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Introduction
The post-genomic era has brought unprecedented

opportunities to bridge and bring together traditionally separate
disciplines in the natural sciences. The development of high-
throughput techniques and the wide availability of large
biological datasets, ranging from annotated genomes to
organism-level maps of protein interactions and cellular
metabolism, have made it possible simultaneously to probe
cellular function at multiple levels. Most of the dramatic
progress in the natural sciences during the last century can be
directly related to the reductionist approach; the behavior of a
system can be predicted and understood solely from the
detailed knowledge of the system’s elementary constituents.

However, it is by now clear that our ability to understand
simple fundamental laws governing the individual building
blocks is a far cry from being able to predict the overall
behavior of a complex system (Anderson, 1972). Since
evolutionary forces have shaped the complex and highly non-
linear interactions between genes, proteins and metabolites,
there exists considerable variation in the nature of both the
elementary building blocks and their interactions, requiring the
development of novel methods capable of uncovering cellular
organization and functional principles at the systems level.

In this review, I aim to show how computational systems
biology (Kitano, 2002), and more particularly network theory
as applied to biological systems, offers quantifiable tools to
uncover organizational principles of biological systems at the
cellular level.

Network analysis of protein interaction systems
In building a network from physical protein binding data, it

is customary to consider individual proteins as the nodes, and
the existence of a physical interaction between a pair of
proteins, e.g. as measured by high-throughput experiments, as
a link between two corresponding nodes. Fig.·1A shows the
protein interaction network (PIN) for the yeast C. elegans using
data from various high-throughput experiments available from
The BioGRID (version 2.0.20; http://www.thebiogrid.org/).
The lowest connectivity nodes (only a single neighbor) are
colored blue, nodes with an intermediate connectivity (two to
nine) are green, while the highly connected nodes (�10
neighbors) are colored red. This figure suggests that the
network is somewhat organized in a layer structure, with the
majority of the singly connected nodes at the periphery and the
highly connected nodes in the center. However, we need to

Many complex systems can be represented and analyzed
as networks, and examples that have benefited from this
approach span the natural sciences. For instance, we now
know that systems as disparate as the World Wide Web,
the Internet, scientific collaborations, food webs, protein
interactions and metabolism all have common features in
their organization, the most salient of which are their
scale-free connectivity distributions and their small-world
behavior. The recent availability of large-scale datasets
that span the proteome or metabolome of an organism
have made it possible to elucidate some of the
organizational principles and rules that govern their
function, robustness and evolution. We expect that

combining the currently separate layers of information
from gene regulatory networks, signal transduction
networks, protein interaction networks and metabolic
networks will dramatically enhance our understanding of
cellular function and dynamics.
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introduce quantitative, statistical measures to systematically
probe the properties of this PIN.

In this example, links represented experimentally measured
binding. However, links may represent more general
relationships between proteins than just physical binding. For
instance, correlations between mRNA expression profiles in
microarray data can be used as a basis for the determination of
a direct link between two nodes. In this situation, one may
define interactions between proteins whose mRNA expression
profiles have a correlation value above an appropriately chosen
cut-off, say �, while no links are introduced when the pair-wise
correlation values are less than �.

With the availability of large-scale experimental data on
PINs, such as those for Saccharomyces cerevisiae (Uetz et al.,
2000; Ito et al., 2001; Gavin et al., 2002; Ho et al., 2002) and

Drosophila melanogaster (Giot et al., 2003),
network approaches have become crucial for
developing a comprehensive understanding at the
organism level. There exist many methods to
dissect and analyze networks in general, and the
PIN in particular. In the following, I will discuss the
most common of these methods, while highlighting
the biologically relevant information that can be
gleaned.

Applying the tools of network analysis, a
system’s interacting elements (e.g. genes, proteins
or metabolites) are represented as nodes, and the
existence of an interaction between two elements as
a link between the respective nodes. Links may
carry information about the interaction, either as a
link weight (interaction strength) or by specifying
an interaction asymmetry (link direction). In
general, a network consists of N nodes and M links
and is represented mathematically as a binary
matrix frequently called the ‘adjacency matrix’
[aij]. An interaction between the nodes i and j is
present when the matrix element aij=1 and absent
if aij=0.

Connectivity distribution

The modeling and analysis of systems as
disparate as the World Wide Web and PINs has
revealed surprising similarities in their structural
organization. Possibly the simplest measure to
characterize the role that a node (in this section, a
protein) plays in the network is the ‘node
connectivity’, or degree, ki=�jaij. We can also
define the ‘average node degree’ in the network,
corresponding to an average protein’s number of
interaction partners, <k>=(1/N)�iki. However, these
measures do not provide a detailed insight into the
organization of PINs.

To gain a more detailed insight into the structure
of the PIN, we study the ‘connectivity distribution’
given by P(k)=Nk/N, where Nk is the number of
nodes with k neighbors. From this measure, we may

determine the variation in connectivities in the network. Such
distributions were studied by Erdös and Rényi (e.g. Bollobás,
2001) and they showed that simple random graphs lead to a
Poisson connectivity distribution. However, for many real
networks, including the PINs, P(k) does not have a Poisson-
type behavior or, even more generally, a unimodal behavior as
predicted by the Erdös–Rényi random graph theory. Instead,
P(k) is frequently found to adhere to a heavy-tailed distribution
that is often modeled as a power-law P(k)~k–� (Albert and
Barabási, 2002). Fig.·1 shows a side-by-side comparison of a
generic Poisson and power-law distribution using linear
(Fig.·1B) and logarithmic scales (Fig.·1C). Notably, the
logarithmic scale represents the power-law distribution as a
straight line, and its decay is clearly seen to be significantly
slower than that of the Poisson. Consequently, slowly decaying
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Fig.·1. (A) Protein interaction network of the nematode Caenorhabditis elegans
using data from The BioGRID (version 2.0.20; http://www.thebiogrid.org/). Nodes
(proteins) in blue have a connectivity of one. Nodes in green have a connectivity
between two and nine, while the red nodes have a connectivity of �10.
Comparison of a linear (B) and logarithmic plot (C) of a Poisson connectivity
distribution (broken line) with mean �=10 and a power-law connectivity
distribution (solid line) with exponent �=2.5.
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distributions such as the power-law are described as being
heavy-tailed. Fig.·2 shows the connectivity distribution of the
PINs of the yeast S. cerevisiae, the nematode Caenorhabditis
elegans and the fruit fly D. melanogaster (see also Table·1).

It is interesting to note that if the connectivity distribution
had instead been single-peaked, such as a Poisson or a
Gaussian, the notion of a typical node, as described by the
average connectivity <k>, would be valid. Since the PINs are
networks with a heavy-tailed connectivity distribution, the
majority of the nodes only have a few interaction partners while
they coexist with nodes that participate in hundreds of
interactions. Consequently, there exists no typical node in the
PINs, and they are frequently described as being ‘scale-free’.
The class of nodes with a very large number of interaction
partners is called a network ‘hub’. These hub proteins often
have biological properties that are significantly different from
those of proteins participating in only a few interactions. Note
that no formal definition exists to separate a hub protein from
non-hub proteins.

One of the most popular network models that captures the
observed heterogeneity of the connectivity distribution was
proposed by Barabási and Albert (Barabási and Albert, 1999).
It is similar to a model by Price (Price, 1965) [see Newman
(Newman, 2003b), for a detailed discussion and comparison of
the models]. These models are based on the notion that in a
growing and evolving network, new nodes are not connected
with uniform probability to already existing nodes. Instead,
new nodes have a higher chance of connecting to those with
many neighbors than to nodes with few. This is often called the

E. Almaas

rich-gets-richer effect or ‘preferential attachment’. If the
chance �i of connecting to an already existing node i is linearly
proportional to the node degree ki, i.e. �i=ki/�jkj, the resulting
connectivity distribution is a power-law with an exponent of
�=3 (Albert and Barabási, 2002; Newman, 2003b).

Note that, if the effective preferential attachment rule is a
non-linear function of the degree k, we can no longer expect
the resulting connectivity distribution to be scale-free
(Krapivsky et al., 2000; Krapivsky and Redner, 2001). In
particular, if the preferential attachment rule is slower than
linear in k, the connectivity distribution is a stretched
exponential. For the case of a preferential attachment rule that
is faster than linear in k, the resulting network is of a star type,
where the majority of the nodes are connected to a single
‘super-hub’ (Krapivsky et al., 2000; Krapivsky and Redner,
2001).

Protein interaction networks and evolution

Although the connectivity distribution of PINs is heavy-
tailed, which is consistent with the preferential attachment
prediction, it is far from clear that the actual evolutionary
mechanisms responsible for the current structure of these
networks are related to preferential attachment. It appears
unlikely that an evolutionary process directly measures the size
of a protein’s network neighborhood. In fact, multiple
alternative processes exist that may give rise to a scale-free
connectivity distribution (Newman, 2005). These include local
network growth rules, such as gene duplication (addition of
nodes) and gene diversification (loss and/or addition of links)

Table 1. Properties of three whole-organism protein interaction networks available from The BioGRID (version 2.0.20;
http://www.thebiogrid.org/)

Organism N <k> S <C> <Crand> �

S. cerevisiae 5298 19.04 5294 0.154 0.0036 –0.040
C. elegans 2774 3.14 2551 0.020 0.0011 –0.159
D. melanogaster 7490 6.67 7372 0.030 0.0089 –0.039

For each network, we have indicated size (N), average node connectivity (<k>), size of the giant component (S), average clustering (<C>),
average clustering for a comparable Erdös–Rényi random network (<Crand>) and assortativity (�).
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Fig.·2. Connectivity distribution P(k) for the
protein interaction networks of (A) the yeast S.
cerevisiae, (B) the nematode C. elegans and (C)
the fly D. melanogaster from The BioGRID
(version 2.0.20; http://www.thebiogrid.org/).
The colors in B correspond to the node-colors
in Fig.·1; nodes with a connectivity of one are
blue, a connectivity between two and nine is
green, and highly connected nodes (�10) are
red.
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(for a review, see Albert and Barabási, 2002), all giving rise to
scale-free connectivity distributions. Consequently, models
based on local growth mechanisms demonstrate that there are
many possible network expansion rules that have an effective
linear preferential attachment as a result. Nevertheless, it is
possible to directly estimate the evolutionary rates of link
addition or removal, as well as those of node duplication from
empirical data (Wagner, 2001). Focusing on the yeast PIN, two
empirical studies (Eisenberg and Levanon, 2003; Wagner,
2003) clearly support the hypothesis that local network-growth
rules give rise to linear preferential attachment, where highly
connected proteins display an elevated rate of interaction
turnover.

Network clustering

It has long been argued that biological systems are
‘functionally modular’ (e.g. Hartwell et al., 1999), and it has
been a much sought-after goal to understand how this
modularity is reflected in the structure of the networks. The
‘clustering coefficient’ (c) of a node (Watts and Strogatz,
1998):

measures the degree to which the neighborhood of a node
resembles a complete subgraph built from triangles and is the
ratio of the actual number of triangles to all possible triangles,
for which node i is a member. Consequently, ci is a measure of
the cliquishness, or transitivity, of the local neighborhood.
Take Fig.·4C as a network example. Nodes D–B–E are
connected in a triangle, while nodes A–C–B–D are connected
in a square. The clustering of node A is cA=0, since there is no
direct link between its nearest neighbors, nodes C and D.
However, the clustering of node E is cE=1, since its two (only)
neighbors are connected. Finally, the clustering of node B is
cB=1/6, since some of its neighbors (namely nodes D and E)
are directly connected.

The average clustering coefficient <C>=(1/N)�ici provides
information on the global distribution of links. A value of
<C> close to unity indicates a high level of modularity, or
cohesiveness of triangles, in the network, while a value close
to zero indicates a lack of modularity. It is customary to test
the significance of a particular <C> value by comparison with
a suitable random-network model consisting of the same
number of nodes and links (Albert and Barabási, 2002). For
most such null models, we would find a reference clustering
of <C>rand=<k>/N, where <k>=2M/N is the average node
degree.

Assuming that a network has a non-zero <C>, we may
further investigate the network’s large-scale modularity
structure by studying the average clustering as a function of
node degree, C(k) (Dorogovtsev et al., 2002). If the network
shows a hierarchical modularity (Ravasz et al., 2002), then the
clustering C(k)~1/k. In this case, nodes with few neighbors tend
to have network neighborhoods with high clustering, while the

1

j,l

aijailajl ,ci = ki(ki–1)
 �

highly connected nodes act as bridges tying different parts of
the network together. However, the network modules are not
clearly discernible, being interwoven on all levels.

Network assortativity

In many real networks, there exist correlations between the
properties of neighboring nodes. In particular, it is often the
case that the connectivity of neighboring nodes is correlated.
When these correlations are absent, we can expect that the joint
probability of two randomly selected nodes i and j having ki

and kj neighbors, respectively, is P(ki,kj)=P(ki)P(kj). However,
in the presence of such node–node correlations, knowing the
connectivity ki of node i, we have received information about
the connectivity of any node j directly connected to node i with
a link. Several methods have been developed to measure these
connectivity correlations, and we will highlight two of them
(Maslov and Sneppen, 2002; Pastor-Satorras et al., 2001;
Newman, 2002; Newman, 2003a).

The first method to measure correlations between
neighboring nodes was suggested by Vespignani and co-
workers (Pastor-Satorras et al., 2001). It measures connectivity
correlations by calculating the ‘neighborhood connectivity’ of
a node knn,i=(1/ki)�jkjaij, where index nn denotes ‘nearest
neighbor’. Consequently, knn,i measures the affinity with which
a node i connects to other nodes of either high or low degrees.
In Fig.·3, we have plotted the function knn(k), which is the
average neighborhood degree for nodes with connectivity k.
Note that if knn(k) is an increasing function of k, the network
shows an ‘assortative’ mixing, and high-degree nodes
preferentially tend to be connected to other high-degree nodes.
For the opposite situation, where knn(k) is a decreasing function
of k (as in Fig.·3B), low-degree nodes tend to be connected to
high-degree nodes, and the network is ‘disassortative’. This is
also the typical case for computer networks, where a limited
number of servers each are connected to a large number of
individual computers (Pastor-Satorras et al., 2001).

The second method of measuring degree–degree correlations
in a network is the Pearson correlation, �, in nearest neighbor
degrees, called the ‘assortativity’ (Newman, 2002). A Pearson
correlation is often interpreted as a measure of a linear
relationship between two variables, in this case the connectivity
of node pairs joined by a link. The degree–degree correlation
ranges from �=1 to �=–1. The distribution knn(k) and the
assortativity � are related as follows. If knn(k) is uniform, then
�=0. However, if knn(k) is increasing or decreasing, then � is
positive or negative, respectively. The magnitude of � indicates
the strength of the correlation. It is straightforward to develop
similar expressions for directed networks (Newman, 2003a).

The last column of Table·1 shows the assortativity � for three
whole-organism-level PINs. As expected, the trends displayed
in Fig.·3 agree with the assortativity correlations calculated
using � (Newman, 2002). In particular, Fig.·3A and Fig.·3C
show no clear increasing or decreasing trend in knn(k), which
agrees well with the calculated assortativity values being close
to zero. Taken together, these two methods offer detailed
insights into the connectivity correlations of a network.
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Protein interaction networks and essentiality

So far we have discussed topological properties of PINs
without emphasizing the close relationship between network
representations and biological information. The first indication
that the large-scale structure of a PIN network might carry
biological information arose from investigations of network
robustness (Albert et al., 2000). This work demonstrated that
networks with heavy-tailed connectivity distributions were
robust against random failures, yet fragile when an attack
occurred at a highly connected node. The robustness of a
network was evaluated in terms of a network topology measure,
the ‘giant component’. A connected component consists of all
nodes between which there exists a path, and the giant
component is the largest among the connected components.
The third column of Table·1 lists the giant component of the
three PINs. We can study the resilience of a network to node
removal by monitoring the size S of the giant component while
randomly deleting nodes from the network (corresponding to
failure) or iteratively removing the largest hubs (corresponding
to attack). Through such a node-removal analysis, it was
discovered that networks with a scale-free connectivity
distribution retain a giant component while subject to random
failures (Albert et al., 2000). On the other hand, when the scale-
free networks are subject to attack, they fragment very quickly.
Consequently, these networks are extremely robust against
random perturbations, yet highly susceptible to targeted
attacks.

Several molecular biology techniques are now available for
the experimental perturbation and disruption of PINs. In fact,
a large-scale experimental study in S. cerevisiae shows that
only 18.7% of the total number of genes are essential on
disruption or removal (Giaever et al., 2002), while a study on
Escherichia coli found 13.7% of the genes to be essential
(Gerdes et al., 2003). Motivated by the above theoretical and
experimental observations on network fragility, Barabási and
co-workers investigated the possibility of correlations between
a protein’s connectivity and its phenotypic essentiality,
discovering an increasing likelihood for highly connected

proteins to be essential (Jeong et al., 2001). In other words, the
more interaction partners a protein has, the more likely it is to
be involved in an essential cellular function. This result is often
called the ‘centrality-lethality’ rule. Although recently debated
(Coulomb et al., 2005), careful analyses strongly support the
centrality-lethality rule (Batada et al., 2006).

A recent study suggests that the increased lethality of highly
connected proteins can be explained by a simple mechanism
(He and Zhang, 2006). The idea is to explain the centrality-
lethality rule by assuming that essential nodes and ‘links’ are
randomly distributed on the network. The function of an
essential link is carried out by the interaction of the incident
proteins, and both nodes are essential. This model generates the
centrality-lethality rule through the simple fact that it is more
likely for a hub to partake in an essential link than for a low-
degree node. By choosing the essential link and node fractions
appropriately, it is possible to fit the observed centrality-
lethality rule within experimental error bars (He and Zhang,
2006).

Since highly connected proteins occupy a special role in the
network, it is interesting to study if hub proteins should evolve
at a different pace from proteins with only a few interaction
partners (Batada et al., 2006). Indeed, because highly
connected proteins do not have a higher density of active
domains, they do not show any significant difference in mean
rate of protein evolution. However, the hub proteins of S.
cerevisiae contain a higher number of phosphorylation sites
than do non-hub proteins and show a marked trend of being
encoded by mRNAs with short half-lives. This indicates that
highly connected proteins are subject to much tighter control,
being part of dynamic short-lived protein complexes (Batada
et al., 2006).

Protein interaction networks and dynamics

We have focused on the static aspects of a PIN, but proteins
are constantly being degraded and produced and many carry
out their functions in specific cellular locations such as a
cellular membrane. A more realistic depiction would address
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Fig.·3. Average nearest neighbor connectivity knn(k) for the protein interaction networks of (A) S. cerevisiae, (B) C. elegans and (C) D.
melanogaster from The BioGRID (version 2.0.20; http://www.thebiogrid.org/).
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the temporal and spatial aspects of the situation. Whole-
organism protein-expression arrays are currently
unavailable, and the chosen substitute has been the
mRNA expression array. A recent analysis (Han et al.,
2004) indicates that highly connected nodes in the S.
cerevisiae PIN are either ‘date-hubs’, binding to their
partners at different times or locations, or ‘party-hubs’,
which interact with most of their network neighbors
simultaneously. Including temporal aspects in the PIN
analysis allows for the investigation of information flow,
since the temporal activation of protein transcription is
reflective of evolved regulatory mechanisms to ensure
proper cellular responses to external stimuli.

Network analysis of metabolism
Cellular metabolism depends on enzymatic reactions

where substrates, such as glucose or acetate, are converted
into products by enzymes. However, the set of metabolic
reactions can be translated into a network representation
in many different ways. Fig.·4 demonstrates several
possible network representations of a simple metabolic
reaction set. Fig.·4A describes the relationship between
the metabolites A–F. In the first reaction, A+BrC+D, we
say that A and B are educts and C and D are products. A
common network representation is displayed in Fig.·4C, where
metabolites are nodes, and two metabolites are connected with
an undirected link if they participate as an educt and a product,
respectively, in the same reaction. Note that a link does not
represent a single reaction, or enzyme, as two metabolites may
appear in multiple reactions. An example of this possibility is
shown in Fig.·4A, where metabolites A and D co-occur in
reactions R1 and R3, and the link between A and D in Fig.·4C
corresponds to both reactions. To further complicate the
mapping, one reaction may also appear as multiple links (see
Fig.·4). An alternative representation is that of a bipartite
network (Fig.·4E), where the two kinds
of nodes are metabolites or enzymes. For
this case, a directed link from (to) a
metabolite to (from) an enzyme
indicates that the metabolite acts as an
educt (product) in that reaction. Finally,
a metabolic reaction set may also be
represented as a reaction–reaction
network (Fig.·4F). Here, the nodes are
reactions and a (possibly directed) link
is included between two nodes
(reactions) i and j if a metabolite is used
as an educt (product) in reaction i and as
a product (educt) in reaction j.

Metabolic network structure

The various network representations
of Fig.·4 have different statistical
properties. Using the bacterial
metabolism in E. coli as an example,

Fig.·5 shows the differences in the connectivity distribution,
P(k), implied by the three network representations detailed in
Fig.·4B–D. Note that P(k) is heavy-tailed in all panels of Fig.·5;
however, the result is not as simple for a bipartite network
representation (Fig.·4E). In this case, it is possible to
distinguish between metabolites and enzymes; for the
metabolites, the connectivity distribution is heavy tailed, while
the enzyme distribution is best fit by an exponential. This is not
surprising, as cofactors such as ATP or NADP may contribute
to hundreds of reactions while an enzyme has a limited number
of active domains. To further contrast and compare potential
biases of various network representations, Table·2 shows the
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clustering <C> and the assortativity � for three organisms using
the network representations of Fig.·4B,C. As expected, the
clustering and assortativity corresponding to Fig.·4B is
significantly higher than that of Fig.·4C, since the network
representation in the former implies a fully connected subgraph
for each reaction.

Weighted metabolic networks

The majority of network studies have focused on topological
properties and not on the rate of metabolic activity, which can
vary significantly from reaction to reaction. This important
function is not captured by standard topological approaches. It
is necessary to include this information in the network
description to develop an understanding of how the structure of
a metabolic network affects metabolic activity. A meaningful
understanding requires us to consider the intensity (i.e. strength),
the direction (when applicable) and the temporal aspects of the
interactions. Although much is still unknown about the temporal
aspects of metabolic activity inside a cell, recent results have
provided information about the relative intensities of the
interactions in single-cell metabolism (Sauer et al., 1999;
Canonaco et al., 2001; Gombert et al., 2001; Emmerling et al.,
2002; Fischer and Sauer, 2003; Cannizzaro et al., 2004; Blank
et al., 2005; Fischer and Sauer, 2005). We may incorporate these

E. Almaas

results into the network analysis by considering links not only to
be present or absent, but additionally to carry a ‘link weight’ that
reflects the non-uniform interaction strength between two nodes.
A natural, although not unique, measurement of interaction
strength for a metabolic network is the amount of substrate being
converted to a product per unit time, called the ‘flux’ of the
reaction.

A simple linear optimization approach, called ‘flux-balance
analysis’ (FBA), enables us to calculate the flux rate for each
reaction in a whole-cell metabolic network. The FBA method
is based on the assumption that the concentration of all cellular
metabolites, [Ai], not subject to transport across the cell
membrane must satisfy the steady-state constraint of
d[Ai]/dt=�jSij	j=0, where Sij is the stoichiometric coefficient of
metabolite Ai in reaction j, t is time, and 	j is the steady-state
flux of reaction j. We follow the convention that Sij<0 (Sij>0)
if metabolite i is a substrate (product) in reaction j. Take
Fig.·4A as an example. The stoichiometric coefficients of
reaction j=R3 are then SA,R3=–2, SE,R3=–1, SD,R3=1, while
SB,R3=SC,R3=SF,R3=0. Note that any flux value 	i satisfying the
steady-state constraint corresponds to a stoichiometrically
allowed state of the cell. To select flux values that are
biologically relevant, we optimize for cellular growth.
Experiments support this hypothesis in several conditions, but

there are also other meaningful objectives. See
Bonarius et al. (Bonarius et al., 1997) and
Kauffman et al. (Kauffman et al., 2003) for a
more detailed discussion of FBA.

The recent advances in whole-genome
annotation has made it possible to generate high-
fidelity whole-cell level metabolic networks.
Metabolic models of the prokaryotic
Helicobacter pylori and E. coli, as well as the
eukaryote S. cerevisiae, have been used to predict
‘essential genes’ (Edwards and Palsson, 2000;
Schilling et al., 2002; Duarte et al., 2004; Papp et
al., 2004), ‘epistatic interactions’ where the
action of one gene is modified by one or multiple
genes at different loci (Segre et al., 2005), and
possible ‘minimal microbial genomes’ (Burgard
et al., 2001; Pal et al., 2006). The resulting fluxes
from FBA measure each reaction’s relative
activity. In particular, Almaas et al. demonstrate
that, similar to the degree distribution, the flux
distribution of E. coli displays a strong overall

Table 2. Average clustering and assortativity for three organismal metabolic networks using the network representations
described in Fig.·4B,C

Organism N MB MC <C>B <C>C �B �C

H. pylori 489 4058 1920 0.72 0.28 –0.285 –0.261
E. coli 540 3753 1867 0.66 0.20 –0.251 –0.217
S. cerevisiae 1064 6941 4031 0.67 0.23 –0.182 –0.150

Abbreviations: N, number of nodes; M, number of links; <C>, average clustering; �, assortativity; subscript B and C, network representations
shown in Fig.·4B and Fig.·4C, respectively.
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inhomogeneity: reactions with fluxes spanning several orders
of magnitude coexist in the same environment (Almaas et al.,
2004). Applying the FBA computational approach, the flux
distribution for S. cerevisiae (Fig.·6) is heavy-tailed, indicating
that P(	)~	–
 with a flux exponent of 
=1.5. In a recent
experiment, the strength of the various fluxes of the central
metabolism of E. coli was measured using nuclear magnetic
resonance (NMR) methods (Emmerling et al., 2002), revealing
a power-law flux dependence P(	)~	–1 (Almaas et al., 2004).
This power-law behavior indicates that a vast majority of
reactions with small fluxes coexists with a few reactions that
have large fluxes.

The FBA approach allows us to analyze the metabolic network
as a weighted network since each reaction is assigned a flux
value. Such a generalization of non-weighted network measures
was originally introduced in the context of the airline
transportation and co-authorship networks (Barrat et al., 2004).
The first of the generalized network measures is called the ‘node
strength’, si, of a node i, defined as si=�jwijaij, where wij is the
weight of the link connecting nodes i and j, and aij is the
adjacency matrix as before. The node strength acts as a
generalization of the node degree to weighted networks and sums
the total weight on the links connected to a node. Fig.·7 shows
the distribution of node strengths, P(s), for E. coli metabolism
with glucose as the single carbon source.

We continue by generalizing the clustering coefficient to
weighted networks. Since ci indicates the local density of
triangles, a similar definition with link-weights should make
it possible to discern if large or small weights are more or less
likely to be found clustered together. We denote one possible
definition given by Barrat et al. (Barrat et al., 2004) as cw,i,
and the average weighted clustering is <Cw>=(1/N)�icw,i. If
no correlations exist between weights and topology, this new
definition of clustering coefficient is equal to that of the
unweighted network. Furthermore, we may identify two
possible scenarios. If <Cw> is greater than <C>, large
weights are predominantly distributed in local clusters,

whereas if <Cw> is less than <C>, triangles are built using
mostly low-weight links. Other possible definitions of a
weighted clustering coefficient with somewhat different
properties have been proposed (Onnela et al., 2005; Zhang
and Horvath, 2005; Holme et al., 2007).

Fluxes and metabolic network structure

The flux distributions of a metabolic network rely on the
network topology. Some of this dependence is understood by
studying the correlation between wij, the strength of the link
connecting nodes i and j and their respective connectivities,
ki and kj. The metabolic fluxes scale as <wij>~(kikj)�, where
�=0.5 under glucose-limited conditions in S. cerevisiae
(Fig.·8A) and E. coli (Macdonald et al., 2005), as well as the
World-Air-Transportation network (Barrat et al., 2004). We
may also find similar behavior in network models. As an
example, the betweenness-centrality [a measure of how many
shortest paths utilize a given node or link (see Brandes, 2001;
Freeman, 1977; Newman, 2001; Wasserman and Faust, 1994)

on the Barabási–Albert network model (Fig.·8C)]. However,
other values for � are possible, as demonstrated in Fig.·8B, where
we find �=0.7 for metabolic fluxes under acetate-limited
conditions.

How does the network structure influence flux patterns on
the level of single metabolites? The observed scale-free flux
distribution is compatible with two quite different potential
local flux structures. A homogeneous local organization would
imply that all reactions producing (consuming) a given
metabolite have comparable flux values. On the other hand, a
more de-localized, or ‘hot backbone’, is expected if the local
flux organization is heterogeneous, such that each metabolite
has a dominant source (consuming) reaction. To distinguish
between these two scenarios, we define the measure Y(k,i)
(Barthelemy et al., 2003; Almaas et al., 2004) for each
metabolite produced or consumed by k reactions, with the
following characteristics. If all reactions producing
(consuming) metabolite i have comparable values, Y(k,i)�1/k.
If, however, the activity of a single reaction dominates, then
Y(k,i)�1, i.e. Y(k,i) is independent of k. For the two cases where
the E. coli metabolic performance is optimized with glucose
and succinate as the only available carbon sources, Y(k)~k–0.27.
This is an intermediate behavior between the two extreme cases
described above. However, the exponent value of �=–0.27
indicates that the large-scale inhomogeneity observed in the
overall flux distribution is increasingly valid at the level of the
individual metabolites as well.

Consequently, for most metabolites, a single reaction can be
identified that dominates its production or consumption. A
simple algorithm is capable of extracting the sub-network
solely consisting of these dominating reactions, called the
‘high-flux backbone’ (HFB) (Almaas et al., 2004). This
algorithm has the following two steps: (1) for each metabolite,
discard all incoming and outgoing links except the two links
that dominate mass production; and (2) from the resulting set
of reactions, keep only those reactions that appear as both a
maximal producer and a maximal consumer.
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Note that the resulting HFB is specific to
the particular choice of system boundary
conditions (i.e. environment). Interestingly,
the HFB mostly consists of reactions linked
together, forming a giant component with a
star-like topology that includes almost all
metabolites produced in a specific growth
environment. Only a few pathways are
disconnected; while these pathways are
members of the HFB, their end-products
serve only as the second most important
source for some other HFB metabolite. One
may further analyze the properties of the
HFB (Almaas et al., 2004); however, we
limit our discussion and simply mention
that groups of individual HFB reactions
largely agree with the traditional,
biochemistry-based partitioning of cellular
metabolism into pathways. For example, in
the E. coli metabolic model, all metabolites
of the citric acid cycle are recovered, and so are a considerable
fraction of other important pathways, such as those being
involved in histidine, murein and purine biosynthesis, to
mention a few. While the detailed nature of the HFB depends
on the particular growth conditions, the HFB captures the
reactions that dominate the metabolic activity for this
condition. As such, it offers a complementary approach to
elementary flux mode and extreme pathway analyses (Schuster
and Hilgetag, 1994; Schilling et al., 2000; Papin et al., 2004),
which successfully determine the available modes of operation
for smaller metabolic sub-networks.

Metabolic core reactions

Any whole-cell metabolic model contains a number of
transport reactions for the uptake of nutrients and excretion of
byproducts. Consequently, we may systematically sample
among all possible environments captured by the model
through varying the constraints on uptake reactions. This
analysis suggests that optimal metabolic flows are adjusted to
environmental changes through two distinct mechanisms
(Almaas et al., 2004). The more common mechanism is ‘flux
plasticity’, involving changes in the fluxes of already active
reactions when the organism is shifted from one growth
condition to another. For example, changing from glucose- to
succinate-rich media altered the flux of 264 E. coli reactions
by more than 20%. Less commonly, environmental changes
may induce ‘structural plasticity’, resulting in changes to the
metabolism’s active wiring diagram, turning on previously
zero-flux reactions and inhibiting previously active pathways.
For example, when shifting E. coli cells from glucose- to
succinate-rich media, 11 previously active reactions were
turned off completely, while nine previously inactive reactions
were turned on.

The ‘metabolic core’ is the set of reactions found to be active
(carrying a non-zero metabolic flux) in all tested environments.
In recent computational experiments where more than 30·000
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possible environments were sampled, the metabolic core
contained 138 of the 381 metabolic reactions in the model of
H. pylori (36.2%), 90 of 758 in E. coli (11.9%) and 33 of 1172
in S. cerevisiae (2.8%) (Almaas et al., 2005). While these
reactions respond to environmental changes only through flux-
based plasticity, the remaining reactions are conditionally
active, being turned on only in specific growth conditions.

The metabolic core can be further partitioned into two types
of reactions. The first type consists of those that are essential for
biomass formation under all environmental conditions (81 out of
90 reactions in E. coli), while the second type of reaction is
required only to assure optimal metabolic performance. In case
of the inactivation of the second type, alternative sub-optimal
pathways can be used to ensure cellular survival. However, the
compact core of S. cerevisiae only contains reactions predicted
by FBA to be indispensable for biomass formation under all
growth conditions. A similar selection of metabolic reactions
was suggested by Burgard et al. (Burgard et al., 2001). Their
‘minimal reaction’ contains the metabolic core as well as all
reactions necessary for the sustained growth on any chosen
substrate. A different definition of a minimal reaction set was
proposed by Reed and Palsson (Reed and Palsson, 2004), which
consists of the 201 reactions that are always active in E. coli for
all 136 aerobic and anaerobic single-carbon-source ‘minimal
environments’ capable of sustaining optimal growth.

A reasonable speculation is that the reactions in the
metabolic core play an important role in the maintenance of
crucial metabolic functions since they are active under all
environmental conditions. Consequently, the absence of
individual core reactions may lead to significant metabolic
disruptions. This hypothesis is strengthened through cross-
correlation with genome-scale gene-deletion data (Gerdes et
al., 2003): 74.7% of those E. coli enzymes that catalyze core
metabolic reactions (i.e. core enzymes) are essential,
compared with a 19.6% lethality fraction for the non-core
enzymes. A similar pattern of elevated essentiality is also
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present when analyzing large-scale deletion data for S.
cerevisiae (Giaever et al., 2002). Here, essential enzymes
catalyze 84% of the core reactions, whereas the conditionally
active enzymes have an average essentiality of only 15.6%
(Almaas et al., 2005). The likelihood that the cores contain
such a large concentration of essential enzymes by chance is
minuscule, with P-values of 3.3
10–23 and 9.0
10–13 for E.
coli and yeast, respectively.

Metabolic core reactions also stand apart from the
conditionally active ones when comparing their evolutionary
conservation. In comparing the core enzymes of E. coli with a
reference set of 32 bacteria, the average core conservation rate
is 71.1% (P<10–6) while the non-core enzymes have a
homology matching of only 47.7%. Taking into account
correlations between essentiality and evolutionary
conservation, one would expect the core enzymes to show a
conservation level of 63.4% (Almaas et al., 2005).

These results indicate that an organism’s ability to adapt to
changing environmental conditions rests largely on the
continuous activity of the metabolic core, regardless of the
environmental conditions, while the conditionally active
metabolic reactions represent the different ways in which a cell
is capable of utilizing substrates from its environment. This
suggests that the core enzymes that are essential for biomass
formation, both for optimal and suboptimal growth, may
provide effective antibiotic targets, given the cell’s need to
maintain the activity of these enzymes in all conditions.

Outlook
Network approaches provide an important set of tools to

analyze and dissect complex systems spanning from biology to
the social sciences. Their generic applicability has successfully
been exploited by bringing measures to bear on biological
problems that, for example, were originally developed for
transportation systems (Albert and Barabási, 2002). As the
focus of this review has been PINs and metabolism, a variety
of network approaches have given us the opportunity to
interrogate the interconnected nature of cellular networks. It is,
however, important to remember that the cell is far from a static
environment, and it is absolutely necessary to develop new
approaches to incorporate both the temporally and spatially
dynamic nature of biological systems.

To achieve an accurate description of cellular networks, we
also need to couple the available information on gene
regulatory, signal transduction, protein interaction and
metabolic networks. So far, the majority of research has been
focused on studying these networks as separate entities. In
particular, the study of metabolism has already shown great
promise for coupling to transcription regulatory networks
(Covert et al., 2004). Although our current knowledge of
kinetic parameters is severely limited, making the development
of detailed kinetic models largely intractable, approaches such
as FBA married with network methods have opened the door
for organism-level investigations of quasi-dynamic cellular
response to external and internal perturbation.
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Trinity University for helpful discussions and input. This work
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Energy by University of California, Lawrence Livermore
National Laboratory under Contract W-7405-Eng-48, and
supported by LDRD Grant 06-ERD-061.
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