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Introduction
Active sensing results in sensory inputs that are directly

due to the sensing process (Cullen, 2004, Nelson and
MacIver, 2006). Effective sensory processing requires that
these self-generated (and thus redundant) inputs, also referred
to as ‘reafference’, must be cancelled out to allow the
detection of novel external inputs. In many cases, this
cancellation mechanism is mediated through parallel fiber
feedback from cerebellar-like brain nuclei (Bodznick et al.,
1999; Bell, 2001; Cullen, 2004). This feedback provides a
‘negative image’ of the reafference inputs to neurons, which
can then respond selectively to novel stimuli. The generation
of these negative images is necessarily plastic, so that sensory
systems can adapt the cancellation mechanisms to varying
conditions.

Reafferent input cancellation and negative image generation
have been well documented in the electrosensory system of
weakly electric fish. These fish sense their environments by
monitoring modulations in a self-generated electric field
(Moller, 1995). The hindbrain electrosensory lateral line lobe
(ELL) is the first processing stage of the electrosensory
pathway. Cancellation of predictable electrosensory signals

occurs, at least in part, at the level of the ELL (Bell, 2001). In
mormyriform fish that produce a pulse-type electric discharge,
an efference copy of the pulse is subtracted from ELL neuron
responses (Bell, 2001; Bell et al., 1997; Roberts, 2000). In
Apteronotus leptorhynchus, a gymnotiform fish that produces a
high-frequency, quasi-sinusoidal electric discharge (wave-
type), no efference copy of the electric discharge is available to
the ELL (Bell, 2001). Instead, negative image generation in
these wave-type fish relies on proprioceptive inputs and the
spatiotemporal aspects of the electrosensory reafference
(Bastian, 1995).

Pyramidal neurons in the ELL of gymnotiform wave-type fish
receive inputs from electrosensory afferents, as well as two
sources of feedback, the so-called direct and indirect feedback
pathways (Berman and Maler, 1999). The indirect feedback
pathway (Fig.·1) arising from cerebellar (EGp) granule cells via
parallel fibers (Sas and Maler, 1983; Sas and Maler, 1987)
mediates negative image formation (Bastian, 1995; Bell, 2001).
A recent study has elegantly shown that a subset of ELL
pyramidal neurons (deep pyramidal neurons, DP; Fig.·1) reliably
transmits electrosensory inputs to EGp (Bastian et al., 2004).
Together with proprioceptive inputs, these electrosensory inputs

The cancellation of self-generated components of sensory
inputs is a key function of sensory feedback pathways. In
many systems, cerebellar parallel fiber feedback mediates
this cancellation through anti-Hebbian plasticity, resulting
in the generation of a negative image of the reafferent
inputs. Parallel fiber feedback involves direct excitation
and disynaptic inhibition as well as synaptic plasticity on
multiple time scales. How the dynamics of these processes
interact with anti-Hebbian plasticity to shape synaptic
inputs and provide a cancellation mechanism remains
unclear. In the present study, we investigated the influence
of parallel fiber feedback onto pyramidal neurons of the
electrosensory lateral line lobe (ELL) in weakly electric fish
under open loop conditions. We mimicked naturalistic
parallel fiber inputs in an ELL brain slice by implementing
an experimentally based model of this synaptic pathway
using dynamic clamp. We showed that as parallel fiber

activity increases, the effective input to ELL pyramidal
neurons changes from net excitation to net inhibition,
resulting in a non-monotonic firing response. Using a
model neuron, we found that this robust non-monotonic
response is due to a shift from balanced excitation and
inhibition at low parallel fiber input rates, to dominant
inhibition at high input rates. We then showed that this
non-monotonic response provides a simple basis for
negative image generation. Through changes in the mean
activation rate of parallel fibers, the feedback can switch
roles between enhancement and suppression of sensory
inputs in a manner that is directly determined by the slope
of the non-monotonic response curve.
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to EGp control parallel fiber activity (Bastian, 1995). A distinct
subset of ELL pyramidal neurons (superficial pyramidal neurons,
P; Fig.·1) is the target of the parallel fiber feedback and is the
primary source of electrosensory information to higher brain
nuclei (Bastian et al., 2004).

Parallel fiber inputs exhibit various forms of long-term and
short-term plasticity (Bastian, 1998; Lewis and Maler, 2002;
Lewis and Maler, 2004). Electrical stimulation of these inputs
(in vivo and in vitro) yield predominantly excitatory responses
in ELL pyramidal neurons, with disynaptic inhibition providing
gain control (Bastian, 1998; Berman and Maler, 1999; Lewis
and Maler, 2002). Yet, models involving negative image
formation rely on changes in independent inhibitory inputs (e.g.
Bastian et al., 2004). While this provides a simple mechanism
for negative image generation, direct inhibition is not present in
parallel fiber feedback.

In the present study, we implement an experimentally
based model of parallel fiber synaptic input (Lewis and Maler,
2002; Lewis and Maler, 2004) using dynamic clamp (Prinz et
al., 2004), and describe its influence on ELL pyramidal
neuron firing. Through a combination of experiments and
modeling, we show that these synaptic inputs change from
balanced excitation–inhibition to net inhibition as parallel
fiber input rate increases, resulting in a non-monotonic firing
response. We then show that this non-monotonic response
forms a simple basis for the control and generation of a
negative image of feedback inputs.

Materials and methods
In general, it is not feasible to systematically control

populations of dynamic synaptic inputs. Therefore, to assess
their impact on post-synaptic neuron firing we used a hybrid
experimental–modeling approach in a brain slice preparation,
similar in nature to previous studies (e.g. Sharp et al., 1993;
Sorensen et al., 2004; Prinz et al., 2004). This so-called
‘dynamic clamp’ allows the delivery of an intracellular current
stimulus that mimics any voltage-dependent or synaptic
conductance, given that it can be described by a computer
model. The important feature of this approach is that the current
stimulus is modified in real-time depending on the membrane
potential of the recorded neuron. Here, we extend this approach
to mimic the synaptic current arising from a large population of
independently firing, and plastic, parallel fiber inputs in a
primary electrosensory nucleus (Fig.·1); a detailed description
is provided below.

Modeling parallel fiber synaptic dynamics
FDI model

In a set of previous studies, post-synaptic potentials (PSPs)
were elicited in ELL pyramidal neurons by electrical stimulation
of parallel fibers (Lewis and Maler, 2002; Lewis and Maler,
2004). The PSP amplitudes (PSP) were described using a
standard formalism (Dayan and Abbott, 2001) by the product of
three simple processes (Eqn·1): facilitation (F), depression (D)
and disynaptic inhibition (DI) – note that we use DI here [rather
than ‘I’ as in Lewis and Maler (Lewis and Maler, 2002)] to
avoid confusion with terminology used later (i.e. injected and
synaptic currents, Idrive and Isyn).

In Eqn·1, t* is the time of a stimulus (or spike) in input
(parallel) fiber j and t* is the time just before. Making the update

,

 

PSPj = FjDjDIj

(1)
 

dFj(t)

dt
=

F0–Fj(t)

�F
and Fj(t*) r Fj(t*) + �F  

dDj(t)

dt
=

1–Dj(t)

�D
and Dj(t*) r Dj(t*) – Fj(t*)Dj(t*) ,

 

dDIj(t)

dt
=

1–DIj(t)

�I
and DIj(t*) r �FDDIj(t*) ;

�FD =
aexp[–bFj(t*)Dj(t*)]

1+aexp[–bFj(t*)Dj(t*)]
.

and Fj(t*) r 0 if Fj(t*) > 0 ,
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Fig.·1. The early electrosensory pathways. The schematic diagram of
the ELL sub-network shows two types of principle neurons, deep (DP)
and superficial (P) pyramidal neurons, as well as the primary feedback
nuclei, nucleus praeminentialis (nP) and eminentia granularis posterior
(EGp). The nP and EGp give rise to the direct feedback pathway (not
shown) and the indirect feedback pathway (via parallel fibers),
respectively. Feedforward input to these nuclei arises primarily from
DP neurons; EGp also receives input from other sensory modalities,
such as proprioception. The indirect feedback is indicated by a
population of parallel fiber synaptic inputs (numbered 1 to Nf) to the
P neuron, and combines direct excitation (solid triangles) with
disynaptic inhibition via interneurons I (denoted by open circles).
Sensory input is faithfully transmitted to parallel fibers via DP neurons
and nP. The dynamics of the parallel fiber synapses then determine the
sign of the reafferent image onto P neurons (see Results).
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magnitude for DI, �FD, a sigmoidal function of the product FD
[a=e8; b=18 (see Lewis and Maler, 2002)], implements the effect
of disynaptic inhibition, such that the strength of inhibition is
related to the strength of its presynaptic excitation given by FD
through a standard sigmoidal activation curve. This original
model of PSP dynamics will be referred to here as the FDI model.
It is important to note that the experimental conditions for which
this model was developed involved synchronous stimulation of a
population of parallel fibers (a so-called ‘beam’), as is typical in
such studies (e.g. Dittman et al., 2000). The PSP in the post-
synaptic pyramidal neuron is thus a result of many individual
stochastic synapses acting in concert to produce a reliable
response (though variable in amplitude due to synaptic plasticity).
The model therefore neglects any variability due to the
stochasticity of synaptic transmission. Another important aspect
of the synaptic response is that it involves overlapping excitation
and inhibition (Berman and Maler, 1998a). Therefore, the update
of the inhibitory process in the FDI model occurs simultaneously
with that of the facilitation and depression processes (see later for
further discussion of this point). In addition, by comparing
synaptic responses in conditions with and without inhibition
(pharmacological block), the specific effects of inhibition were
quantified and reproduced by the model. The development of this
model involved the assumption that the inhibitory interneurons
receive the same dynamic input as the pyramidal neurons. Future
studies are required to validate this assumption, but the key issue
in relation to the present study is that the model reproduces the
net effect of the feedback synapses (excitation and inhibition)
onto the pyramidal neurons. We refer the reader to previous
publications (Lewis and Maler, 2002; Lewis and Maler, 2004) for
further details involved in the FDI model development and
parameter fitting under the various experimental conditions.

Modeling naturalistic parallel fiber synaptic inputs
In this study, we extend the previous FDI model, which

describes the discrete synaptic response amplitudes, to a
conductance-based model that can be used to model naturalistic
synaptic currents. We adopt an approach commonly used to
combine synaptic plasticity models with conductance-based
single neuron (leaky integrate-and-fire, LIF) models (e.g.
Chance et al., 1998; Dayan and Abbott, 2001):

We consider a single compartment LIF model neuron (Eqn·2),
with threshold (Vthresh) and reset (Vreset) values, as well as all
additional parameters, provided in Table·1. The total synaptic
excitatory (Gexc) and inhibitory (Ginh) conductance (and hence

 

dGexc(t)

dt
=

Gexc(t)

�exc
– ,

 

dGinh(t)

dt
=

Ginh(t)

�inh
– .

(4)

 Isyn[V(t),t] = Gexc(t) [Vexc–V(t)] + Ginh(t) [Vinh–V(t)] , (3)

dV(t)

dt
= go[Vo–V(t)] + Isyn[V(t),t] + Idrive , (2)

total synaptic current, Isyn) is due to the combined effects of Nf

independent excitatory inputs and Nf independent inhibitory
inputs respectively (Fig.·1). The dynamics of Gexc and Ginh are
described by Eqn·4, except when a presynaptic input arrives, at
which time they are updated using instantaneous update rules:

Excitatory update rule
When an excitatory input j fires at a time t*, Gexc is increased

by a discrete amount (Eqn·5) and then decays back to zero with
time constant �exc (Eqn·4). This update is performed every time
any of the Nf excitatory inputs fire, using the values of Fj and Dj

just before their own updates (denoted by time t*). The mean rate
of firing in each of the Nf excitatory inputs is denoted by re.

We used one of two update rules for Ginh to account for
different stimulation conditions.

Inhibitory update rule 1
The first update rule (Eqn·6) mimics the experimental

conditions of the original FDI model (i.e. overlapping excitation
and inhibition due to synchronous stimulation of a parallel fiber
population). This method involves simulating the DI process in
the FDI model for each of the Nf inputs. In this case, the update
of Ginh occurs at the same times t* as for Gexc using the rule
described by Eqn·6. The only time we use this method is for the
data fitting described in Fig.·2.

Inhibitory update rule 2
In all other aspects of the study we use a second method of

updating Ginh that mimics spontaneous synaptic activity and
asynchronous inputs – a condition that is in general not possible
to reproduce using in vitro slice preparations. In this case, when
an inhibitory input j fires at a time t** (independent of excitatory
input times t*), Ginh is increased by a constant amount (Eqn·7).
In both conditions, following the update, Ginh decays back to zero
with time constant �inh (Eqn·4). In the second update method

Ginh(t*) r Ginh(t*) + (6)
ginh

Nf
[1–DIj(t*)] ;

Inhibitory update rule 1:

Gexc(t*) r Gexc(t*) + (5)

 

gexc

Nf
Fj(t*)Dj(t*) ;

Excitatory update rule:

Ginh(t**) r Ginh(t**) + (7)
ginh

Nf

Inhibitory update rule 2:

.

Table·1. Parameter values for conductance-based synaptic
model

LIF model neuron Synaptic conductances FDI model

go=100·�S gexc=400·�S �F=79·ms
Vo=–70·mV Vexc=0·mV �F=0.23
Vthresh=–65·mV �exc=5·ms Fo=[0.05, 0.2]
Vreset=–70·mV ginh=–80·�S �D=83·ms
Idrive=0.35·nA Vinh=–80·mV �I=1·s

�inh=10·ms Nf=120

See text for an explanation of LIF and FDI models and parameters. 
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(Eqn·7), the DI variable of the FDI model is not explicitly
simulated. Instead, the dynamics of disynaptic inhibition are
accounted for by appropriately setting the mean firing rate of each
Nf inhibitory input, denoted by ri. We take the following approach
to determine ri given a particular value of re.

In the context of random poisson stimulation, estimates of the
mean excitatory and inhibitory conductances (Gexc and Ginh,
respectively) take the form shown in Eqn·8 (Dayan and Abbott,
2001; Kuhn et al., 2004).

where <x> denotes the mean of variable x after transients have
decayed (i.e. <FD> and <1–DI> are the quantities shown in
Fig.·4A as a function of re; for convenience, we define
<ID>=<1–DI> as the variable describing the strength of
disynaptic inhibition). From this, we can explicitly model the
rate of the inhibitory inputs (ri) as a function of re (ri=re<ID>).
Thus, the mean rate of inhibitory input is dependent on the
excitatory input (to model the disynaptic inhibition); however,
all individual inputs are temporally uncorrelated (i.e. are driven
by independent poisson processes). While this relationship is
explicitly derived from the original experimentally based FDI
model, it can also be thought of as a simple rate model of
disynaptic inhibition, in which the mean rate of inhibition ri is
a sigmoidal function of the mean rate of excitation, re. This
simplification was used to increase the efficiency of the
dynamic clamp implementation in the experiments (see below).

<Gexc> = gexc�excre<FD> ,

<Ginh> = ginh�inhri = ginh�inhre <1–DI> , (8)

While it was not necessary for the simulation studies, for
consistency the same model was used throughout with only
minor (quantitative) effects on our results. That said, this
formulation may not hold in different conditions involving
strong coherent activity among inputs.

All parameter values are presented in Table·1; any values
different from these are mentioned in the text as necessary.
Simulations were performed using a semi-analytic method for
the FDI variables (Lewis and Maler, 2002) and an Euler
integration method for the conductance-based LIF model (time
step=0.2·ms); both were implemented in Igor Pro (Wavemetrics
Inc., Lake Oswego, OR, USA) and Matlab (The Mathworks
Inc., Natick, MA, USA).

Condition for balanced excitation and inhibition
The condition such that excitation and inhibition exist in

balance is typically determined by setting the current–balance
equation (Eqn·2 and Eqn·3) to zero and assuming the membrane
voltage and synaptic conductances take on their mean values,
Eqn·9 (e.g. Kuhn et al., 2004):

Substituting Eqn·8 and solving for ri gives the condition for
balanced inhibition (Eqn·10):

ELL slice preparation and intracellular dynamic clamp
Surgical procedures and slice preparation were performed as

previously described (Berman and Maler, 1998b; Lewis and
Maler, 2002). Briefly, the gymnotiform fish Apteronotus
leptorhynchus (Eigenmann) (male or female, 10–15·cm in
length) were anesthetized in oxygenated water containing
0.2% tricaine methanesulfonate (Syndel International Inc.,
Vancouver, BC, Canada). True-transverse 350·�m slices of the
electrosensory lateral line lobe (ELL) were obtained using an
OTS-5000 tissue slicer (FHC Inc., Bowdoin, ME, USA) and
transferred to an interface-type slice chamber (Scientific
Systems Design Inc., Mississuaga, ON, Canada). Slices were
perfused (2·ml·min–1) with artificial cerebrospinal fluid (ACSF),
bubbled at room-temperature (20–22°C) with a mixture of 95%
O2/5% CO2, and containing (in mmol·l–1) 124 NaCl, 24
NaHCO3, 10 D-glucose, 1.25 KH2PO4, 2 KCl, 2 CaCl2, 2
MgSO4. A recovery period of at least 1·h was allowed before
recordings were made. Protocols were approved by the
University of Ottawa Animal Care Committee (BL-191).

Intracellular recordings from pyramidal neurons in the
centromedial segment of ELL were obtained using sharp
microelectrodes (~80·M�) and an Axoclamp-2B amplifier
(Molecular Devices, Sunnyvale, CA, USA) in discontinuous-
current-clamp (DCC) mode at a 3–4·kHz switching rate. Only
neurons whose spontaneous firing rate was between 0.5–6·Hz
were used in this study; sometimes a small constant current
(<0.5·nA) was used to maintain this spontaneous rate over the

0 = go(Vo– <V>) + <Gexc> (Vexc– <V>) + 
   <Ginh>(Vinh– <V>) + Idrive . (9)

(10)

 

ri =
go(Vo– <V>) + Idrive

ginh�inh(<V> –Vinh)
gexc�exc(Vexc–<V>)

ginh�inh(<V> –Vinh)
+ re <FD>

⎡
⎢
⎣

⎡
⎢
⎣

⎤
⎥
⎦

⎤
⎥
⎦

.
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Fig.·2. Conductance-based model for the parallel fiber synapse. (A)
Membrane potential trace for both model (black) and experiment
(gray). (B) The predicted PSP amplitudes for the model (normalized to
the first PSP in the sequence) are plotted versus those from an
intracellular recording of an ELL pyramidal neuron using identical
parallel fiber stimulation patterns (poisson-distributed inter-stimulus
intervals, 16·Hz mean). Over 200 stimuli, the mean error was 17%
(regression line slope=0.98, R2=0.69). Parameter values for the model
are as in Table·1, except that Vo= –77·mV.
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duration of the recordings (baseline membrane potential
69±0.9·mV; input resistance 58±6·M�). We use the dynamic
clamp approach (Sharp et al., 1993; Prinz et al., 2004) to assess
the effects of model synaptic inputs on pyramidal neurons. The
dynamic clamp was implemented using models constructed in
Simulink and Real-Time Workshop (Matlab) and run on a
DS1104 controller board (dSpace Inc., Wixom, MI, USA), as
described previously (Sorensen et al., 2004). Membrane voltage
was acquired and used in the real-time simulations to update
intracellular current injection (determined by the sum of all
excitatory and inhibitory conductances, see Eqn·3) at a rate of
5·kHz. This injected current is sometimes referred to as ‘injected
conductance’ due to its dependence on the specified driving
forces. The dynamics of the F and D processes (Eqn·1) for each
of Nf independently firing poisson inputs were simulated.
Similar to our previous studies, we solve for F and D using a
semi-analytic method for faster computations (Lewis and Maler,
2002; Lewis and Maler, 2004). In addition, we used either the
original model (full simulation of I dynamics) or the simplified
description of inhibition (ri=re<ID>) described in the previous
section. This simplified relationship between ri and re was
determined offline for a given parameter set and then
implemented in the dynamic clamp using a lookup table. While
not necessary to implement the dynamic clamp in real-time,
because of its relative simplicity, this method allows a faster
sampling and update frequency. To assess the response of a
pyramidal neuron to a given input rate re, the dynamic clamp
synapses were first activated and then 20–30·s later (allowing
transients to decay), 10·s of data were acquired. The firing rate
was calculated over this 10·s interval. This was repeated 3–5
times and averaged for each value of re for each neuron. Values
of re were varied randomly and not all values of re were sampled
in all neurons; for display of mean responses, data were binned
in 2·Hz intervals of re, and presented as mean ± s.d. (standard
deviation) unless otherwise indicated.

Investigating negative image generation
To investigate the functional consequences of dynamic

parallel fiber inputs on ELL pyramidal neurons, we adopt an
approach based on previous studies involving negative image
generation during sinusoidal spatially global stimulus
presentation (Bastian, 1995; Nelson and Paulin, 1995; Bastian et
al., 2004). Such stimulation mimics predictable signals produced
for example by an animal’s own movements. We assume that
such sinusoidal signals are faithfully transmitted through the
different processing stages (see Fig.·1) and represented
accurately in a rate modulation of parallel fiber activity (Bastian
et al., 2004). Thus, in our study, negative image generation is
directly related to parallel fiber dynamics (with associated
disynaptic inhibition). These presynaptic effects will necessarily
interact with the well-described and critically important effects
of postsynaptic processes (Bastian, 1998). Our approach is open-
loop, such that the effect of the feedback alone can be considered,
so no time delays are involved. Under more natural (and
complex) closed-loop conditions, in which primary sensory input
is combined with feedback input, the feedback delay will be
important, especially for higher frequency modulations.

As is the convention, we quantify neural responses to
sinusoidal inputs in terms of the phase histogram (e.g. Bastian et

al., 2004). In such plots, spike times are binned and counted
relative to the phase of the sinusoidal input at which they occur.
Phase histograms indicate the degree to which a neuron follows
a sinusoidal input, and can be further quantified in terms of the
‘vector strength’ and ‘preferred phase’ (Batschelet, 1981). These
quantities are determined by the magnitude and phase,
respectively, of the resultant vector calculated from the vector
sum of bin phases weighted by the bin height (in polar
coordinates). The vector strength varies from 0 (no phase
preference) to 1 (perfect phase locking), and here we consider the
preferred phase to vary from –180° to +180°, where a phase of
+90° corresponds to a response that is exactly ‘in-phase’ with the
input and a phase of –90° is exactly ‘anti-phase’ (since the sine
wave input attains a minimum at –90°). Both model simulations
and experimental recordings were analyzed in the same way.
Values are presented as mean ± s.d. unless otherwise indicated.

Results
Conductance-based model of parallel fiber synaptic inputs
The dynamics of synaptic responses are typically modeled

using a combination of facilitation-like processes (that increase
response amplitude) and depression-like processes (that
decrease response amplitude) – the so-called FD formalism
(Dayan and Abbott, 2001). These models describe synaptic
dynamics in terms of a sequence of response amplitudes. Such
an approach has been previously used to describe the parallel
fiber synapses onto ELL pyramidal neurons under a variety of
conditions (Lewis and Maler, 2002; Lewis and Maler, 2004).
Briefly, the direct excitatory input from parallel fibers onto
pyramidal neurons is modeled by the product of a facilitation
term (F) and a depression term (D). The disynaptic inhibition
via interneurons is modeled by a depression-like term (DI) that
depends on the product FD (see Eqn·1). While this model is
sufficient for describing the sequences of PSP amplitudes
evoked by synchronous stimulation of a population of parallel
fibers in slice experiments, a modified approach is required to
evaluate the effects of plasticity on the ‘synaptic currents’
produced by a population of asynchronously firing parallel fiber
inputs. To this end, we extended the previous FDI model to a
conductance-based description (Eqn·2–8).

Because the previous FDI model already captures the
variation in PSP amplitudes, the associated parameters were
fixed to their original experimentally determined values (Eqn·1,
Table·1) (Lewis and Maler, 2002; Lewis and Maler, 2004);
these parameter values are considered the best fit parameters
over several different experiments (N=7–12, depending on the
stimulation protocol) using both extracellular field potential and
intracellular recordings. It is straightforward to fit the new
synaptic model to the data from intracellular recordings (N=3;
R2>0.69) with reasonable choices for the new parameters
associated with an LIF model neuron (Eqn·2–7). Fig.·2 shows
a comparison of the conductance-based parallel fiber synapse
model to intracellular recordings obtained from a pyramidal
neuron in an ELL brain slice. For a sequence of 200 parallel
fiber stimuli delivered at random intervals (16·Hz mean rate),
the model provides a good estimate of the intracellular PSP
amplitudes (R2=0.69; Fig.·2B). The LIF parameters used in this
example were adopted for all of the neuron model simulations
described below (unless otherwise noted); see Table·1. It is
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important to note that this choice of parameter values does not
influence the results of our study, as will become apparent for
the model-data comparison in following sections.

Parallel fiber synaptic inputs produce a non-monotonic
response in pyramidal neurons

We now investigate the effects of naturalistic synaptic inputs
from a population of parallel fibers on ELL pyramidal neuron
firing rate. In general it is not possible to mimic such synaptic
input in brain slice preparations with electrical stimulation, so we
experimentally implement the parallel fiber synapse model using
dynamic clamp. In the previous section, all inputs were
considered to fire synchronously (as is the case with direct
electrical stimulation of parallel fibers in the experiments). We
now assume that each of the 120 excitatory inputs fires
independently at a mean poisson rate, re. Another 120 inhibitory
inputs fire at a rate ri=re<ID> (see Materials and methods). Fig.·3
shows the effects of increasing re on the normalized firing rate of
pyramidal neurons. Fig.·3A,B illustrates a clear decrease in firing
rate in one neuron as re increases from 5·Hz to 20·Hz. This general
effect was seen in all neurons. From the mean response function
(Fig.·3C; mean ± s.d.; N=16), it is clear that pyramidal neuron
firing rate first increases to a maximum, and then decreases with
further increases in re. This non-monotonic response was also
observed for other parameter sets, as well as in a series of
experiments where the full FDI model was simulated (i.e. explicit
simulation of the DI process; data not shown). In the following,
using simulations, we investigate the mechanisms underlying this
non-monotonic response in more detail.

Parallel fiber synaptic dynamics: FDI model
We now consider the effects of asynchronous inputs from a

population of parallel fibers on the steady-state behavior of the
parallel fiber synaptic model. Fig.·4 shows how the three
variables of the FDI model change as a function of the mean
poisson rate of 120 independent inputs, re. In these simulations,
the inhibitory process was simulated explicitly (ID=1–DI); see
Materials and methods (Lewis and Maler, 2002). The product
FD increases with re to a slight maximum and then decreases
as depression becomes dominant. Although the inhibitory term
ID is related to the product FD, it increases monotonically over
this range of re. This description provides the basis for the
simplification used in the conductance-based model. As
described in the Materials and methods, the FDI model was
developed for synchronous inputs that produce overlapping
EPSPs and IPSPs, and does not explicitly involve independent
disynaptic inhibitory inputs. Rather, the influence of inhibition
is related to the level of excitation (given by the product FD).
Assuming a steady-state value of inhibition (ID) as a function of
re (Fig.·4A), we can relate ri to re (ri=re<ID>; see Materials and
methods for details). In all further analyses, we adopt this
relationship to describe disynaptic inhibition, as it allows us to
study the effects of asynchronous randomly firing inputs.

Synaptic dynamics, balanced inhibition, and a non-monotonic
firing response

Many studies have considered background synaptic activity
arising from balanced excitation and inhibition (e.g. Chance et
al., 2002; Kuhn et al., 2004). In such scenarios, the parameters

determining the net excitatory and inhibitory conductances are
chosen so that there is no change in mean membrane potential.
The ‘balanced’ condition dictates a rate of inhibition, given a
particular rate of excitation (Eqn·10). Fig.·4B compares the level
of inhibition determined by the parallel fiber synapse model
with that determined by the balanced condition. The inhibitory
rate for the balanced condition was determined from Eqn·10
using the value of <FD> for a given value of re (Fig.·4A); all
other parameters were identical in the two cases. Thus, the level
of excitation is identical in the two different cases so a direct
comparison of inhibition levels can be made. For low values of
re, the FDI conductance-based model and the balanced
condition result in similar levels of inhibitory input rates
(Fig.·4B). For high re, the inhibitory rates in the two cases
diverge, with the FDI model producing relatively higher values
of inhibition.

Importantly, the excitation–inhibition balance in the parallel
fiber synapse model is also reflected in the average membrane
potential of a model LIF neuron, over a similar range of re

(Fig.·4C, compare solid and dotted lines). There is a relatively
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large decrease in membrane potential for higher re. There is also
a decrease in the absolute level of fluctuations in membrane
potential compared to the balanced condition (Fig.·4D).
Membrane fluctuations can greatly influence the firing response
of a neuron (Longtin et al., 2002; Kuhn et al., 2004), so these
effects will contribute to differences in the firing rate of neurons
receiving balanced versus unbalanced inhibition.

Overall, the variations in membrane potential shown in
Fig.·4C,D lead to a non-monotonic response in the firing rate of
the LIF model as well (Fig.·4E). Over the range of re considered
here, a similar response is not evident for the balanced
condition. For much higher input rates, however, the effects of
inhibitory shunting can dominate, resulting in a non-monotonic
response for the balanced condition as well (Kuhn et al., 2004).

The nature of the non-monotonic response observed in the
parallel fiber synapse model can vary with changes in model

parameters. Of particular interest is the parameter Fo, which
describes the initial release probability of a synapse (Abbott and
Regehr, 2004). We have previously shown that changes in Fo

alone were sufficient to explain a long-term synaptic
enhancement (LTE) exhibited by parallel fiber inputs onto ELL
pyramidal neurons (Lewis and Maler, 2004). Thus by varying
Fo over the range found experimentally (Fo=0.05–0.2), we can
assess how LTE influences the effects of parallel fiber synaptic
inputs. For Fo=0.2, the firing rate response remains non-
monotonic (see Fig.·6C, gray curve), but the peak firing rate
occurs at a lower value of re than in Fig.·4E (Fo=0.05). This is
because inhibition becomes dominant and thus diverges from
the balanced condition at lower values of re (data not shown).
Therefore, LTE provides a mechanism for modulating
quantitatively the non-monotonic firing response.

We also observed non-monotonic responses for other
parameters in the LIF neuron model. Increases in Idrive cause the
neuron to fire at finite rates for minimal or absent parallel fiber
input. This results in response curves that are shifted upwards
for low values of re, but the non-monotonic behavior remains.
Similarly, decreases in Idrive result in a downward shift in the
response curves. Indeed, much of the variability in the responses
of ELL pyramidal neurons (cf. error bars in Fig.·3C) can be
attributed to differences in threshold and spontaneous firing
rate. The non-monotonic response is robust, however, because
it is due to a systematic shift from excitation to inhibition, rather
than requiring a delicate balance between them.

A non-monotonic firing response provides a framework for
negative image generation

In this section, we consider the implications of a non-
monotonic firing response in the context of reafference input
cancellation by parallel fiber inputs. We followed the approach
of several previous studies by modeling the reafference signal
as a low-frequency global amplitude modulation, produced for
instance by tail-bending or breathing movements (e.g. Bastian,
1995; Nelson and Paulin, 1995; Bastian et al., 2004). In
particular, we chose a 1·Hz sinusoidal modulation, and assume
that this reafference signal is transmitted reliably by DP neurons
in the ELL, through nP and EGp, resulting in a sinusoidal rate-
modulation of parallel fiber activity (see Fig.·1) (Bastian et al.,
2004). In this scenario, we consider only the effect of parallel
fiber inputs (i.e. the feedback image) and not the combination
of this image with the primary sensory inputs. In other words,
we are concerned only with image generation by parallel fiber
feedback.

The non-monotonic firing responses (Figs·3 and 4) show that
depending on the baseline rate (re) of parallel fiber inputs, the net
effect of small increases in rate can effectively be either excitatory
(increase pyramidal neuron firing rate) or inhibitory (decrease
pyramidal neuron firing rate). In other words, either a positive or
a negative image can be transmitted by parallel fibers, depending
on their state (i.e. baseline firing rate re). Fig.·5 illustrates this
simple idea in both LIF neurons (model) and ELL pyramidal
neurons (data). The sinusoidal input signal is a rate modulation
(re±5·Hz) and is illustrated in Fig.·5D. The phase histograms (of
spiking) for different baseline rates re are shown in Fig.·5A–C.
For re=10·Hz, it is clear that most spikes occur ‘in phase’ with
the input (positive image), while for re=25·Hz, most spikes occur
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Changes in FDI model variables with excitation rate, re. FD (black)
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(gray) denotes the inhibition variable (see Materials and methods for
details). Values plotted are means for 120 independent inputs over 30·s
of simulation time. (B) The effective rate of inhibition, ri, as a function
of excitation rate, re, for the FDI conductance-based model (solid line);
for comparison, the inhibition rate at which excitation and inhibition is
balanced is also indicated (dotted line). (C) Mean and (D) standard
deviation of the membrane potential in the LIF neuron as a function of
excitation rate, re. Also shown are the values resulting from the
balanced condition (dotted lines, as in B). (E) Spike rate of the LIF
neuron as a function of excitation rate, re, showing non-monotonic
response profile; spike rate resulting from the balanced condition is
also shown (dotted line, as in B; see Materials and methods for details).
Values plotted in C–E are means over 20 simulated trials of 20·s of
simulation time for 120 excitatory and 120 inhibitory inputs (standard
errors are less than the line width). For all panels, Fo=0.05, with other
parameter values provided in Table·1.
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‘out of phase’ with the input (negative image). At an intermediate
baseline rate re=15·Hz, very little phase locking is observed.
Similar results are observed in both model and experiments
(Fig.·5, compare left and right panels).

We have quantified these responses in the conventional
manner by calculating the vector strength of the spiking
response to the sinusoidal input (see Materials and methods);
a vector strength of 1 indicates perfect phase locking, while
a value of zero indicates no phase locking. In addition, we
compute the preferred phase, relative to the input signal; a
negative phase denotes out-of-phase spiking. The data (open
symbols, mean ± s.d., N=5 neurons) and model (solid black
line) show a very close correspondence (Fig.·6A,B; Fo=0.05),
and clearly indicate the switch from positive image to
negative image around re=15·Hz. At this transition point, the
phase values for the data were highly variable and the vector
strength relatively low. Also shown (Fig.·6A,B; gray lines)
are model calculations for a different value of the parameter
Fo=0.2 (recall that this is associated with a long-term synaptic
plasticity). Changing Fo shifts the transition point for negative
image generation to lower values of parallel fiber baseline
rate.

These results can be qualitatively summarized in terms of the
non-monotonic response curves (Fig.·6C). The slope of these
curves determines the sign of the feedback image: positive
images are generated for low values of re that correspond to a
positive slope, and negative images are generated for high
values of re that correspond to a negative slope. In an
intermediate range, either sign can result or the input can be
filtered out from the feedback entirely, depending on the re and
parameters such as Fo. Overall, this provides a simple
explanation, using a bottom-up approach, of how parallel fiber
activity can generate a negative image of a reafference signal.

Discussion
Reafference suppression and negative image generation are

important aspects of electrosensory system function (Bell, 2001;
Bodznick et al., 1999; Bastian and Zakon, 2005) and the
underlying post-synaptic mechanisms are well-known (Bell,
2001; Bastian, 1999). In our study, we show how presynaptic
mechanisms, determined by short-term plasticity and disynaptic
inhibition, can also provide an important contribution to
negative image generation.

In previous studies (Lewis and Maler, 2002; Lewis and
Maler, 2004), we developed a model of the synaptic dynamics
resulting from stimulation of the parallel fiber feedback pathway
in the electrosensory lateral line lobe (ELL). The model, which
described the dynamics in terms of post-synaptic response
amplitudes, was based on the short-term plasticity (facilitation
and depression) and disynaptic inhibition involved in the
parallel fiber feedback. In the present paper, we extend this
model to a conductance-based description. In doing so, we were
able to investigate the effects of more naturalistic input from
this feedback pathway on ELL pyramidal neurons using
dynamic clamp.

Dynamic clamp, synaptic plasticity and naturalistic inputs
Typically, synaptic dynamics are characterized using in vitro

preparations, in which greater experimental control is feasible.
But in the context of naturalistic feedback, such studies are
limited because either (1) synaptic inputs are activated through
the synchronous electrical stimulation of large populations of
synapses, or (2) minimal stimulation is used, such that only
individual synapses are activated. In vivo synaptic activity is
often generated by populations of asynchronously firing
synaptic inputs that are more difficult to study experimentally,
and have so far been primarily addressed using synaptic inputs
simulated with the dynamic clamp technique (e.g. Chance et al.,
2002; Prinz et al., 2004; Wolfart et al., 2005).

The dynamic clamp technique has proved to be a powerful
tool for the investigation of both single neuron dynamics as
well as simple networks (Prinz et al., 2004). Many previous
studies have used dynamic clamp to simulate synaptic activity
(e.g. Chance et al., 2002; Desai and Walcott, 2006; Fellous et
al., 2003; Wolfart et al., 2005), and some others have
simulated different forms of synaptic plasticity (Rabbah and
Nadim, 2005; Nowotny et al., 2006; Mittmann and Hausser,
2007). However, to our knowledge, no other study has
considered the contributions of synaptic plasticity to the
effects of large populations of independent synaptic inputs
with independent dynamics. Our ability to achieve this
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computationally demanding task was a result of the particular
method of implementing dynamic clamp, in addition to our
semi-analytic description of synaptic dynamics (see Materials
and methods). Of course, some caution must be taken when
interpreting the results of any dynamic clamp study, because
recording and current injection are made at a single location
in a neuron (usually the soma). The potential effects of the
spatial distribution of the synapses are ignored, though the
extent to which this is a problem will be neuron-dependent.
Recent studies have suggested that neurons may be
electrically more compact than previously thought, so even
distant dendritic events can influence somatic activity
(Marder, 2006).

Non-monotonic firing responses
We found, in our studies, that due to the dynamics of

facilitation, depression and disynaptic inhibition, the effect of
parallel fiber input on ELL pyramidal neuron firing changes
from net excitation to net inhibition as input rates increase. The
resulting non-monotonic response in pyramidal neuron firing is
similar to that described in other studies, involving both
experimental and modeling contexts (e.g. Wu et al., 2006; Tan
et al., 2007; Mikula and Niebur, 2003; Kuhn et al., 2004; de la
Rocha and Parga, 2005). However, the underlying mechanisms
vary. In cases where correlations are present in the input,
synaptic depression effectively decorrelates the high frequency
inputs resulting in a decreased output rate (and a non-monotonic
response) as input frequency rises (Mikula and Niebur, 2003;
de la Rocha and Parga, 2005). Kuhn et al. (Kuhn et al., 2004)
described a non-monotonic response function that results from
a different mechanism. Using a conductance-based LIF neuron
model with balanced excitation–inhibition, they showed that the
increased total conductance resulting from increased input rate
produces competing effects: a decreased membrane time
constant leads to an increase in output firing rate through
increased membrane transients, while an increased shunting
effect tends to decrease output firing rate through decreased
membrane fluctuations. The mechanisms outlined could also
play a role in our parallel fiber synapse model, depending on
the conditions. However, the primary mechanism underlying the
non-monotonic response described here is the change in the
balance of excitation–inhibition resulting from increased
disynaptic inhibition at higher input rates.

Several computational advantages of non-monotonic
neuronal response functions have been reviewed recently (Kuhn
et al., 2004; de la Rocha and Parga, 2005). For example, it
allows neurons to be in a firing state far from saturation, such
that changes in input rates can be encoded over a wide range of
average rates. A non-monotonic response function can also
provide specific input tuning, such that a neuron will have a
preferred range of input rates, or frequency selectivity. If
different neurons exhibit differently shaped response functions,
they can form the basis for a population code (Sanger, 2003).
Tan et al. (Tan et al., 2007) have recently shown that non-
monotonic responses resulting from changes in excitatory–
inhibitory balance can form an auditory population code for
sound intensity. A similar diversity of response curves in ELL
could result from a diversity of baseline firing rates among
parallel fibers.

Implications of non-monotonic response in ELL: negative
image generation

In gymnotiform fish, pyramidal neurons of the electrosensory
lateral line lobe provide the primary source of electrosensory
information to all other brain regions. Pyramidal neuron
dynamics and encoding have been extensively studied in recent
years (Oswald et al., 2004; Doiron et al., 2001; Chacron et al.,
2003). In addition, the functional roles of feedback have also
been recently studied in different contexts (Doiron et al., 2003;
Bastian et al., 2004). In particular, the parallel fiber feedback
pathway to ELL is responsible for cancelling out reafferent or
redundant sensory inputs (Bell, 2001; Bastian, 1995). When
spatially local and spatially global sinusoidal stimuli are paired,
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some pyramidal neurons gradually adapt their firing so that
afterwards, the global stimulus alone produces a response that
is 180° out of phase compared to before pairing, a so-called
‘negative image’ of the stimulus (Bastian, 1998). The model
mechanism proposed in Bastian et al. (Bastian et al., 2004)
involved anti-Hebbian plasticity and activation of feedback
excitation and inhibition that were independent (for simplicity).
In addition, the model predicted that a parallel but non-plastic
feedback pathway should act as a ‘teacher’ to guide the adaptive
plasticity – remarkably this was confirmed in the anatomy. Our
studies provide an extension to this model while maintaining
more realistic circuitry (i.e. disynaptic inhibition rather than
independent inhibition). Previous work has shown that a
presynaptic potentiation occurs during the pairing-protocol
(Bastian, 1998). This is similar to the LTE we discuss here,
which results in a shift of the pyramidal neuron response
function, as in Fig.·6C. This in turn would lead to inhibition
being dominant at lower rates and enhancing the effect of the
negative image. In addition, a pairing-specific shift in inhibitory
gain (due to postsynaptic mechanisms) would be involved so
that the requirement for independent excitation and inhibition is
not necessary. Presynaptic potentiation has also been observed
in the parallel fiber feedback pathway in pulse-type fish (e.g.
Bell et al., 1997) and thus could play a similar role in shaping
negative image formation.

The parallel fiber feedback to ELL has also been shown to
be involved in gain control (Bastian, 1986). A recent study has
suggested a mechanism for this gain control that involves the
activation of inhibition in combination with an excitatory
mechanism resulting from the intrinsic neural dynamics
(Mehaffey et al., 2005). Though the effect of excitatory
synapses was not considered, the inhibition was assumed to
arise through the disynaptic inhibition in the parallel fiber
feedback pathway. Our results suggest that this mechanism
would be operating for high enough rates of activity in parallel
fiber inputs, when inhibition is dominant.

Balancing synaptic inputs with disynaptic inhibition
Most studies involving so-called balanced excitation and

inhibition have been performed ad hoc. How such balancing is
achieved in general by networks is not clear. The relationship
typically used to determine the balanced condition (Eqn·10)
specifies the level of inhibition required to balance excitation at
a particular (mean) membrane potential. Recent in vivo studies
have shown that balanced input can result in part from
disynaptic feedforward inhibition during active sensory
processing (Higley and Contreras, 2006). Our results also show
that disynaptic inhibition can play a role in balancing synaptic
activity. Our parallel fiber model produces balanced synaptic
activity for low input rates (Fig.·4). At higher rates, inhibition
becomes dominant and the synaptic input is no longer balanced.
In a different parameter regime, a similar synaptic pathway
consisting of excitation and disynaptic inhibition could
implement the balanced condition over a larger range of input
rates. The requirement for balanced inhibition is that the
input–output relationship at the inhibitory interneuron is similar
to Eqn·10. Thus, for robust balancing to occur (i.e. over a large
range of membrane potentials), voltage-dependent post-synaptic
mechanisms would also be required, otherwise even small

changes in average membrane potential will result in a net
synaptic input that is unbalanced. Possible mechanisms could
involve nonlinear amplification of PSPs by persistent Na+

currents (Fortune and Rose, 2003) or voltage-dependent
synaptic inhibition, both of which have been observed in
parallel fiber feedback to ELL pyramidal neurons (Berman and
Maler, 1998a; Berman et al., 2001).

Future directions
Our studies of the parallel fiber feedback pathway in the

electrosensory system suggest a presynaptic contribution to the
generation of the negative image that is so important for
cancelling redundant sensory inputs. The synaptic activity
resulting from an interaction between short-term plasticity and
the relative levels of excitation and inhibition provides a simple
framework for the generation and the control of the negative
image. Because of the generality and ubiquity of the features
underlying this framework, it is very possible that similar
mechanisms for sensory filtering and cancellation are at work
in other sensory systems.

However, many questions remain regarding the functional
role of parallel fiber feedback to ELL. For one, it is clear that
the baseline firing rate of the parallel fibers can be very
important, allowing them to toggle between excitatory to
inhibitory. While we have discussed their role in negative image
generation, it is also possible that they provide positive
feedback. At this time, it is not clear what role this type of
feedback could play. Indeed, it is also not clear how parallel
fiber firing patterns in vivo vary under natural conditions, but
the framework outlined here should guide these future
experiments. On another note, the synaptic dynamics in this
study are modeled in a phenomenological context. Further
experiments are also required to determine the exact
mechanisms of facilitation, depression and, perhaps most
importantly, the role of the inhibitory interneurons in shaping
the synaptic dynamics. This knowledge will allow the targeted
manipulations required during in vivo experiments to fully
understand the role of dynamic feedback in closed-loop sensory
processing.

List of abbreviations
ACSF artificial cerebrospinal fluid
D depression
DCC discontinuous-current-clamp 
DI disynaptic inhibition
DP deep pyramidal neuron
EGp eminentia granularis posterior
ELL electrosensory lateral line lobe
EPSP excitatory synaptic potential
F facilitation
Gexc, Ginh excitatory, inhibitory synaptic conductance 
Idrive constant injected current
IPSP inhibitory synaptic potential
Isyn synaptic current
LIF leaky integrate-and-fire
LTE long-term synaptic enhancement
P superficial pyramidal neuron
PSP post-synaptic potential
PSP PSP amplitude
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Vreset reset voltage
Vthresh threshold voltage
nP nucleus praeminentialis
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