for human disease is clear:
there will probably be human genes that act as modifier genes
in many mechanistically unrelated diseases. Indeed the concept
of hub genes suggests a new paradigm for genetic disease in
humans (Lehner et al., 2006b). In this paradigm there are two
classes of human disease gene: the first class consists of
‘specifier’ genes that define the particular disease, and the
second class consists of ‘modifier’ or ‘hub’ genes that serve to
enhance the strength of the disease resulting from a mutation
in a specifier gene. There is good evidence to suggest that hub
genes identified in one organism also function as hubs in other
species (Lehner et al., 2006b; Queitsch et al., 2002; Zhao et al.,
2005), and so the particular genes identified as hubs in model
organisms may also function as hub genes in humans.

Work in my lab is funded by the EMBL-CRG Systems
Biology Program, which is supported by a grant from the
Spanish Ministry of Science and Education (Ministerio de
Educacién y Ciencia, MEC).
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