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Introduction
The main purpose of this theoretical modeling effort is to

establish and compare the flow fields arising around a free-
flicking flagellum and around a flagellum fixed in a small
diameter tube. The free-flicking flagellum corresponds to the
natural situation and, therefore, its analysis should be of broad
interest. The analysis of the flagellum-in-tube case serves to
validate and further clarify the experimental conditions of the
investigation reported in the accompanying paper (Mellon
and Humphrey, 2007). In that study the authors observed a
hydrodynamic-dependent asymmetry in the spiking responses
recorded from single, bimodally sensitive local interneurons
(Type I) in the crayfish deutocerebrum. Specifically, they
found that in an abruptly initiated flow of water (or odorant)
past the flagellum, consistently larger numbers of spikes were
recorded in response to the hydrodynamic stimulation when
the flow direction was proximal-to-distal. Among other
things, in this communication we show that the proximal-to-

distal and the distal-to-proximal flows produced in the
flagellum-in-tube experiment correspond closely to the
downward and upward flicks, respectively, of a free-flicking
flagellum.

The putative mechanoreceptors of interest are beak-shaped
sensilla distributed circumferentially and along the length of the
flagellum. We show from calculations of the drag forces acting
on them for free-flicking conditions that there are at least three
sources of hydrodynamic asymmetry possibly related to the
electrophysiological asymmetry: (i) the sense of the drag forces
acting on medial and lateral mechanoreceptors changes in the
same way for both with change in flick direction; (ii) during a
downward (an upward) flick, a ventral (dorsal)
mechanoreceptor experiences a larger drag force magnitude
than a dorsal (ventral) mechanoreceptor; (iii) because of the
difference in speeds between downward and upward flicks, the
magnitudes of the drag forces acting on medial, lateral and
ventral mechanoreceptors during a downward flick are about
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two times larger relative to the forces acting on medial, lateral
and dorsal mechanoreceptors during an upward flick.

By necessity, the analyses presented here are based on
simplified geometrical models for the two flagellum flow
configurations considered. However, they are guided by
kinematic observations and all the essential physics is retained
in order to ensure that: (i) the free-flicking flagellum results are
generally applicable and of broad interest; (ii) a comparison
between the free-flicking and flagellum-in-tube results is
helpful for interpreting the electrophysiological findings of
Mellon and Humphrey (Mellon and Humphrey, 2007). In this
sense especially, the analyses strongly complement the
electrophysiological work, since it would be very challenging
and require considerable effort and time to perform comparable
velocity measurements for the two flagellum flow
configurations.

Methods, Results and Discussion
Analytical and numerical modeling considerations

This section of the paper covers five interrelated theoretical
topics. For each topic we present the relevant methodology
followed by pertinent results and their discussion. The topics are
as follows. (1) Analysis of the kinematics of the flows
approaching a downward and upward flicking flagellum,
respectively. (2) Analysis of the kinematics of the flow
approaching the aesthetascs and putative mechanoreceptor
sensilla on a downward flicking flagellum. (3) Numerical
calculation of the dynamics of the flow around a downward or
upward flicking flagellum. (4) Numerical calculation of the
dynamics of the flow around a flagellum in a tube. (5)
Numerical calculation of the drag forces and torques acting on
the hydrodynamic mechanoreceptor sensilla of free-flicking and
tube flow flagella, respectively.

(1) Kinematics of the flows approaching a downward and
upward flicking flagellum

The geometry of an idealized flagellum shown flicking
downwards in quiescent water is sketched in Fig.·1 relative to
an (X–Y) coordinate system (frame of reference) fixed on the
rotation pivot point. Our kinematic observations show that a
downward flicking flagellum deflects by an angle of
approximately 15° in 0.05·s, corresponding to an angular
velocity of 5.24·rad·s–1, and that the downward/upward flick
velocity ratio is 1.66, approximately. The fluid drag forces
acting on the deformable flagellum determine its final
equilibrium shape during the downward and upward flicks,
respectively. We find that these shapes are acquired very early
in a stroke for either flick direction, and that they are retained
throughout the remaining motion of the flick. During the
downward flick the flagellum curves by as much as 40°,
approximately, along the distal third of its length relative to the
proximal two thirds, which remains essentially straight. During
the upward flick the flagellum is essentially straight along its
entire length.

At any arc location, z, along the flagellum, starting from its
base, we define an (x–y) coordinate system, with the x
coordinate aligned along the secant, R(z), connecting the pivot
point and point z, and with the y coordinate aligned normal to
R(z). By construction, the vector velocity of the water

approaching the flagellum, Uryf, relative to the (x–y) coordinate
system fixed at z, is aligned along the y coordinate. Call � the
angle formed by the x-coordinate and the tangent, tf, to the
flagellum at point z. Then, also from construction, the
approaching velocity components normal and tangent to the
flagellum at point z are given by Unf=Uyfcos� and Utf=Uyfsin�,
where Uyf is the magnitude of Uryf. The ratio of these two
velocity components is given by Utf/Unf=tan�. During a
downward flick the angle � is very small along the proximal
two thirds of the flagellum but increases to values of the order
40° along the distal third, towards the flagellum tip. Thus, for a
downward flick we expect Utf/Unf to be close to zero along the
proximal two thirds of the flagellum and to vary from 0 to 0.84,
approximately, along the distal third. During an upward flick
the flagellum is essentially straight so that Utf/Unf is very close
to zero along its entire length. The conclusions are that: (i) the
approaching velocity component tangent to a downward
flicking flagellum is always positive, directed from base to tip
along its distal third, as sketched in Fig.·1; (ii) along the
proximal two thirds of a downward flicking flagellum, the
magnitude of the velocity component normal to it significantly
exceeds the tangential component, whereas along the distal third
the two velocity components gradually become comparable in
magnitude; (iii) for an upward flicking flagellum the magnitude
of the velocity component normal to it significantly exceeds the
tangential component everywhere along its length.

(2) Kinematics of the flow approaching the aesthetascs and
putative mechanoreceptor sensilla on a downward flicking

flagellum
Fig.·2 is a sketch of an idealized aesthetasc or beak-shaped

mechanoreceptor sensillum attached to a point z on the ventral
side of the curved, downward flicking flagellum shown in Fig.·1.
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Fig.·1. Schematic of a downward flicking flagellum rotating at angular
velocity � relative to the pivot point at its base in a fixed X–Y
coordinate system. Relative to an x–y coordinate system fixed at point
z along the flagellum’s arc length, the approaching local fluid velocity
normal to the secant R(z) is Uyf. This generates components
Unf=Uyfcos� and Utf=Uyfsin� along the normal (nf) and tangent (tf) to
the flagellum. Aesthetascs and hydrodynamic sensilla on the flagellum
are not shown.
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Relative to an (x–y) coordinate system (as defined in Fig.·1) fixed
at the base of the sensillum, the vector velocity of the water
approaching it, Uryf, can be decomposed to define the velocity
components normal and tangent to the sensillum. These two
quantities are given by Uns=Uyfcos� and Uts=Uyfsin�,
respectively, where �=�–� and � is as defined in Fig.·1. We know
for both the aesthetascs and the putative mechanoreceptors that
��45°, and that ��0° along the proximal two thirds of the
flagellum and 0°���40° along the distal third. It follows that
��–45° along the proximal two thirds of the flagellum and
–45°���–5° along the distal third. As a consequence, the ratio
of the two velocity components, Uts/Uns=tan�, is close to –1 along
the proximal two thirds of the flagellum and ranges from –1 to
–0.09, approximately, along the distal third. The conclusions are
that: (i) the approaching velocity component tangent to an
aesthetasc or a mechanoreceptor on the ventral side of a
downward flicking flagellum is always negative, directed from
sensillum tip to base, contrary to the sense of motion assumed for
analysis in Fig.·2; (ii) the magnitudes of the two velocity
components approaching these sensilla are comparable along the
proximal two thirds of the flagellum, whereas along the distal
third the normal velocity component gradually exceeds the
tangential significantly.

Medially and laterally located mechanoreceptors also have
inclination angles ��45° with respect to the local flagellum
surface. However, because they are oriented in the direction of
the local tangent to the flagellum, tf, these sensilla experience
the same approaching velocity components as the flagellum
itself, meaning that Uns=Unf and Uts=Utf for both downward and
upward flicking motions. Because of the recirculating nature of
the flow that arises in the wake of a downward (upward) flicking
flagellum, an analysis of the velocity components approaching
mechanoreceptor sensilla on the dorsal (ventral) side of the
flagellum must await more detailed numerical calculations,
presented below.

(3) Dynamics of the flow around a downward or upward
flicking flagellum

A flicking flagellum can be approximated as a curved,
slender, cone-like object of length Lf and of diameter df at

location z along its length such that Lf/df�1 anywhere along the
flagellum. The cross-section of a flagellum has the shape of a
distorted (egg-like) ellipse with its minor/major semi-axes in the
ratio of b/a=0.67, approximately, at any location z along the
flagellum. We can define an effective flagellum diameter as
df=(2a+2b)/2=1.667a, whose z dependence is given by
df=db–[(db–dt)/Lf]z, where db and dt are the effective base and
tip diameters, respectively. In this study for a flicking flagellum
we take db�1·mm, dt�0.25·mm, and Lf=25·mm, from which it
follows that the cone angle is 3.4°.

At any location z along the length of a flicking flagellum it
is possible to define a Reynolds number (Ref) based on the
velocity component Unf, approaching it normally as defined
above relative to a coordinate system attached to the
flagellum. Thus Ref��dfUnf/	, where � (=996·kg·m–3) and 	
(=8.6
10–4·kg·m–1·s–1) are the density and dynamic viscosity of
water at 25°C, respectively. The normal component of velocity
is given by Unf=Uyfcos� where, from Fig.·1, Uyf=�R(z), and
��5.24·rad·s–1 for a downward flick and ��3.14·rad·s–1 for an
upward flick. Along the proximal two thirds of a downward
flicking flagellum ��0°, and along the remaining distal one
third we assume to a good approximation that � increases
linearly with distance z, from 0° to 40°. In contrast, an upward
flicking flagellum is essentially straight. The resulting
distributions of Ref as a function of dimensionless flagellum
length are shown in Fig.·3. For both flick directions Ref initially
increases with z/Lf. However, because df decreases distally, Ref

eventually maximizes at a value of 50 at z/Lf=0.66 for a
downward flick and at a value of 30, also at z/Lf=0.66, for 
an upward flick. For larger values of z/Lf the value of Ref

decreases relatively quickly because both df and Unf decrease
distally.

In the length range 0�z/Lf�0.75, for which 0°���8°, the
flow field around a downward flicking flagellum is
predominantly two dimensional (2D) and the above definition
of Ref applies. With reference to Fig.·5, discussed further below,
relative to an (x, y, z) Cartesian coordinate system fixed to the
flagellum and with its z axis coinciding with the z axis of the
flagellum, this 2D flow is contained in a plane normal to the z
axis and consists of streamwise (Ux) and transverse (Uy)
velocity components driven by the approaching normal velocity
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Fig.·2. Schematic of an aesthetasc or mechanoreceptor sensillum on a
downward flicking flagellum rotating at angular velocity � relative to
its base (see Fig.·1). The fluid velocity approaching the flagellum, Uyf,
generates components Uns=Uyfcos� and Uts=Uyfsin� along the normal
(ns) and tangent (ts) to the sensillum, where �=�–�.

0

10

20

30

40

50

60

0 0.2 0.4 0.6 0.8 1.0
z/Lf

R
e f

Downward

Upward

Fig.·3. Variation of the Reynolds number Ref along the dimensionless
length of a flicking flagellum for downward (�=5.24·rad·s–1) and
upward (�=3.14·rad·s–1) flicks; flagellum dimensions are given in the
text. The decreases in flagellum diameter and of the normal component
of velocity with increasing distance toward the flagellum tip account
for the reduction in Ref with increasing z/Lf.
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component, Unf, of the flow1. To elucidate this flow field,
numerical calculations were performed for the transient,
developing, 2D motion of water past a circular cylinder
ultimately attaining a value of Ref=50. This flow condition
closely corresponds to the transient flow around a downward-
flicking flagellum in the region 0.50�z/Lf�0.75 and exactly
corresponds to it for z/Lf=0.66. In addition, because of the
closeness of the Reynolds numbers, the flow field calculated for
Ref=50 provides a fair representation of that arising around an
upward-flicking flagellum for Ref=30 (Tritton, 1988). The
calculations were performed using the Flow and Heat Transfer
Solver (FAHTSO) code developed by Rosales et al. (Rosales et
al., 2000; Rosales et al., 2001), extended to include the
Immersed Boundary technique (Pillapakkam et al., 2007). In
this approach, curved surfaces are approximated on a Cartesian
grid to allow the calculations to be performed in Cartesian
coordinates. FAHTSO solves the full forms of the
Navier–Stokes equations for constant property flows. Details
regarding the code and its testing and applications are given in
the above three references.

Because of the invariance of the incompressible-flow equations
under unsteady motion (Panton, 1996), rather than solve for the
flow field generated by a flagellum (cylinder) accelerating
through water, we solve for the flow field of water accelerating
past a fixed flagellum (cylinder). The 2D domain employed for
the numerical calculations was 20df
20df units and the cylinder
center was located at (x=5df, y=10df). Checks were conducted to
ensure that the locations of the four domain boundaries were
sufficiently removed from the cylinder so as not to adversely
affect the calculated results. The boundary conditions employed
were: (i) zero velocity at the cylinder surface; (ii) unidirectional,
uniform flow with velocity Uin=Uo (�Unf)2 aligned in the x-
coordinate direction at the inlet plane (x=0); (iii) developed flow

at the outlet plane (x=20df); (iv) impermeable bottom (y=0) and
top (y=20df) domain surfaces sliding at the inlet flow velocity Uo.
For the calculations presented here the (x,y) grid consisted of
(400
400) nodes and was unevenly spaced, being more refined
near the cylinder surface to resolve the boundary layer forming
on it. The dimensionless calculation time step was set to
�t*=5.363
10–4, where t*�tUo/df, and at each time step the
entire flow field was calculated according to an iterative scheme
until it had converged within that time step.

The calculations were started with the water initially at rest.
The flow at the inlet plane as well as the top and bottom domain
boundaries was then accelerated according to an S-shaped curve
given by:

where t* is dimensionless time, tf* is dimensionless final time,
and Tp is an adjustable dimensionless constant that changes the
slope of the S-shaped curve. The curve used, plotted in Fig.·4
and corresponding to Tp=0.5 and tf*=4, shows that by t*=4 the
flow field has acquired its final steady state velocity. Thus, in
this calculation, by the time a flicking flagellum translates two
body diameters it has essentially acquired its final steady state
velocity, a condition closely matching our laboratory
observations. Fig.·4 also shows as a function of time the
dimensionless distance (xf/df) traveled by the approaching flow
past a fixed flagellum or, equivalently, the distance traveled by
a flagellum moving through still water.

Values of df=5
10–4·m and Uo=8.63
10–2·m·s–1 were set
numerically to give the final developed flow value of Ref=50 of
interest to this work using water as the fluid medium. This value
of df corresponds to the effective diameter of a 25·mm flagellum
two thirds along its length starting from the base. However, note
that, in dimensionless form, the calculated velocity results
correspond to any (df, Uo) pair ultimately yielding Ref=50 and,
because t*�tUo/df, in the t* range explored other (df, Uo) pairs
will correspond to different physical times, t.

As shown in Fig.·5, the developing flow around a downward-
flicking flagellum ultimately attaining a value of Ref=50 is
laminar and streamlined. In the plots the streamlines are color-
coded to indicate the local dimensionless magnitude of velocity
(Umag/Uo=���Ux

2�+�U�
y
2/Uo). Results are plotted for four

dimensionless times t*=1, 2, 3 and 4, corresponding to physical
times of t=5.79
10–3·s, 1.16
10–2·s, 1.74
10–2·s and
2.32
10–2·s. The plots show the flow accelerating with time,
especially where it curves near to and around the flagellum
surface. A stagnation flow region arises immediately ahead of
the flagellum, and a recirculating wake region consisting of two
counter-rotating vortices grows with time immediately behind
it. The flow in the vicinity of the stagnation point is
characterized by a boundary layer of thickness �/df=1.2Ref

–1/2,
approximately, that increases in thickness with distance traveled
around the flagellum (Panton, 1996). Inertial and viscous fluid
forces are comparable in magnitude in the boundary layer,
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Fig.·4. S-shaped form of the dimensionless velocity (Uin/Uo,
continuous line) approximating the rate of acceleration of the far-field
flow approaching a flicking flagellum as a function of dimensionless
time, t* (�tUo/df). (In the calculations the flagellum is fixed and the
flow accelerates past it.) Also shown is the dimensionless distance
(xf/df, broken line) traveled by the approaching flow in units of the
flagellum diameter. For the conditions of interest in this work,
Uo=8.63
10–2·m·s–1 and df=5
10–4·m.

1Note that the (x, y, z) coordinate system used to describe the 2D flow around
a flagellum is distinct and different from the (x, y, z) coordinate system used
in Figs·1 and 2 for the kinematic analyses. 
2In the context of the present analysis, the inlet velocity Uin is given the value
Uo and corresponds to Unf, the approaching velocity normal to the flagellum.
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which ceases to exist at the two points where the
flow detaches from the sides of the flagellum.

Figs·6 and 7 provide plots of the calculated
profiles for the dimensionless Ux velocity
component plotted along two coordinate
directions. (Corresponding plots for the Uy

velocity component, not provided here, show that,
in comparison, it is negligibly small.) Fig.·6
provides the variation of Ux/Uo as a function of
x/df for y/df=10, while Fig.·7 shows the variation
of Ux/Uo as a function of y/df for x/df=5. The
results shown are restricted to a subregion of the
calculation domain corresponding to the flow of
interest, immediately around the flagellum.
Relative to the flagellum cylindrical cross-section
shown in each figure, in Fig.·6 the flow
approaches from the left (creating a stagnation
region on the flagellum) and departs from the
right (creating a recirculating region immediately
behind the flagellum). In Fig.·7 the flow is
directed vertically upwards along either side of
the flagellum, at locations ±90° downstream of
the stagnation point. Velocity profiles are plotted
for four dimensionless times, t*. Also shown for
reference in the figures are hypothetical ventral
and dorsal (Fig.·6) and medial and lateral (Fig.·7)
mechanoreceptor sensilla, of length 0.25
df and
oriented normal to the flagellum surface. Except
for the profiles in the wake of the flagellum
(Fig.·6), the gradients of all the other velocity
profiles are observed to increase markedly with
time near the flagellum surface. In contrast, in the
wake region immediately behind the flagellum the
Ux velocity component is always relatively small,
initially being positive but eventually becoming
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Fig.·6. Profiles of the dimensionless Ux velocity component for the
flow approaching (left profiles) and moving away from (right profiles)
a flagellum (circle) plotted along the x/df axis at y/df=10 (passing
through the front and back stagnation points of the flagellum). Results
are given for four dimensionless times (t*=1 to t*=4) for a subregion
of the entire 20df
20df calculation domain, and at t*=4 the flagellum
Reynolds number is Ref=50. At each time, the Ux velocity component
approaching the flagellum drops from the free stream value Uo(t) for
that time to the stagnation point value of 0 within less than two
flagellum diameters. The region of reversed (negative) flow in the wake
of the flagellum grows asymptotically with time (see Fig.·5 also). The
black bars denote the lengths, to scale, of 0.25
df mechanoreceptor
(MR) sensilla oriented normal to the flagellum surface.
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Fig.·7. Profiles of the dimensionless Ux velocity component at locations
–90° (left profiles) and + 90° (right profiles) relative to the stagnation
point (bottom of circle) for the flow past a flagellum (circle) plotted
along the y/df axis at x/df=5 (passing through the ±90° locations).
Results are given for four dimensionless times (t*=1 to t*=4) for a
subregion of the entire 20df
20df calculation domain, and at t*=4 the
flagellum Reynolds number is Ref=50. The symmetrical profiles show
the Ux velocity component increasing with time. At each time, the Ux

velocity component maximizes near the flagellum surface (a
characteristic of this class of flows) and decreases to the free stream
value Uo(t) for that time within less than two flagellum diameters. The
black bars denote the lengths, to scale, of 0.25
df mechanoreceptor
(MR) sensilla oriented normal to the flagellum surface.

Fig.·5. Near-field flow streamlines with dimensionless velocity magnitude
superimposed for the 2D flow accelerating (from left to right) past a flagellum
(approximated as a long cylinder) according to the far field approaching velocity S-
curve plotted in Fig.·4. Results are shown at times t*=1 (A; Ref=2.6), t*=2 (B; Ref=25),
t*=3 (C; Ref=47.1) and t*=4 (D; Ref=50). Between t*=3 and t*=4 the flow separates
at the top and bottom of the flagellum to form a recirculating flow region containing
two vortices downstream of the flagellum.
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negative as the wake forms and the flow in it reverses direction.
For all times, the medial and lateral mechanoreceptors shown
in Fig.·7 remain immersed in the boundary layer.

To a very good approximation, this is the complex transient
flow field to which ventral, dorsal, medial and lateral
mechanoreceptors are exposed to along the length section
0.50�z/Lf�0.75 of a downward-flicking flagellum. However,
because of the closeness of the Reynolds numbers the same flow
patterns arise for an upward-flicking flagellum, with the sense of
motions reversed and their magnitudes decreased, and with the
locations of the stagnation and wake flow regions interchanged.
As a consequence, fluid motion around a flagellum is such that
medial and lateral mechanoreceptor sensilla are torqued in the
ventral-to-dorsal direction during a downward flick and in the
dorsal-to-ventral direction during an upward flick. Also during
a downward flick the ventral sensilla are torqued towards the
flagellum surface while the dorsal sensilla are minimally
affected. In contrast, during an upward flick it is the dorsal
sensilla that are torqued toward the flagellum surface while the
ventral are minimally affected. It has been tacitly assumed that
the sensilla present on the flagellum (both aesthetascs and
putative hydrodynamic mechanoreceptors) do not significantly
alter the flow around the flagellum modeled as a cylinder. The
assumption is reasonable given the sparseness of the sensilla and
their small geometrical dimensions (diameter and length) relative
to the flagellum diameter.

(4) Dynamics of the flow around a flagellum in a tube
The FAHTSO code described above was also used to perform

numerical calculations of the flow of water at 25°C in a model
of the flagellum-in-tube experiment (Mellon and Humphrey,
2007) using the inner dimensions of the experimental tube,
length Lt=25·mm and diameter Dt=2.4·mm. Because of the
flagellum’s small cone angle (3.4°, calculated above), and in
order to emphasize the dynamics of the flow in the flagellum
length range 0�z/Lf�0.75, the flagellum was approximated as
a solid rod of length Lf=15·mm and diameter df=0.5·mm and
was concentrically located in the tube. Two small openings at
the ends of the tube and at right angles to it, each of diameter
d=1·mm, allowed setting up the proximal-to-distal (PrD) and
distal-to-proximal (DrP) flow regimes investigated in the
experiments. A schematic of the flow configuration examined,
with a definition of the Cartesian coordinate system used for the
calculations, is provided in Fig.·8. [Note that the (x, y, z)
Cartesian coordinate system used for the flagellum-in-tube
calculations is defined so as to coincide with that used for the
free-flicking flagellum calculations and, thus, facilitate
comparisons between the two sets of results.]

As for the case of the free-flicking flagellum, the flagellum-
in-tube calculations were performed on a grid sufficiently
refined to accurately capture the geometries of the tube and rod
curved surfaces. The grid consisted of 54
54
67 (x, y, z) nodes
inside the tube and was unequally refined in order to capture the
viscous layers on all solid surfaces. The calculation time step
employed was 2
10–5·s. At time zero, water motion in the tube
was impulsively started from rest by setting a uniform inlet
velocity condition at opening A for the PrD flow, or at opening
B for the DrP flow, of Uin=0.318·m·s–1 corresponding to a
volumetric flow rate through the tube of V=15·cm3·min–1=

2.5
10–7·m3·s–1. Because of the larger cross-section of the
annular space between the flagellum and the tube, this resulted
in an average velocity of Uann=5.78
10–2·m·s–1 in the annulus.
The remaining boundary conditions imposed were: (i) zero
velocity at all solid surfaces; (ii) uniform velocity at the outlet
opening, equal in magnitude to that at the inlet. For the
conditions examined the flow everywhere was always laminar
and had essentially developed to its final state by t=0.025·s.

Profiles of the dimensionless Ux, Uy and Uz velocity
components in the annular space are provided in Figs·9 and 10
for two typical axial locations in the tube and valid for all times
t�0.025·s. The velocity components are non-dimensionalized
using the average velocity in the annulus, Uann, and the x and y
coordinates using the tube radius Dt/2. A clarification is in order
to better understand the discussion below concerning these
results and their comparison with the free-flicking flagellum
calculations. With reference to Fig.·8, note that in these plots
‘S–N’ denotes velocity component profiles plotted along the
south-to-north compass direction; that is, plotted as a function
of x for y=0. Similarly, ‘W–E’ denotes velocity component
profiles plotted along the west-to-east compass direction; that
is, plotted as a function of y for x=0.

With reference to Fig.·9, the calculations reveal that the two
PrD and DrP flow regimes are virtually the same in
magnitude and distribution, but with directions reversed,
along the length of the annular space in the range
0.20�z/Lt�0.60, approximately. Based on the flagellum
length of 15·mm, these values correspond to 0.33�z/Lf�1,
where the latter position coincides with the tip of the
flagellum. In this region the axial velocity, Uz, is the only
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Fig.·8. Schematic (not to scale) of a simplified model of the flagellum-
in-tube experiment and definition of the (x, y, z) coordinate system used
for plotting the velocity components Ux, Uy and Uz. The case shown
corresponds to proximal-to-distal (PrD) flow, entry port A being to
the left and exit port B to the right in the figure. Values for the
geometrical dimensions and volumetric flow rate are given in the text.
N, north; S, south; E, east; W, west.
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significant component of motion and has the skewed
parabolic shape characteristic of the developed flow
in an annulus.

In contrast, with reference to Fig.·10, between z/Lt=0
and 0.20, corresponding to z/Lf=0 and z/Lf=0.33, the
third of the flagellum nearest to its base, the two PrD
and DrP flows differ in the following major ways.

PrD flow
The Uz component of motion is relatively large

everywhere around the flagellum and of sense such
that it torques all mechanoreceptor sensilla towards
the flagellum surface. Along the medial and lateral
sides of the flagellum (W–E profiles), the Ux component of
motion is comparable to Uz and of sense such that it torques
medial and lateral sensilla parallel to the flagellum surface and
in the ventral-to-dorsal direction. The Ux component of motion
in the S–N profiles is of sense such that it also torques
dorsal and ventral sensilla towards the flagellum
surface while, in contrast, the Uy component in the
W–E profiles is of sense such that it torques medial
and lateral sensilla away from the flagellum surface.
Thus, the Ux component of motion reinforces the
torque effects of the Uz when acting on the dorsal and
ventral sensilla, but works to neutralize the torque
effects of Uz when acting on the medial and lateral
sensilla.

DrP flow
The Uz component of motion is comparable to that for the

PrD flow everywhere around the flagellum, and of sense
such that it torques all sensilla away from the flagellum

S–N profiles (z/Lt=0.50, t>0.025 s)
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Fig.·9. Dimensionless Ux, Uy and Uz velocity component
profiles for the flow in the annular space between a rod-like
flagellum and a tube around it along the S–N (A) and W–E
(B) compass directions (see Fig.·8). Continuous lines denote
velocity profiles corresponding to the PrD flow and broken
lines to the DrP flow. Calculation conditions, given in the
text, correspond closely to the experimental, and the results
shown are typical of the flow in the annular space in the
region 0.20�z/Lt�0.60 or, equivalently, 0.33�z/Lf�1 for
times t�0.025·s. In this region the only significant velocity
component is the axial, Uz, which presents the skewed
parabolic profile shape characteristic of the developed flow
through an annular passage. The black and green bars denote
the lengths, to scale, of 0.25
df mechanoreceptor (MR)
sensilla oriented normal to the flagellum surface.
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Fig.·10. Dimensionless Ux, Uy and Uz velocity component
profiles for the flow in the annular space between a rod-like
flagellum and a tube around it along the SrN (A) and WrE
(B) compass directions (see Fig.·8). Continuous lines denote
velocity profiles corresponding to the PrD flow and broken
lines to the DrP flow. Calculation conditions, provided in
the text, correspond closely to the experimental, and the
results shown are typical of the flow in the annular space in
the region 0�z/Lt�0.20 or, equivalently, 0�z/Lf�0.33 for
times t�0.025·s. In this region the three velocity components
are roughly comparable in magnitude, with the PrD flow
profiles in the vicinity of the mechanoreceptors
corresponding closely to the flow around a downward
flicking flagellum and the DrP flow profiles to an upward-
flicking flagellum. The black and green bars denote the
lengths, to scale, of 0.25
df mechanoreceptor (MR) sensilla
oriented normal to the flagellum surface.
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surface. Along the medial and lateral sides of the flagellum
(W–E profiles), the Ux component of motion is comparable
to the axial and of sense such that it torques medial and
lateral sensilla parallel to the flagellum surface and in 
the dorsal-to-ventral direction. For this case, there are no
other significant components of motion affecting the
mechanoreceptor sensilla.

From these findings it is clear that, over the length
0�z/Lf�0.33 of the 15·mm flagellum section in the tube, the
PrD flow closely mimics the motion past a flagellum during
a downward-directed flick and, in so far as the medial and
lateral mechanoreceptor sensilla are concerned, the DrP flow
closely mimics the motion corresponding to an upward-
directed flick. (An even closer correspondence would be
attained between the DrP flow and an upward-directed flick
if the axial flow worked to torque the sensilla toward the
flagellum surface, as in the PrD flow case, as opposed to
away from the flagellum surface.) For the flagellum length
corresponding to 0.33�z/Lf�1, the PrD and DrP flows in
the annular space are strictly axially directed, equal in
magnitude and distribution, but of opposite sense. Along this
section of the flagellum, all sensilla experience the same
torque magnitude but with sense dictated by the axial flow
direction. The main conclusions are that: (i) the PrD flow in
the tube torques all mechanoreceptor sensilla towards the
flagellum surface and the medial and lateral in the ventral-to-
dorsal direction; (ii) the DrP flow torques all sensilla away
from the flagellum surface and the medial and lateral in the
dorsal-to-ventral direction. The first situation corresponds
closely to that expected for a downward-flicking flagellum,
while the second corresponds well, but to a lesser degree, to
that expected for an upward-flicking flagellum.

(5) Drag forces and torques acting on the hydrodynamic
mechanoreceptor sensilla of free-flicking and tube flow flagella

The putative hydrodynamic mechanoreceptor sensilla of

interest have slightly curved beak-like shapes at their tips and,
as a consequence, are also referred to as ‘beaked’ sensilla in
the text. They are arrayed around the circumference of each
annular segment of the flagellum (dorsally, ventrally,
medially and laterally) and vary in length from 50 to 250·	m
with diameters ranging from 10·	m at the base to 2·	m at the
tip. These sensilla point distally along the flagellum, each
being contained in a plane that passes through the local
flagellum axis, and they have orientation angles, �, measured
with respect to the tangent to the flagellum surface (see
Fig.·2), ranging from 35° to 65°.

In this study we are concerned with the drag forces and
torques acting on these sensilla modeled as straight, truncated
cylinders of diameter dMR=10·	m, length LMR=125·	m, and
orientation angle �=45°. For the purposes of an analysis based
on the fluid mechanics results presented in the sections above,
in the case of a flicking flagellum attention is restricted to
representative sensilla located in the range 0.50�z/Lf�0.75 of
a 25·mm flagellum of diameter very close to df=0.5·mm in this
range. In the case of the flagellum in a tube, we are primarily
concerned with representative sensilla in the range
0�z/Lf�0.33 of a flagellum 15·mm long with diameter
df=0.5·mm, for which the experiment closely mimics downward
and upward free-flicking flagellum conditions.

The velocity distributions obtained for a free-flicking
flagellum and for a flagellum in the tube flow configuration
corresponding to the experiment, allow estimations of the
drag forces and torques acting upon the hydrodynamic
mechanoreceptors distributed circumferentially around a
segment of the flagellum. Since certain characteristics of the
mechanoreceptors such as their torsional restoring constants
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Fig.·11. Schematic, not to scale, for evaluating the drag force and
torque acting on a medial or lateral mechanoreceptor sensillum
contained in a plane passing through the flagellum axis and oriented at
an angle � with respect to the local tangent to the flagellum surface.
The velocity component, Ux(y), inducing the drag and torque is normal
to the plane of the figure and, at any location  along the sensillum,
Uns()=Ux(y) where y=sin�.
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Fig.·12. Schematic, not to scale, for evaluating the drag force and
torque acting on a ventral or dorsal mechanoreceptor sensillum
contained in a plane passing through the flagellum axis and oriented at
an angle � with respect to the local tangent to the flagellum surface.
The velocity components, Ux(x) and Uz(x), inducing the drag and
torque are respectively normal and parallel to the local tangent to the
flagellum surface and, at any location  along the sensillum,
Uns()=Ux(x)cos�+Uz(x)sin� where x=sin�.
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and damping constants are currently unknown, attention
is paid to estimating the maximum drag forces and torques
they can possibly experience. To this end, it is assumed
that the sensilla are rigidly fixed (do not move relative to
the flagellum) and are inflexible (do not bend). We know
the latter assumption is correct from Atomic Force
Microscope (AFM) experiments performed by others (H.
C. Jennings and E. Berger, personal communication).
They find that the application of a force, using an AFM
tip at different locations along the length of a beaked-
shape Procambarus antennular sensillum, deflects the
entire sensillum without bending it. The former
assumption allows us to obtain maximum estimates of the
drag and torque, which are of the correct order of
magnitude for a deflecting mechanoreceptor.

With reference to Fig.·2, which defines the velocity
component Uns normal to a sensillum, it is easy to verify
that the characteristic Reynolds number, ReMR[�
(dMRUns�)/	], for the flow around a hydrodynamic
mechanoreceptor, whether on a free-flicking flagellum or
the flagellum-in-tube experiment, is ReMR�1. Because, in
addition, LMR/dMR�1, the Oseen drag relation for the flow
past a cylinder can be used to calculate the instantaneous drag
force per unit length, fMR, acting on the sensillum. The relation,
available in White (White, 1974) and adapted to the present
work, is given by:

where �=0.577216 is Euler’s constant. It follows that the total
drag force acting on a sensillum is given by:

0

fMR d ,FMR =
L

MR⌠
⎮
⌡

 

(3)

8� , (2)
1

 fMR = �UnsdMR
2 ReMR[0.5–�+ln(8/ReMR)]

2

and the corresponding torque by:

where  is the distance along the length of the sensillum.
Note that because both the flows of interest accelerate with

time, in principle an added mass term of order fAM=
��(dMR/2)2(dUns/dt) contributes to the force per unit length
acting on a mechanoreceptor. It is easy to show that:

fAM

fMR
=

�dMR

2

(dUns/dt)

Uns 8�

ReMR[0.5–�+ln(8/ReMR)] , (5)
2
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Fig.·13. Maximum values of the drag forces (FMR, N) and torques (TMR,
Nm) acting on the medial and lateral (M/L) and ventral (V) mechanoreceptor
sensilla of a downward flicking flagellum calculated as a function of time.
Calculation conditions and methodology are given in the text.

Table·1. Summary and comparison of the calculated maximum drag forces and torques acting on the mechanoreceptor sensilla of a
free-flicking flagellum and a flagellum-in-tube flow case 

Calculated maximum drag forces (N) and torques (Nm) acting on flagella hydrodynamic mechanoreceptor sensilla 

Free-flicking flagellum (sensilla in the range 0.50 z/Lf 0.75)
Downward flick Upward flick

Ventral sensillum FMR =1.56 10–9

TMR =1.45 10–13 (directed toward flagellum surface) (very small relative to downward flick values)

Dorsal sensillum (very small relative to upward flick values) FMR =7.8 10–10

TMR =7.25 10–14 (directed toward flagellum surface)

Medial/lateral sensilla FMR =3.17 10–8 FMR =1.59 10–8

TMR =2.72 10–12 (directed ventral-to-dorsal)
TMR =1.36 10–12 (directed dorsal-to-ventral)

Flagellum in tube (sensilla in the range 0 z/Lf 0.33)
PrD flow (analog of downward flick) DrP flow (analog of upward flick)

Ventral/dorsal sensilla FMR =6.63 10–9 FMR =5.98 10–10

TMR =6.45 10–13 (directed toward flagellum surface)
TMR =5.75 10–14 (directed away from flagellum surface)

Medial/lateral sensilla FMR =7.12 10–9 FMR =3.36 10–9

TMR =6.47 10–13 (directed ventral-to-dorsal)
TMR =3.02 10–13 (directed dorsal-to-ventral)

F, force; T, torque; MR, mechanoreceptor. 
The table results apply for all times t>0.023·s for a free-flicking flagellum and �>0.025·s for the flagellum-in-tube flow case. For calculation

conditions and methodology, see text.
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and, using the data leading to the plots in Figs·6 and 7, we find
that fAM/fMR�0.1 for times t*�1 (t�5.79
10–3·s). For times
t*�0.1 (t�5.79
10–4·s) we find that fAM/fMR�10, but fMR is so
small at such early times as to render both itself and fAM

negligible. Thus in our analyses we neglect the contribution of
the added mass to the force and torque acting on a
mechanoreceptor.

In applying Eqn·3 and Eqn·4, care must be taken to evaluate
Uns correctly along the length, , of the sensillum. With reference
to Fig.·11, for a medial or lateral sensillum it is easy to show that
Uns()=Ux(y), the component of motion normal to the plane of
the figure, where y=sin�. For a free-flicking flagellum Ux(y) is
obtained from the data used to generate Fig.·7, and for the
flagellum-in-tube flow case Ux(y) is obtained from the data used
to generate the W–E profiles in Fig.·10. Fig.·12 shows the most
general situation for a ventral sensillum during a downward flick
(or a dorsal one during an upward flick). Now Uns()=
Ux(x)cos�+Uz(x)sin�, where x=sin�. In the z/Lf range of interest
here for a free-flicking flagellum Uz(x)=0 so that
Uns()=Ux(x)cos� and, in this case, Ux(x) is obtained from the
data used to generate Fig.·6. In the z/Lf range considered for the
flagellum-in-tube case, particularly the PrD flow, both Ux(x) and
Uz(x) can contribute to Uns() and their values are obtained from
the data used to generate the S–N profiles in Fig.·10.

Fig.·13 shows the time variation of the calculated drag forces
and torques acting on the medial, lateral and ventral
mechanoreceptor sensilla of a downward-flicking flagellum
ultimately attaining a final, developed flow Reynolds number
of Ref=50. The plots reveal two distinct trends: (i) the total drag
forces and torques for all these sensilla increase to asymptotic
values associated with the developed flow condition attained by
the flagellum by t*=4 (t=0.023·s); (ii) at any time, the drag
forces and torques acting on the medial and lateral sensilla are
20–30 times larger than the corresponding forces/torques acting
on the ventral sensilla.

Corresponding results for the drag forces and torques acting
on the medial, lateral and dorsal sensilla of an upward-flicking
flagellum (not plotted in Fig.·13) show exactly the same trends
but are half as large in numerical value because of the smaller
upward-flick velocity. That this should be the case is readily
proven using Eqn·2 to obtain the ratio of the forces per unit
length acting on a mechanoreceptor during an upward and
downward flick, respectively. The ratio is given by:

where superscripts U and D denote upward and downward flick
conditions, respectively. A numerical evaluation of the second
term on the right hand side of Eqn·6 yields a value of 0.85±0.03
over the range of values for ReMR of this study. Since we also
know that Uns

U/Uns
D�0.6 it follows that fMR

U  /fMR
D  �0.51±0.02.

fMR

fMR
=

Uns
UU

D Uns
D [0.5–�+ln(8/ReMR)]

[0.5–�+ln(8/ReMR)]



D

U (6),

Table·1 summarizes and compares the sensilla drag and torque
results obtained for a downward and upward free-flicking
flagellum, and for the flagellum-in-tube configuration. The values
in the table for the flicking flagellum correspond to t�0.023·s
(t*�4), while those for the flagellum-in-tube configuration
correspond to t�0.025·s. The tabulated values reveal three trends.
Relative to corresponding values obtained for a downward and
upward flicking flagellum, in the flagellum-in-tube configuration:
(i) ventral (dorsal) sensilla experience drag forces and torques that
are about 4.3 times larger (1.3 times smaller) for the PrD flow
(for the DrP flow); (ii) medial and lateral sensilla experience
drag forces and torques that are about 4.5 times smaller for the
PrD flow and 4.7 times smaller for the DrP flow; (iii) as for the
free-flicking flagellum, drag forces and torques are about 2 times
larger for the PrD flow than for the DrP flow. 

The conclusions are that, for times t>0.025·s: (i) the flagellum-
in-tube experiment yields values of drag forces and torques acting
on the flagellum sensilla that are well within the range of the
values experienced by a free-flicking flagellum for both
downward and upward flicking conditions; (ii) the PrD flow
induces larger values of the drag forces and torques acting on the
sensilla than the DrP flow, showing good correspondence with
the downward and upward flicks of a free-flicking flagellum.
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